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Slide P.1 

The advancement of semiconductor 
industry over the past few decades 
has made significant social and 
economic impacts by providing 
inexpensive computing and 
communication technologies. Our 
ability to access and process 
increasing amounts of data has 
created a major shift in information 
technology towards parallel data 
processing. Today’s 
microprocessors are deploying 
multiple processor cores on a single 
chip to increase performance; 
radios are starting to use multiple 

antennas to transmit data faster and farther; new technologies are needed for processing large 
records of data in biomedical applications. The fundamental challenge in all these applications is 
how to map data processing algorithms onto the underlying hardware while meeting application 
constraints for power, performance, and area. Digital signal processing (DSP) architecture design is 
the key for successful realization of many diverse applications in hardware. 

The tradeoff of various types of architectures to implement DSP algorithms has been a topic of 
research since the initial development of the theory. Recently, the application of these DSP 
algorithms to systems that require low cost and the lowest possible energy consumption has placed a 
new emphasis on defining the most appropriate solutions. The flexibility consideration has become a 
new dimension in the algorithm/architecture design. Traditional approach to provide flexibility has 
been through software programming a Von Neumann architecture. This approach was based on 
technology assumptions that hardware was expensive and the power consumption was not critical so 
time multiplexing was used to provide maximum sharing of the hardware resources. The situation 
now for highly integrated system-on-a-chip implementations is fundamentally different: hardware is 
cheap with potentially 1000’s of multipliers and adders on a chip and the energy consumption is a 
critical design constraint in portable applications. Even in the case of applications that have an 
unlimited energy source, we have moved into an era of power-constrained performance since heat 
removal requires the processor to operate at lower clock rates than dictated by the logic delays. 

This book, therefore, addresses DSP architecture design and the application of advanced DSP 
algorithms to heavily power-constrained micro-systems. 
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This book addresses the need for 
DSP architecture design that maps 
advanced DSP algorithms to the 
underlying hardware technology in 
the most area- and energy-efficient 
way. Architecture design is 
expensive and architectural changes 
have not been able to track the pace 
of technology scaling. The ability to 
quickly explore many architectural 
realizations is essential for selecting 
the architecture that best utilizes the 
intrinsic computational efficiency of 
silicon technology. 

In addition to tracking the 
advancements in technology, advanced DSP algorithms greatly increase computational complexity. 
At the same time, more flexibility to support multiple operation modes and/or multiple standards is 
needed in portable devices. Traditionally, algorithms and architectures are developed by different 
engineering teams, who also use different tools to describe their designs. Clearly, there is a pressing 
need for DSP architecture design that tightly couples into algorithmic and technology parameters, in 
order to deliver the most effective solution in power-limited regime. 

In response to the above challenges, this book provides systematic methodology for algorithm 
modeling, architecture description and mapping, and various hardware optimizations that take into 
account algorithm, architecture, and technology layers. This interaction is essential, because 
algorithmic simplifications can often far outstrip any energy savings possible in the implementation 
step. The outcomes of the proposed approach, generally speaking, are hardware-aware algorithm 
development and its optimized hardware implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

Why This Book?

 Goal: to address the need for area/energy-efficient mapping of 
advanced DSP algorithms to the underlying hardware technology

 Challenges in digital signal processing (DSP) chip design
– Higher computational complexity for advanced DSP algorithms
– More flexibility (multi-mode, multi-standard) required
– Algorithm and hardware design are often separate
– Power-limited performance

 Solution: systematic methodology for algorithm specification, 
architecture mapping, and hardware optimizations
– Outcome 1: hardware-friendly algorithm development
– Outcome 2: optimized hardware implementation

P.2
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The key feature of this book is a 
design methodology based on a 
high-level design model that leads 
to hardware implementation that is 
optimized for performance, power, 
and area. The methodology 
includes algorithm-level 
considerations such as automated 
wordlength reduction and unique 
data properties that can be 
leveraged to simplify the arithmetic. 
Starting point for architectural 
optimizations is a direct-mapped 
architecture, because it is well 
defined. From a high-level data-

flow graph (DFG) model for the reference architecture, a methodology based on linear 

the underlying technology. Once architectural solutions are available, any of the architecture design 
points can be mapped through commercial and semi-custom flows to field-programmable gate array 
(FPGA) and application-specific integrated circuit (ASIC) hardware platforms. As a final step, 
FPGA-based logic analysis is used to verify ASIC chips using the same design environment, which 
greatly simplifies the debugging process. 

To exemplify the use of the design methodology described above, many examples will be 
discussed to demonstrate diverse range of application requirements. Applications ranging from kHz 
to GHz rates will be illustrated and results from working ASIC chips will be presented. 

The slide material provided in the book is supplemented with additional examples, links to 
reference material, CAD tutorials, and custom software. All the supplements are available online. 
More detail about the online content is provided in Slide P.11. 
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The material in this book is a result 
of many years of development and 
classroom use. It started as a class 
material (Communications Signal 
Processing, EE225C) at UC 
Berkeley, developed by professors 
Bob Brodersen, Jan Rabaey, and 
Bora Nikolić in the 1990s and early 
2000s. Many concepts were applied 
and extended in research projects at 
the Berkeley Wireless Research 
Center in the early 2000s. These 
include automated Simulink-to-
silicon toolflow (by R. Davis, H. So, 

Highlights

 A design methodology starting from a high-level description to an 
implementation optimized for performance, power and area 

 Unified description of algorithm and hardware parameters
– Methodology for automated wordlength reduction
– Automated exploration of many architectural solutions
– Design flow for FPGA and custom hardware including chip 

verification

 Examples to show wide throughput range (kS/s to GS/s)
– Outcomes: energy/area optimal design, technology portability

 Online resources: examples, references, tutorials etc.

P.3

Book Development

 Over 15 years of effort and revisions…
– Course material from UC Berkeley (Communication Signal 

Processing, EE225C), ~1995-2003
Profs. Robert W. Brodersen, Jan M. Rabaey, Borivoje Nikoli

– The concepts were applied and expanded by researchers from 
the Berkeley Wireless Research Center (BWRC), 2000-2006

W. Rhett Davis, Chen Chang, Changchun Shi, Hayden So, Brian Richards, 
Dejan Markovi

– UCLA course (VLSI Signal Processing, EE216B), 2006-2008
Prof. Dejan Markovi

– The concepts expanded by researchers from UCLA, 2006-2010
Sarah Gibson, Vaibhav Karkare, Rashmi Nanda, Cheng C. Wang, 
Chia-Hsiang Yang

 All of this is integrated into the book
– Lots of practical ideas and working examples

P.4

programming is used to create many different architectural solutions, within constraints dictated by 



 DSP Architecture Design Essentials 
 

B. Richards), automated wordlength optimization (by C. Shi), the BEE (Berkeley Emulation Engine) 
FPGA platforms (by C. Chang et al.), and the use of this infrastructure in chip design (by D. 
Marković and Z. Zhang). 

spike analysis (by S. Gibson and V. Karkare), automated architecture transformations (by R. Nanda), 
revisions to wordlenght optimization tool (by C. Wang), flexible architectures for multi-mode and 
multi-band radio DSP (by C.-H. Yang). 

All this knowledge is integrated in this book. The material will be illustrated on working hardware 
examples and supplemented with online resources. 
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The material is organized into four 
parts: (1) technology metrics, (2) 
DSP operations and their 
architecture, (3) architecture 
modeling and optimized 
implementation, and (4) design 
examples. The first part introduces 
technology metrics and their impact 
on architecture design. Towards 
implementation, the second part 
discusses number representation, 
fixed-point effects, basic direct and 
recursive DSP operations and their 
architecture. Putting the technology 
metrics and architecture concepts 

together, Part 3 provides data-flow graph based model and discusses automated architecture 
exploration using linear programming methods. Quantization effects and hardware design flow are 
also discussed. Finally, Part 4 demonstrates the use of architecture design methodology and 
hardware mapping flow on several examples to show architecture optimization under different 
sampling rates and amounts of flexibility. The emphasis is placed on flexibility and parallel data 
processing. To get a quick grasp of the book content, visual highlights from each of the parts are 
provided in the next few slides. 

