Solution

Problem 1. Delay Model

- a) Typical corner: $K_d = 13.92$, $V_{on} = 0.22$, $\alpha_d = 2.16$
- b) V_{DD} @minEDP = 0.7V (typical and slow), 0.5V for fast corner
- c) Worst-case delay is in the **slow corner**. The delay ratio (from the provided simulation data) is 99ps/36ps. Therefore, $f_{clk}(1V) = 99/36*250$ MHz = **687.5** MHz.

Problem 2. Research Paper Study

Answers may vary (open-ended question).

Problem 3: Inverter Chain Optimization

- a) Using Excel solver or analytically (partial derivatives): $x_2 = 2.83$, $x_4 = 8$, $D_{min} = 11.66$.
- b) Energy at stage k is proportional to the total output capacitance of stage k, $C_{out,k} = (\gamma^* C_k + C_{k+1})$. Sum energy of all four stages and include the switching activity, $E_{tot} = 4.275$.
- c) Using Excel solver: $x_2 = 2.15$, $x_4 = 4.06$, E(1.1D_{min}) = 3.582 (a 16% reduction).