Due: Friday April 19, 10am

Problem 1. Delay Model

The objective of this problem is to become familiar with technology metrics and develop insights for architectural studies. Based on a 90nm technology data provided below, you have to develop simple models for performance and power of digital logic gates.

V _{DD} [V]	t _p [ps] slow	t [ps] typical	t [ps] fast	Energy [fJ]	V _{DD} =1V FO	t _p (FO) [ps]
1.00	36	28	21	19.4	2	17
0.90	42	32	24	15.4	3	23
0.80	51	38	27	12.1	4	28
0.70	67	47	33	9.04	5	34
0.60	99	66	43	6.45	6	40
0.50	182	108	63	4.31	7	45
0.45	279	154	83	3.42	8	50
0.40	480	241	119	2.65	9	56
0.35	922	423	186	1.99	10	62

Parameters in the table are:

 V_{DD} – supply voltage t_p – propagation delay of a FO4 gate Slow/typical/fast – process corners Energy – energy of a digital gate FO – fanout (Cout/Cin) of a gate $t_p(FO)$ – delay as a function of FO

a) Determine parameters K_d , V_{on} , and α_d that best fit the typical delay with respect to V_{DD} .

$$t_{p} = \frac{K_{d} \cdot V_{DD}}{(V_{DD} - V_{on})^{\alpha_{d}}}$$

- **b**) Plot Energy-Delay product (EDP) for all process corners. What is the value of V_{DD} that minimizes EDP for each of the corners?
- c) Assume that the desirable operating point is $V_{DD} = 0.6V$ and that your target clock rate (dictated by system throughput) is 250MHz. Our standard cell-library, however, is characterized only for $V_{DD} = 1V$, so we need to translate timing to 1V. What would be the equivalent operating frequency at $V_{DD} = 1V$? Explain your answer.

Problem 2. Research Paper Study

Study 2022 research paper titled "Amber: A 367 GOPS, 538 GOPS/W 16nm SoC with a Coarse-Grained Reconfigurable Array for Flexible Acceleration of Dense Linear Algebra." Answer each question in 2-4 sentences.

- **a**) What are key findings of this paper? (2-4 sentences)
- **b**) What are the limitations of the proposed approach? (2-4 sentences)

Problem 3: Inverter Chain Optimization

a) Determine x_2 and x_4 to minimize *In-Out* delay. What is the delay? Assume $\gamma = 0.5$.

- **b**) Assuming switching activity $\alpha_{0 \rightarrow 1} = 0.1$, calculate the average energy dissipation.
- c) Determine x_2 and x_4 to minimize energy at $1.1D_{min}$. Calculate the energy.