 

 

 

 

 

 

 

Organization

 The material is organized into four parts

Technology Metrics

DSP Operations & Their 
Architecture

Architecture Modeling & 
Optimized Implementation

Design Examples: 
GHz to kHz

1

2

3

4

Performance, area, energy 
tradeoffs and their implication 
on architecture design

Number representation, fixed-
point, basic operations (direct, 
iterative) & their architecture 

Data-flow graph model, high-
level scheduling and retiming, 
quantization, design flow

Radio baseband DSP, parallel 
data processing (MIMO, neural 
spikes), architecture flexibility

P.5

x 

The material was further developed at UCLA as class material by Prof. D. Marković and EE216B 
(VLSI Signal Processing) students. Additional topics include algorithms and architectures for neural-
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Part 1 begins with energy and delay 
models of logic gates, which are 
discussed in Chap. 1. The models 
describe energy and delay as a 
function of circuit design variables: 
gate size, supply and threshold 
voltage. With these models, we 
formulate sensitivity-based circuit 
optimization in Chap. 2. The 
output of the sensitivity framework 
is the plot of energy-delay tradeoffs 
in digital circuits, which allows for 
comparing multiple circuit 
realizations of a function. Since 
performance range of circuit tuning 

is limited, the concept is extended to architecture level in Chap  3. Energy-delay tradeoffs in 

pipelining, interleaving and folding. This way, tradeoffs between area and energy for a given 
performance can be analyzed. To further understand architectural issues, Chap. 4 compares a set 
of representative chips from various categories: microprocessors, general-purpose DSPs, and 
dedicated. Energy and area efficiency are analyzed to understand architectural features. 
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Part 2 first looks at number 
representation and quantization 
modes in Chap. 5, which is 
required for fixed-point description 
of DSP algorithms. Chap. 6 then 
presents commonly used iterative 
DSP operators such as CORDIC 
and Newton-Raphson methods for 
square rooting and division. 
Convergence analysis with respect 
to the number of iterations, 
required quantization accuracy and 
the choice of initial condition is 
presented. Chap. 7 continues with 
algorithms for digital filtering. 

Direct and recursive filters are considered as well as direct and transposed architectures. The impact 
of pipelining on performance is also discussed. As a way of frequency analysis, Chap. 8 discusses 
FFT and wavelet transforms. Baseline architecture for the FFT and wavelet transforms is presented. 
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Part 2: DSP Operations and Their Architecture

Ch 5: Arithmetic for DSP Ch 6: CORDIC, Divider, 
Square Root

Ch 7: Digital Filters

Ch 8: Time-Frequency Analysis

Number representation, 
quantization modes, 
fixed-point arithmetic
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.
datapaths are used to navigate architectural transformations such as time-multiplexing, parallelism, 
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Having defined technology metrics 
in Part 1, algorithm and architecture 
techniques in Part 2, we move on to 
algorithm models that are 
convenient for hardware 
optimization. Modeling approach is 
based on data-flow graph (DFG) 
description of a design, presented in 
Chap. 9, which defines the graph 
connectivity through incidence and 
loop matrices. As a first step in 
hardware optimization, Chap. 10 
presents a method based on 
perturbation theory that is used to 
minimize wordlengths subject to 

constrained mean-square error (MSE) degradation due to quantization. Upon wordlength reduction, 
Chap. 11 discusses high-level scheduling and retiming approach as a basis for automated 
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Several practical design examples 
are demonstrated in Part 4. Starting 
with a GHz-rate sampling speeds, 
Chap. 13 discusses digital front-
end architecture for software-
defined radio. It illustrates multi-

high-speed filtering, and fractional 
sample-rate conversion down to the 
modem frequency. Chap. 14 
illustrates multi-antenna (MIMO) 
DSP processor that estimates 
channel gains in a 4 4 MIMO 
system. The algorithm implemented 
performs singular value 

decomposition (SVD) on a 4 4 matrix and makes use of iterative Newton-Raphson divider and 
square root. It also demonstrates adaptive LMS and retiming of multiple nested feedback loops. The 
SVD design serves as a reference point for energy and area efficiency and studies of design 
flexibility. Based on the SVD reference, Chap. 15 presents multi-mode sphere decoder that can 

Part 3: Architecture Model &  Opt. Implementation

Ch 9: Data-Flow Graph Model Ch 10: Wordlength Optimization

Ch 11: Architectural 
Optimization

Ch 12: Simulink-Hardware Flow
DFG model is used 
for architecture 
transformations 
based on high-
level scheduling 
and retiming, an 
automated GUI 
tool is built…
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Part 4: Design Examples: GHz to kHz

Ch 13: Multi-GHz Radio DSP

Ch 14: Dedicated MHz-rate 
Decoders

Ch 15: Flexible MHz-
rate Decoders

Ch 16: kHz-rate Neural Processors
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xii 

GHz (2.5 3.6 GHz) digital mixing, –

architecture transformations. A custom tool based on integer linear programming is implemented in 
a GUI environment (available for download) to demonstrate automated architecture exploration for 
several common DSP algorithms. Chapter 12 presents Simulink-to-hardware mapping flow that 
includes FPGA-based chip verification. The infrastructure from Part 3 is applied to a range of 
examples. 
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work with up to 16 16 antennas, involves adaptive QAM modulations from BPSK to 64-QAM, 
sequential and parallel search methods, and variable number of sub-carriers. It demonstrates multi-
core architecture achieving better energy efficiency than the SVD chip with less than 2x area cost to 
operate the multi-core architecture. Finally, as a demonstration of leakage-limited application, 
Chap. 16 discusses architecture design for neural spike sorting. The chip dissipates just 130μW for 
simultaneous processing of 64 channels. The chip makes use of architecture folding for area 
(leakage) reduction and power gating to minimize the leakage of inactive units. 
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The framework presented in Part 4 
has also been applied to many other 
chips, which range about 4 orders 
of magnitude in sampling speed and 
3 orders of magnitude in power 
density. Some of interesting 
applications include wideband 
cognitive-radio spectrum sensing 
that demonstrates sensing of 
200MHz with 200 kHz spectral 
resolution. The chip dissipates 
7.4mW and achieves probability of 
detection >0.9, probability of false-
alarm <0.1, for −5dB SNR and 

It shows the use of multitap-windowed FFT, adaptive decision threshold and sensing times. Further 
extending the flexibility of MIMO processors to multiple signal bands, an 8 8 sphere decoder 
featuring programmable FFT processor with 128 2048 points, multi-core hard decision, and soft 
output unit is integrated in 13.8mW for a 20MHz bandwidth. The chip meets the LTE standard 
specifications with power consumption of 5.8 mW. Finally, we show online spike clustering 
algorithm in 75μW for 16 channels. The clustering chip exemplifies optimization of memory-
intensive design. These and many other examples can be effectively optimized for low power and 
area using the techniques presented in this book. 

 

 

 

 

 

 

 

 

Additional Design Examples

 Integrated circuits for future radio and healthcare devices
– 4 orders of magnitude in speed: kHz (neural) to GHz (radio)
– 3 orders of magnitude in power: W/mm2 to mW/mm2
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Online Material

 Online content
– References (papers, books, links, etc.)
– Design examples (mini projects)
– Custom software (architecture transformations)
– CAD tutorials (hardware mapping flow)

 Web sites
– Official public release: http://extras.springer.com

Updates will be uploaded as frequently as needed
– Development wiki: http://icslwebs.ee.ucla.edu/dejan/dspwiki

Pre-release material will be developed on the book wiki page
Your contributions would be greatly appreciated and acknowledged

P.11
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The book is supplemented with 
online content that will be regularly 
updated. This includes references 
(papers, textbooks, online links, 
etc.), design examples, CAD 
tutorials and custom software. There 
are two places you should check for 
online material. 

The official publisher website will 
contain release material, the 
development wiki page will contain 
pre-release content. Your 
contributions to the wiki are most 
welcome. Please contact us for an 
account and contribute with your 

own examples and suggestions. Your contributions will be greatly appreciated and also 
acknowledged in the next edition. 
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Many people contributed to the 
development of the material. 
Special thanks go to UC Berkeley/ 
BWRC researchers for the 
development of advanced DSP 
algorithms (A. Poon), hardware 
platforms (C. Chen, H. Chen, H. 
So, K. Kuusilinna, B. Richards, D. 
Wertheimer), hardware flows (R. 
Davis, H. So, B. Nikolić), 
wordlength tool (C. Shi). EE225C 
students at UC Berkeley and 
EE216B students at UCLA are 
acknowledged for testing the 
material and valuable suggestions 

for improvement. UCLA researchers are acknowledged for the development of algorithms and 
architectures for neural-spike processing (S. Gibson, V. Karkare, J. Judy) and test data (R. Staba), 
revisions of the wordlength optimizer (C. Wang), development of architecture optimization tool (R. 
Nanda), and application of the methodology in chip design (V. Karkare, C.-H. Yang, T.-H. Yu). 
Students from DM group and ASL group are acknowledged for proofreading the manuscript. We 
also acknowledge hardware support from Xilinx (chips for BEE boards), BWRC (BEE boards), 
FPGA mapping tool flow development (BEEcube), chip fabrication by IBM and ST 
Microelectronics, and software support from Cadence, Mathworks, Synopsys and Synplicity. 
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This chapter introduces energy and 
delay metrics of digital circuits used 
to implement DSP algorithms.  The 
discussion begins with energy and 
delay definitions for logic gates, 
including the analysis of various 
factors that contribute to energy 
consumption and propagation 
delay.  Design tradeoffs with 
respect to tuning gate size, supply 
and threshold voltages are analyzed 
next, followed by setting up an 
energy-delay tradeoff analysis for 
use in circuit-level optimizations.  
The discussion of energy and delay 

metrics in this chapter aims to give DSP architecture designers an understanding of hardware cost 
for implementing their algorithms. 

 

Slide 1.2 
The goal is to bring parameters of 
the underlying technology into the 
algorithm space – to bring together 
two areas that are traditionally kept 
separate. 

Technology characterization 
(energy, delay) is required to gain 
insight into circuit tuning variables 
that are used to adjust the delay and 
energy.  It is important to establish 
technology models that can be used 
in the algorithms space.  This model 
propagation will allow designers to 
make tradeoff analyses in the 
energy-delay-area space as a 

function of circuit, architecture, and algorithm parameters.  Going from the device level and up, 
circuit-level analysis will mostly consider the effects of logic depth and activity since these properties 
strongly influence architecture design. 

The analysis of circuit-level tradeoffs is important to ensure that the implemented algorithms 
fully utilize the performance capabilities of the underlying technology.  

Chapter Overview

 Goal: tie-in parameters of the underlying implementation 
technology together with algorithm-level specifications

 Strategy
– Technology characterization (energy, delay)
– Circuit-level tuning (gate size, supply voltage)
– Tradeoff analysis (E-D space, logic depth, activity)

 Remember
– We will go all the way down to these low-level results to match 

algorithm specs with technology characteristics

1.2

Energy and Delay Models

Chapter 1
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Slide 1.3 

Let’s start with power and energy 
metrics.   

Power is the rate at which 
energy is delivered or exchanged; 
power dissipation is the rate at 
which energy is taken from the 
source (VDD) and converted into 
heat (electrical energy is converted 
into heat energy during circuit 
operation).  Power is expressed in 
watts and determines battery life in 
hours (instantaneously measures 
how much energy is taken out of 
energy source over time).  We must 
design for peak power to ensure 

proper design robustness. 

Energy is the rate over which power is consumed over time.  It is also equal to the power-delay 
product.  Lower energy means less power to perform the computation at the same frequency.  (We 
will show in Chap. 4 that power efficiency is the same as energy efficiency.) 

Delivering power or energy into a chip is not an easy task.  For example, a 30 W mobile 
processor requires 30 A of current to be provided from a 1 V supply.  Careful analysis of power 
must also include units for power delivery and conversion, not just computations.  In Chap. 4, we 
will focus on the analysis of power required for computation. 

 

Slide 1.4 
Power and energy can be graphically 
illustrated as shown in this slide. 

consumption alone, we are looking 
at the height of the waveform.  
Note that Approach 1 and 
Approach 2 start from the same 
absolute level on the vertical axis, 
but are shown separately for 
improved visual clarity.  The 
Approach 1 requires more power 
while Approach 2 has lower power, 
but takes longer to perform a task – 
it is a performance-power tradeoff. 

If we look at the energy consumption for these two examples, we are looking at the product of 
power and delay (area under the waveforms).  The two approaches use the same amount of energy.  
The same amount of energy can be spent to operate fast with a higher power or operate slow with a 

Power and Energy Figures of Merit

 Power consumption in Watts
– Determines battery life in hours

 Peak power
– Determines power ground wiring designs
– Sets packaging limits
– Impacts signal noise margin and reliability analysis

 Energy efficiency in Joules
– Rate at which power is consumed over time

 Energy = Power * Delay
– Joules = Watts * seconds
– Lower energy number means less power to perform a 

computation at the same frequency

1.3

Power versus Energy

Watts

time

Power is the height of the waveform

Watts

time

Approach 1

Approach 2

Approach 2

Approach 1

Energy is the area under the waveform

Lower power design could simply be slower

Two approaches require the same energy

1.4

4 Chapter 1

If we look at the power 
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lower power.  So, changing the operating frequency does not necessarily change the energy 
consumption.  In other words, we consume the same amount of energy to perform a task whether 
we do it fast or we do it slow.    

 

 

Slide 1.5 
Here, we review the components of 
energy (power).  We consider three 
main components of power: 
switching, short-circuit, and 
leakage.  The two dominant 
components are switching and 
leakage.  Switching (dynamic) 
power can be calculated using the 
well-known f0 1·CL·VDD

2 formula, 
where f0 1 represents the frequency 
of 0 1 transition at the gate 
output, CL is the output capacitance 
of a gate, and VDD is supply voltage.  
Leakage power is proportional to 
the leakage current (during idle 

periods) and VDD.  Short-circuit power can be neglected in most circuits – it typically contributes to 
about 5 % of the total power.   

As we scale technology, the short-circuit power is decreasing relatively due to supply and 
threshold scaling (supply scales down faster).  However, threshold voltage reduction results in an 
exponential increase in the leakage component.  Therefore, we must balance dynamic and leakage 
energy in order to minimize the total energy of a design.  A simple relationship that allows us to 
convert between energy and power is Energy = Power / fclk, where fclk represents the clock frequency of 
a chip. 

 

 

 

 

 

 

 

 

 

 

Dynamic
(~75% today, 
decreasing)

Short-circuit
(~5% today, 
decreasing)

Leakage
(~20% today, 

slowly increasing)

Review: Energy and Power Equations

E = 01· CL· VDD
2 + 01 ·tsc · VDD · Ipeak +  VDD · Ileakage /fclock

P = f01 · CL· VDD
2 + f01 · tsc· VDD· Ipeak + VDD · Ileakage

f01 = 01 · fclk

Energy = Power / fclk

1.5
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Slide 1.6 
We need to model two primary 
components of energy: switching 
component, and leakage 
component. The switching 
component relates to the energy 
consumption during active circuit 
operation, when internal nodes are 
switched between logic levels “0” 
and “1”. The leakage component is 
primarily related to the energy 
consumption during periods of time 
when the circuit is inactive. 

With the scaling of CMOS 
technology, relative contributions of 
these two components have been 

changing over time. If the technology scaling were to continue in the direction of reduced VDD and 
VTH, the leakage component would have quickly become the dominant component of energy.  To 
keep the energy balanced, general scaling of technology dictates nearly constant VTH and slow VDD 
reduction in sub-100 nm process nodes.  Another reason for the reduced pace in voltage scaling is 
increase in process variations.  ub-100 nm technologies mainly benefit from increased integration 
density and reduced gate capacitance, not so much from raw performance improvements. 

In the past, when leakage energy was negligible, minimization of energy could be simplified to 
minimization of switching energy.  Today, leakage energy also needs full attention in the overall 
energy minimization. 

 

Slide 1.7 
The switching energy can be 
explained by looking at transistor-
level representation of a logic gate.  
For every 0 1 transition at the 
output we must charge the 
capacitance CL and an amount of 
energy equal to E0 1 is taken out of 
the supply.  For CMOS gates (VOL 
= 0, VOH = VDD), the energy-per-
transition formula evaluates to the 
well-known result: E0 1 = CL·VDD

2.  
Thus the switching energy is 
quadratically impacted by the 
supply voltage, and is proportional 
to the total capacitance at the 

output of a gate. 

 

Dominant Energy Components

Dramatic increase in Leakage Energy

0

1

2

3

4

5

0.25 m 0.18 m 0.13 m 90 nm 65 nm

Technology Generation

En
er

gy
 (n

or
m

.)

leakage
switching

W

VDD Switching: charges the load capacitance
 Leakage: parasitic component

1.6

Switching Energy

 Every 0 1 transition at the output, an amount of energy is taken 
out of supply (energy source)

CL

VDD

Vin Vout

1.7

0 1 · ·OH

OL

V

L out outV
E C V dV  

2
0 1 ·L DDE C V 

S
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Slide 1.8 
What happens to the energy taken 
out of the supply?  Where does it 
go to? 

Consider a CMOS gate as shown 
on this slide.  PMOS and NMOS 
networks are responsible for 
establishing a logic “1” and “0” at 
Vout, respectively, when inputs A1 – 
AN are applied.  During the pull-up, 
when logic output undergoes a 
0 1 transition, E0 1 is taken out of 
the supply.  One half of the energy 
is stored on the load capacitance 
(EC) and the other half is dissipated 
as heat by transistors in the PMOS 

network (ER).  During the pull-down, when logic output makes a 1 0 transition, the charge from 
CL is dissipated as heat by transistors in the NMOS network. 

Therefore, in a complete charge-discharge cycle at the output, E0 1 is consumed as heat.  Half of 
the energy is temporarily stored on the output capacitance to hold logic “1”.  The next question is 
how often does the output of a gate switch? 

 

Slide 1.9 
This slide introduces the concept of 
switching activity.  If we observe a 
logic gate over N switching cycles 
and count the number of 0 1 
transitions n(N), then we can count 
the average number of transitions 
by taking the limit for large N.  The 
limit of n(N)/N as N approaches 
infinity is the switching probability 

0 1, also known as the activity 
factor.  The average energy Eavg 
dissipated over N cycles is directly 
proportional to the switching 
activity: Eavg = 0 1·E0 1.  The 
switching activity becomes the third 

factor, in addition to CL and VDD, impacting the switching energy.  The activity factor is best 
extracted from the input data and helps accurately predict the energy consumption. 

 

Energy Balance

 One half of the energy from supply is consumed in the 
pull-up network and one half is stored on CL

 Charge from CL is discharged to Gnd during the 1 0 transition

E0 1

PMOS
network

NMOS
network

..
.

A1

AN

CL

Vout

VDD

E1 0

E0 1 = CL · VDD
2

E1 0 = 0.5 · CL · VDD
2

ER = E1 0

ER = 0.5 · E0 1

EC = 0.5 · E0 1

Energy from supply

heat

heat

1.8

 Consider switching a CMOS gate for N clock cycles

EN : the energy consumed for N clock cycles
n(N) : the number of 0 1 transitions in N clock cycles

Node Transition Activity and Energy

1.9

2· · ( )N L DDE C V n N

2( )
lim lim · ·N

avg L DDN N

E n N
E C V

N N 

    
 
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lim
N

n N
N 



2
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Slide 1.10 
How can we control switching 
energy?  The most obvious way is 
to control each of the terms in the 
expression.  Supply voltage has the 
largest impact, but it is no longer 
scaling down with technology at a 
rate of 0.7x per technology 
generation, as already discussed.  
Activity factor depends on how 
often the data switches and it also 
depends on the particular 
realization of a logic function 
(internal node switching matters).  
Switching capacitance is a function 
of gate size and topology.  Some 

design guidelines for energy reduction are outlined below. 

Lowering CL improves performance.  CL is minimized simply by minimizing transistor width 
(keeps intrinsic capacitance, gate and diffusion, small). We also need to consider performance and 
the impact of interconnect.  A simple heuristic is to upsize transistors only when CL is dominated by 
extrinsic capacitance (fanout and wires). 

Reducing VDD has a quadratic effect!  At the same time, VDD reduction degrades performance 
especially as VDD approaches 2VTH.  The energy-performance tradeoff, again, has to be carefully 
analyzed. 

Reducing the switching activity, f0 1 = p0 1 · fclk, is another way to reduce energy.  Switching 
activity is a function of signal statistics and clock rate.  It is impacted by the logic and architecture 
design decisions. 

Focusing only on VDD and CL (via gate sizing), a good heuristic is to lower the supply voltage as 
much as possible and to compensate for the loss in performance by increasing the transistor size.  
This strategy has limited benefit at very low VDD.  As we approach the sub-threshold region, leakage 
energy grows exponentially and there is a well-defined minimum energy point (beyond which further 
scaling of voltage results in higher energy).  

 

 

 

 

 

 

 

 

8 

Lowering Switching Energy

Esw = a01 · CL · VDD
2

Capacitance:
Function of fan-out, wire 
length, transistor sizes

Supply Voltage:
Has been dropping* 
with CMOS scaling

Activity factor:
How often, on average, do 
nodes switch?

1.10

[J. M. Rabaey, UCB]
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Slide 1.11 
Let’s further analyze the switched 
capacitance.  Consider two stages of 
logic, stages i and i + 1.  We assume 
that each stage has its own supply 
voltage in ideal case.  Each logic 
gate has two capacitances: intrinsic 
parasitic capacitance of the drain 
diffusion (Cparasitic), and input 
capacitance of the gate electrode 
(Cgate).  Additionally, there is an 
interconnect connecting the gates 
that also contributes to capacitive 
loading.   

At the output of the logic gate in 

capacitances: intrinsic parasitic capacitance Cparasitic,i of the gate in stage i, external wire capacitance 
Cwire, and input capacitance of the next stage, Cgate,i+1.  These three components combined are CL from 
the previous slides. 

Changing the size of the gate in stage i affects only the energy stored on the gate, at its input and 
parasitic capacitance.  Logic gates typically have large fanouts (e.g. 4 or higher), so the total external 
capacitance Cout = Cwire + Cgate ,i+1 is a dominant component of CL. For large fanouts (large Cout ), we 
may thus neglect Cparasitic,i.  Let’s discuss the origin of Cparasitic and Cgate. 

 

Slide 1.12 
Going another level down to device 
and circuit parameters, we see that 
all capacitances are geometric 
capacitances and can be abstracted 
as some capacitance per unit width.  
Transistor width (W) is the main 
design variable in digital design 
(transistor length L is typically set at 
Lmin as given by the process and 
rarely used as a variable).  There are 
two physical components of the 
gate capacitance: gate-to-channel 
and gate-to-source/drain overlap 
capacitances.  For circuit design, we 
want a lumped model for Cgate to be 

able to look into macroscopic gate and parasitic capacitances as defined on the previous slide.  Since 
components of Cgate are proportional to W, we can easily derive a macro model for Cgate.  A typical 
value of Cgate per unit width is 2.5 fF/ m in a 90-nm technology.  The same W dependency can be 
observed in the parasitic diffusion capacitance.  The Cpar/Cgate ratio is typically less than 1.  This ratio 
is usually labeled as .  For a 90-nm general process design kit, the value of  is about 0.6.  Starting 

Switched Capacitance

i i+1

CwireCparasitic,i Cgate,i+1

For large fanouts, we may neglect the parasitic component

VDD,i VDD,i+1

1.11

L sw par outCC C C 

, 1sw out wire gate iC C C C   

MOS Capacitances

 Gate-Channel Capacitance
– CGC = Cox·W·Leff (Off, Linear)
– CGC = (2/3)·Cox·W·Leff (Saturation)

 Gate Overlap Capacitance
– CGSO = CGDO = CO·W (Always)

 Junction/Diffusion Capacitance
– Cdiff = Cj·LS·W + Cjsw·(2LS + W) (Always)

Circuit design

Cgate

Cparasitic

 Simple linear models
– Designers typically use 

C / unit width  (fF/m)

 = Cpar / Cgate (typically < 1)
– 90 nm gpdk: = 0.61

90 nm gpdk
2.5 fF/m

1.12

C W

the i 
th stage, there are three 
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from the values given here, and using C(W) relationship, we can derive typical capacitance values in 
scaled technology nodes. 

 

Slide 1.13 
Leakage energy is the second most 
dominant component of energy and 
is dissipated when the gate is idling 
(red lines on the slide).  There is 
also active leakage that flows 
between VDD and Gnd during 
switching, but we neglect it because 
in the active mode switching energy 
dominates.  Leakage current/energy 
is input-state dependent, because 
states correspond to different 
transistor topologies for pull-up 
and pull-down. We have to analyze 
leakage for all combinations of 
fixed inputs since the amounts of 

leakage can easily vary by an order of magnitude across the states.  As indicated in Slide 1.5, leakage 
energy can be calculated as the leakage power divided by the clock frequency.   

In today’s processes, sub-threshold leakage is the main contributor to leakage current.  Gate 
leakage used to be a threat until high-K gate technology got introduced (at the 45 nm node).  So, 
modeling sub-threshold source-to-drain leakage current is of interest for circuit designers. 

 

Slide 1.14 
We can use two models for sub-
threshold leakage current.  One 
approach is physics-based, which is 
close to what SPICE uses, but is 
not convenient for hand 
calculations or quick intuitive 
reasoning because of the exponent 
terms.  Instead of working with 
natural logarithm, we prefer to 
work with decimal system and 
discuss by how much we have to 
tune VGS to get an order of 
magnitude reduction in leakage 
current.  It is much easier to work 
in decades, so we derive an 

empirical model.  The empirical model shown on the slide also exposes gate size and transistor 
terminal voltages as variables that designers can control.  It is also useful to normalize the number to 
a unit device.  So, in the formula shown on the slide, W/W0 is the ratio of actual with to a unit 

Leakage Energy

 When the gate is idle (keeping the state), an amount of energy is 
taken out of supply (energy source)

CL

VDD

Vin Vout

Sin = 1

Sin = 0

The sub-threshold leakage current is the dominant component

1.13

( )· /Leak Leak in DD clockE I S V f

Sub-Threshold ID vs. VGS

Physical model

Empirical model
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width, or the relative size of a device with respect to the unit device.  Notice the exponential impact 
of VGS and VTH, and also DIBL effect  on VDS. 

The parameter S represents the amount of VGS tuning for an order of magnitude change in 
leakage current. In CMOS, S is typically 80–90m V/dec.  Device research is focused on improving 
the slope, which would mean better Ion/Ioff ratio and less leakage current.  In the ideal case of zero 
diffusion capacitance, S is lower-bounded to 60 mV (n = 1). 

Slide 1.15 
It is interesting to see how 
threshold or VGS impact the sub-
threshold leakage current.  If we 
look at the formula, the slope of the 
log(IDS) versus VGS line simply 
represents the sub-threshold slope 
parameter S.  In sub-threshold for 
this 0.25 m technology, we can see 
that the current can be reduced by 
10x for a 90 mV  decrease  in  VGS (n 
= 1.5).  If we scale technology, the 
leakage current starts to roll down 
at lower values of VGS (lower VTH), 
so the amount of current at a 
particular VGS is exponentially 

larger in a scaled technology. This exponential dependence presents a problem, because it is hard to 
control. 

An important question is: with scaling of technology and relatively increasing leakage, what is the 
relative relationship between the switching and leakage energy when the total energy is minimized? 

 

Slide 1.16 

The most common way to reduce 
energy is through supply voltage 
scaling.  VDD has a large impact on 
energy, especially switching.  It is 
also a global variable, so it affects 
the whole design (as opposed to 
tweaking size of individual gates). 

The plot on this slide shows 
simulations from a typical 65-nm 
technology with nominal VDD of 
1.2 V.  We  can see  that  the  
switching energy drops 
quadratically with VDD.  The red 
line shows leakage energy which is 

Balancing Switching and Leakage Energy

 Switching energy drops quadratically with VDD

 Leakage energy reaches a minimum, then increases
– This is because fclock drops exponentially at low VDD

Switching
Leakage

Esw = 01 · CL · VDD
2

Elk = Ilk(Sin) · VDD / fclock
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the current multiplied by VDD and divided by fclk.  It is interesting that the leakage energy has a 
minimum around 0.7 V for a 65 nm technology.  With further reduction of VDD leakage current is 
relatively constant, but exponential delay increase (fclk reduction) causes leakage energy to increase in 
the same exponential manner.  How does this affect total energy? 

 

Slide 1.17 
The total energy has a minimum 
and happens to be around 0.3 V, 
slightly higher than the device 
threshold.  This voltage varies as a 
function of logic depth (cycle time) 
and switching activity.  The result 
presented in this slide assumes logic 
depth of 10 and activity factor of 
10 % for a chain of CMOS 
inverters. The total energy is limited 
by sub-threshold conduction when 
the increase in leakage energy 
offsets savings in switching energy.  
Thus, we can only reduce energy 
down to the minimum-energy 

point.  A very interesting result is that only about one order of magnitude energy reduction is 
possible by VDD scaling.  This means that at the circuit level there is not much energy to be gained 
due to this limitation.  More improvements can be obtained in finding algorithms that minimize the 
number of operations in each task.  

 

Slide 1.18 
As a basis for delay calculation, we 
consider the alpha-power model of 
the drain current [1].  This model 
works quite well in velocity 
saturated devices (e.g. gate lengths 
below 100 nm).  The expression on 
the slide departs from the long-
channel quadratic model to include 
parameter  that measures the 
degree of velocity saturation.  
Values closer to 1 correspond to a 
higher degree of velocity saturation.  
This value is obtained by minimum 
mean square error (MMSE) curve 
fitting of simulation data.  A typical 

value for  is around 1.4 in a 90 nm technology and largely depends on fitting accuracy and the value 
of transistor threshold VTH.  Considering VTH as another fitting parameter, one can find an array of 

Total Energy has a Minimum

 Total energy is limited by sub-threshold conduction
– Current doesn’t decrease, but delay increases rapidly

Total
Switching
Leakage
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0.3 V

Energy-VDD

12x

 Interesting result: only an 
order of magnitude in energy 
reduction is possible by VDD
scaling!

Simulation parameters:
65 nm CMOS
Activity = 0.1
Logic depth = 10

1.17

Alpha-Power Model of the Drain Current

 Basis for delay calculation, also useful for hand analysis [1]

 Empirical model
– Curve fitting (MMSE)
– is between 1 and 2
– In 90 nm, it is ~1.4

(it depends on VTH)
● Can fit to = 1, but with 

what VTH?

1.18
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[1] T. Sakurai and R. Newton, “Alpha-Power Law MOSFET Model and its Applications to CMOS 
Inverter Delay and Other Formulas,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 584-594, 
Apr. 1990.
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( , VTH) values for a given accuracy. A good practice is to set an initial value of VTH to VT0 from the 
transistor-level (Spectre, SPICE) model. 

Designers often use the alpha-power law model for current to approximate the average current 
during logic transitions from {0, VDD} to VDD/2 in order to calculate logic delay. 

 

 

Slide 1.19 
A very simple delay model that 
includes the effects of changes in 
supply, threshold and transistor 
sizes is shown in this slide.  In the 
formula, Wout is the size of the 
fanout gates, Win is the size of the 
input gate, and Wpar corresponds to 
the parasitic capacitance of the 
input gate. The ratio Wpar/Win is the 
ratio of parasitic capacitance to gate 
capacitance. 

This is a curve-fitting expression 
based on the alpha-power law 
model for the drain current, with 
parameters Von and d related to, 

but not equal to the transistor threshold and the velocity saturation index from the current model 
[2].  Due to the curve-fitting approach, VTH is used as a parameter ( VTH = 0 for nominal VTH) in 
order to capture the effect of threshold adjustment on the delay. 

As shown on the plot, the delay model fits SPICE simulated data quite nicely, across a range of 
supply voltages, with a nominal supply voltage of 1.2 V for a 0.13- m CMOS process.  This model 
will be later used for gate sizing and supply and threshold voltage adjustment in order to obtain the 
energy-delay tradeoff for logic computations. 

 

 

 

 

 

 

 

 

 

Alpha-Power-Based Delay Model

 Fitting parameters [2]
Von , d , Kd
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[2] V. Stojanovi et al., “Energy-Delay 
Tradeoffs in Combinational Logic using 
Gate Sizing and Supply Voltage 
Optimization,” in Proc. Eur. Solid-State 
Circuits Conf., Sept. 2002, pp. 211-214.



 

Slide 1.20 
The impact of gate size and supply 
voltage can be lumped together in 
the effective fanout parameter heff as 
defined on this slide.  In logical 
effort terms, this parameter is 
g(VDD, VTH)·h, where g is the 
logical effort and h is the electrical 
effort (fanout).  Such a formulation 
allows for consideration of voltage 
effects together with the sizing 
problem typically considered in the 
logical effort delay model.  Chapter 
2 will make use of heff in energy-
delay sensitivity analysis. 

 

 

Slide 1.21 
As discussed in Slide 1.10, supply 
voltage reduction is the most 
attractive approach for energy 
reduction.  A plot of delay as a 
function of VDD is shown in this 
slide for a 90-nm technology.  
Starting from the nominal voltage 
of 1.2V the delay increases by 
about an order of magnitude when 
the supply is reduced by half.  
Further VDD reduction towards VTH 
results in exponential delay increase, 
as predicted by the alpha-power 
model. It is important to remember 
this result as we move on to energy-

delay optimization in Chap. 2. 

 

 

 

 

 

 

 

Alpha-Power-Based Delay Model
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Slide 1.22 
Putting the energy and delay 
models together, we can plot the 
energy-delay tradeoff due to voltage 
scaling.  There is a minimum energy 
point, when taking into account the 
tradeoff between switching and 
leakage currents.  A simple way to 
minimize energy in a digital system 
is to perform all operations at the 
minimum-energy point.  However, 
the delay penalty at the minimum-
energy point is enormous: a 1000x 
increase in delay is needed for 
around a 10x reduction in energy as 
compared to the minimum-delay 

point obtained for design operating at nominal supply voltage.  This is hardly a tradeoff considering 
the delay cost. 

The question is which operating point to choose from the energy-delay line?  The table shows 
energy reduction and corresponding delay increase for several points along the green line for a 65-
nm technology assuming logic activity of 0.1 and 10 logic stages between the pipeline registers.  The 
data shows a good energy-delay tradeoff, up to about 3–5x increase in delay.  For delays longer than 
5x, the relative delay increase is much higher than the relative energy reduction, making the tradeoff 
less favorable.  The energy-delay tradeoff is the essence of design optimization and will be discussed 
in more detail in Chap. 2. 

The important message from this slide is the significance of algorithm-level optimizations.  Once 
an algorithm is fixed, we only have an order of magnitude margin for further energy reduction (not 
considering special effects such as stacking or power gating, but even with these, the energy 
reduction will be limited).  Therefore, it is very important to consider algorithmic simplifications 
together with gate-level design. 

 

 

 

 

 

 

 

 

 

 

Energy-Delay Tradeoff

 Assumptions: 65 nm technology, datapath activity = 0.1, logic depth = 10

Energy 10% 25% 2x 3x 5x 10x
Delay 7% 27% 2x 4x 10x 130x
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12x1000x Hardly a tradeoff: 
a 1000x delay increase for a 
12x energy reduction

 Which operating point to 
choose?
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Slide 1.23 
To measure the compromise 
between energy and delay, several 
synthetic metrics are used.  Power-
delay product (PDP) and energy-
delay product (EDP) are the most 
common of such metrics.  Power-
delay product is the average energy 
consumed per switching event and 
it evaluates to CL·VDD

2 / 2.  Each 
switching cycle contains a 0 1 and 
a 1 0 transition, so Eavg is twice 
the PDP.  PDP is the energy metric 
and does not tell us about the speed 
of computation.  For a given circuit, 
PDP may be made arbitrarily low 

by reducing the supply voltage that comes at the expense of performance. 

Energy-delay product, or power-delay-squared product, is the average energy multiplied by the 
time it takes to do the computation.  EDP, thus, takes performance into account and is the preferred 
metric.  The graph on this slide plots energy and delay metrics on the vertical axis versus supply 
voltage (normalized to the reference VDD for the technology) on the horizontal axis.  As VDD is 
scaled down, EDP (the green line) reaches a minimum before PDP (energy) reaches its own 
minimum.  Thus, EDP is minimized somewhere between the minimum-delay and minimum-energy 
points and generally represents a good energy-delay tradeoff. 

 

Slide 1.24 
The supply voltage corresponding 
to minimum EDP is roughly 
VDD(min-EDP) = 3/2 VTE where 
VTE = VTH + VDSAT/2.  This value 
of VDD optimizes both 
performance and energy 
simultaneously and is roughly 0.4 to 
0.5 VDD and corresponds to the 
onset of strong inversion (VDSAT/2 
above VTH).  This value is between 
VDD corresponding to minimum 
energy (lowest) and minimum delay 
(highest).  Minimum EDP, to a first 
order, is independent of supply 
voltage and could be used for 

architecture comparison across technology.  EDP, however, is just one of the points on the energy-
delay tradeoff line and, as such, is rarely optimal (for actual designs).  The optimal point in the 
energy-delay space depends on the required level of performance, as well as design architecture. 

Choosing Optimal VDD

 Optimal VDD depends on the optimization goal
– VDD increases as we put more emphasis on delay
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PDP and EDP

 Power-delay product (PDP) = Pavg · tp = (CL · VDD
2)/2

– PDP is the average energy consumed per switching event 
(Watts * sec = Joule)

– Lower power design could simply be a slower design

 Energy-delay product (EDP)

– EDP = PDP · tp = Pavg · tp
2

– EDP = average energy * 
the computation time 
required

– One can trade increased 
delay for lower E/op 
(e.g. via VDD scaling)
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Slide 1.25 
The energy-delay tradeoff plot is 
essential for evaluating energy 
efficiency of a design.  It gives a 
unified description of all achievable 
energy and delay targets.  As such, 
the tradeoff curve can also be 
viewed as a continuous set of ( , ) 
values that model a synthetic metric 
E ·D .  This includes minimum 
energy-delay product (  =  = 1) as 
well as points that put more 
emphasis on delay (  = 1,   >  1)  or  
energy ( >1, =1).  The two 
boundary points are the point of 
minimum delay and the point of 

minimum energy.  The separation between these two points is about three orders of magnitude in 
energy and about one order of magnitude in delay.  These points define the range of energy and 
delay tuning at the circuit level.  It also allows us to formulate optimization problems under energy 
or delay constraints. 

 

Slide 1.26 
The goal of energy-delay 
optimization is to find the best 
energy-delay tradeoff by tuning 
various design variables.  The plot 
shows the energy-delay tradeoff in 
CMOS circuits obtained by the 
adjustment of gate size and 
threshold and supply voltages.  
When limited by energy (Emax) or 
delay (Dmax), designers have to be 
able to quickly find solutions that 
meet the requirements of their 
designs. 

Local optimizations focusing on 
one variable are the easiest to 

perform, but may not meet the specs (e.g. tuning gate sizing as shown on the plot).  Some variables 
are more effective.  Tuning VDD, for example, results in a design that meets the energy and delay 
targets.  However, we can do better.  A combined effort from sizing and VDD gives a better solution 
than what is achievable by individual variables.  Clearly, the best energy-delay tradeoff is obtained by 
jointly tuning all variables in the design.  The green curve represents this global optimum, because all 
other points have longer delay for the same energy or higher energy for the same delay.  The next 
step is to formulate an optimization problem, based on energy and delay models presented in this 
chapter, in order to quickly generate this optimal tradeoff. 

Energy-Delay Tradeoff

 Unified description of wide range of E and D targets
– Choose the operating point that best meets E-D constraints

Delay

VDD scaling

Energy
Emax

DmaxDmin

Emin

E · D

1

E · D 2

2

E · D 3

3

E · D n
n

E 2 · D

1/2

E 3 · D

1/3
E n · D

1/n

Slope of the line indicates
the emphasis on E or D

1.25

Energy-Delay Optimization

 Equivalent formulations
– Achieve the lowest energy under delay constraint
– Achieve the best performance under energy constraint
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Slide 1.27 
Generating the optimal energy-
delay tradeoff is done in the circuit 
optimization routine that minimizes 
energy subject to a delay constraint.  
Notice that energy minimization 
subject to a delay constraint is dual 
to delay minimization subject to an 
energy constraint, since both 
optimizations result in the same 
tradeoff curve. 

We choose to perform a delay-
constrained energy minimization, 
because the delay constraint can be 
simply derived from the required 
cycle time.  The optimization is 

performed using gate size (W), supply (VDD) and threshold (VTH) voltages.  Design variables can be 
tuned within various operational constraints that define the lower and upper bounds.  The circuit 
optimization problem can be defined on a fixed circuit topology, for a selected number of bits, and 
for a range of delay constraints that allow us to generate the entire tradeoff curve as defined in Slide 
1.25.  The output of the circuit optimization is the optimal energy-delay tradeoff and the values of 
tuning variables at each point along the curve.  The optimal curve can then be used in a macro 
model to assist in the architectural selection (topic of Chap. 3).  The ability to quickly generate 
energy-delay tradeoff curves for various circuit topologies allows us to compare many possible 
circuit topologies (A and B shown on the slide) used to implement a logic function.  

 

Slide 1.28 
This chapter discussed energy and 
delay models in CMOS circuits. 
There is a well-defined minimum-
energy point in CMOS circuits due 
to leakage currents. This minimum 
energy places a lower limit on 
energy-per-operation (E/op) that 
can be practically achieved. Limited 
energy reduction in circuits 
underscores the importance of 
algorithm-level reduction in the 
number of operations required to 
perform a task. Energy and delay 
models as a function of gate size, 
supply and threshold voltage will be 

used for circuit optimizations in Chap. 2. 

 

Circuit-Level Optimization
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Summary

 The goal in algorithm design is to minimize the number of 
operations required to perform a task
– Once the number of operations is minimized, circuit-level 

implementation can further reduce energy by lowering supply 
voltage, switching activity, or gate capacitance

– There exists a well-defined minimum-energy point in CMOS 
technology due to parasitic leakage currents

– Considering energy alone is insufficient, energy-performance 
tradeoff reveals how much energy reduction is possible given a 
performance constraint

– Energy and performance models with respect to gate size, 
supply and threshold voltage provide basis for circuit 
optimization (finding the best energy-delay tradeoff)

1.28
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Slide 2.1 
This chapter discusses methods for 
circuit-level optimization.  We 
discuss a methodology for 
generating the optimal energy-delay 
tradeoff by tuning gate size and 
supply and threshold voltages.  The 
methodology is based on the 
sensitivity approach to measure and 
balance the benefits of all the 
tuning variables.  The analysis will 
be illustrated on datapath logic, and 
the results will serve as a guideline 
for architecture-level design in later 
chapters. 

 

Slide 2.2 
As introduced in Chap. 1, circuit-
level optimization can be viewed as 
an energy minimization problem 
subject to a delay constraint.  Key 
variables at the circuit level are 
supply (VDD) and threshold (VTH) 
voltages, and gate size (W).  Gate 
size is typically normalized to a unit 
inverter, according to the logical 
effort theory.  Variables are 
bounded by technology and 
operation constraints.  For example, 
VDD cannot exceed VDD

max as 
dictated by the oxide reliability limit 
and cannot be lower than VDD

min as 
mandated by noise margins or the minimum energy point.  The threshold voltage cannot be lower 
than VTH

min due to leakage and variability constraints, and cannot be larger than VTH
max for 

performance reasons.  Gate size W is limited by the minimum gate size W min as defined by 
manufacturing constraints or noise, while the upper limit is derived from fanout and signal integrity 
constraints (increasing W to be arbitrarily large would result in self-loading and the effects of fanout 
would be negligible – W increase has to stop well before that point).  

Circuit optimization is defined as a problem of finding the optimal energy-delay tradeoff curve 
for a given circuit topology and a given number of bits.  This is accomplished by varying delay 
constraint and minimizing energy at each point, starting from a design sized for minimum delay at 
nominal supply and threshold voltages.  Energy minimization is accomplished by tuning VDD, VTH, 
and W.  The result of the optimization is the optimal energy-delay tradeoff line, and the values of 
the tuning variables at each point along the tradeoff line. 
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Slide 2.3 
Based on energy and delay models 
from Chap. 1, we model energy 
as shown in this slide.  Switching 
and leakage components are 
considered as they dominate energy 
consumption, while the short-
circuit component is safely ignored.  
The switching energy model 
depends on the switching 
probability 0 1, parasitic and 
output load capacitances, and 
supply voltage.  The leakage energy 
is modeled using the standard 
input-state-dependent exponential 
leakage current model with the 

DIBL effect.  Delay represents cycle time.  Circuit variables (W, VDD, VTH) are made explicit for the 
purpose of providing insight into tuning variables and for energy-delay sensitivity analysis. 

 

 

Slide 2.4 
The switching component of 
energy, for example, affects only 
the energy stored on the gate, at its 
input and parasitic capacitances.  As 
shown on the slide, eci is the energy 
that the gate in stage i contributes 
to the overall energy.  This 
parameter will be used in sensitivity 
analysis.  Supply voltage affects the 
energy due to total load at the 
output, including wire and gate 
loads, and the self-loading of the 
gate. The total energy stored on 
these three capacitances is the 
energy taken out of the supply 

voltage in stage i. 
 

 

 

 

 

Energy Model for Circuit Optimization

 Switching Energy

 Leakage Energy
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Slide 2.5 
Energy-delay sensitivity is a formal 
way to evaluate the effectiveness of 
various variables in the design [1].  
This is the core of circuit-level 
optimization infrastructure.  It relies 
on simple gradient expressions that 
describe the rate of change in 
energy and delay by tuning a design 
variable; for example by tuning 
design variable A at point A0. At 
point (A0, B0) illustrated in the 
graph, the sensitivity to the variable 
is simply the slope of the curve with 
respect to the variable.   Observe 
that sensitivities are negative due to 

the nature of energy-delay tradeoff.  We will compare their absolute values, where the larger absolute 
values indicate higher potential for energy reduction.  For example, variable B has higher energy-
delay sensitivity (|SB|>|SA|) at point (A0, B0) than variable A. 

 

 

Slide 2.6 
The key concept is that at the 
solution point, the sensitivities for 
all design variables should be equal.  
If the sensitivities are not equal, we 
can utilize a low-energy cost 
variable (variable A) to create 
timing slack D and increase 
energy by E, proportional to 
sensitivity SA.  Now we are at point 
(A1, B0), so we can use a higher-
energy-cost variable B and reduce 
energy by SB· D.  Since |SB| > 
|SA|, the overall energy is reduced 
by E = (|SB|  |SA|)· D.   A 
fixed point in the optimization is 

reached, therefore, when all sensitivities are equal. 

 

 

 

 

Energy-Delay Sensitivity

 Sensitivity: Energy / Delay gradient [1]
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[1] V. Stojanovi et al., “Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply 
Voltage Optimization, in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 211-214.

Solution: Equal Sensitivities

 Idea: trade energy via timing slack

E = SA · ( D) + SB · D

At the solution point all sensitivities should be equal
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Slide 2.7 
Based on the presented energy and 
delay models we can define the 
sensitivity of each of the tuning 
variables [2]. 

The formulas for sizing indicate 
that the largest potential for energy 
savings is at the point where the 
design is optimized for minimum 
delay. The design that is sized for 
minimum delay has equal effective 
fanouts, which means infinite 
sensitivity to sizing. This makes 
sense because at minimum delay no 
amount of energy added through 
sizing can further improve the 

delay. 

The power supply sensitivity is finite at the nominal point but decreases to zero when VDD 
approaches VTH, because the delay approaches infinity. 

 

 

Slide 2.8 
The last parameter we would like to 
explore is threshold voltage. Here, 
the sensitivity is opposite to that of 
supply voltage. At the reference 
point it starts off low with very low 
sensitivity and increases 
exponentially as the threshold gets 
reduced to zero. 

The performance improves as 
we decrease VTH, but the leakage 
increases. If the leakage power is 
nominally very small, we get the 
speedup almost for “free”. The 
problem is that the leakage power is 
exponential in threshold and after a 

while decreasing threshold becomes very expensive in energy. 

 

 

 

Sensitivity to Sizing and Supply

 Gate Sizing (Wi) [2]

 Supply voltage (VDD) [2]
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Sensitivity to Threshold Voltage

 Threshold voltage (VTH) [2]
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Slide 2.9 
We initialize our optimization 
starting from a design which, for a 
given delay, is the most energy-
efficient, and then trade off energy 
and delay from that point. The 
minimum delay point is one of the 
points on the energy-efficient curve 
and is convenient because it is well 
defined.  

We start from the minimum 
delay achieved at the reference 
supply and threshold voltages 
provided by the technology. Then 
we define a delay constraint, Dcon, by 
specifying some incremental 

increase in delay dinc with respect to the minimum delay Dmin. Under this delay constraint, the 
minimum energy is found using supply and threshold voltages, gate sizing, and optional buffering. 

Supply optimizations we investigate include global supply reduction, two discrete supplies, and 
per-stage supplies. We limit supply voltage to only decrease from input to output of a block 
assuming that low-to-high level conversion is done in registers. Sizing is allowed to change 
continuously, and buffering preserves the logic polarity.  

 

Slide 2.10 
To illustrate circuit optimization, 
we look at a few examples.  In re-
examining circuit examples 
representing common topologies, 
we realize that they differ in the 
amount of off-path loading and 
path reconvergence. By analyzing 
how these properties affect a circuit 
energy profile, we can better define 
principles for energy reduction 
relating to logic blocks. We analyze 
examples of an inverter chain, 
memory decoder and tree adder 
that illustrate all of these properties.  

The inverter chain is a simple 
topology with single path and geometrically increasing energy profile. The memory decoder is 
another topology where the total number of gates increases geometrically. The memory decoder has 
branching and inactive gates toward the output, which results in an energy peak in the middle of the 
structure. Finally, we analyze the tree adder that has long wires, reconvergent fanout and multiple 
active outputs qualified by paths of various logic depth.  

Optimization Setup

 Reference circuit
– Sized for Dmin @ VDD

max, VTH
ref

– Known average activity

 Set delay constraint
– Dcon = Dmin · (1 + dinc / 100)

 Minimize energy under delay constraint
– Gate sizing, optional buffering
– VDD, VTH scaling

Dmin

2.9

Delay

En
er

gy

Circuit Optimization Examples

 Inverter chain

 Memory decoder
– Branching
– Inactive gates

 Tree adder
– Long wires
– Re-convergent paths
– Multiple active outputs

CL

3 15

CWm = 16 m = 4
m = 2

m = 1
n = 0 n = 12 n = 30 n = 255

S0

S15

(A0, B0)

(A15, B15)

Cin

2.10

(A15, B15)

Cin

(A0, B0)

S15

S0

addr
input

word
line

predecoder word driver

CL



 

Slide 2.11 
The inverter chain is the most 
commonly used example in sizing 
optimizations. Because of its 
widespread use the inverter chain 
has been the focus of many studies.  
When sized for minimum delay, the 
inverter chain’s topology dictates 
geometrically increasing energy 
towards the output.  Most of the 
energy is stored in the last few 
stages, with the largest energy in the 
final load.  

The plot shows the effective 
fanout going over various stages 
through the chain, for a family of 

curves that correspond to various delay increments (0–50%).  General result for the optimal 
stage size, derived by Ma and Franzon [3], will be explained here by using the sensitivity analysis. 
Recall the result from Slide 2.7: the sensitivity to gate sizing is proportional to the energy stored on 
the gate, and is inversely proportional to the difference in effective fanouts. What this means is that, 
for equal sensitivity in all stages, the difference in the effective fanouts must increase in proportion 
to the energy of the gate. This indicates that the difference in the effective fanouts ends in an 
exponential increase towards the output. 

An energy-efficient solution may sometimes require a reduced number of stages. In this example, 
the reduction in the number of stages is beneficial at large delay increments. 

 

Slide 2.12 
To further analyze energy-delay 
optimization, this slide shows the 
result of various optimizations 
performed on the inverter chain: 
sizing, global VDD, two discrete 
VDD’s, and per-stage VDD (“c-VDD” 
in the slide). The graphs show 
energy reduction and sensitivity 
versus delay increment. The key 
concept to realize is that the 
parameter with the largest 
sensitivity has the largest potential 
for energy reduction. For example, 
at small delay increments sizing has 
the largest sensitivity, so it offers 
the largest energy reduction, but the 

Inverter Chain: Sizing Optimization

 Variable taper achieves minimum energy
 Reduce the number of stages at large dinc

[3]

1 2 3 4 5 6 7
0

5

10

15

20

25

stage

ef
fe

ct
iv

e 
fa

no
ut

, h
ef

f

0%

1%

10%

30%

dinc= 50%
nom
opt

2.11

ref
opt

2 1 1

1

·
1 ·

i i
i

i

W W
W

W

22· ·
·

e DD

ref W

K V
S

, , 1

i
W

eff i eff i

ec
S

h h
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Inverter Chain: Optimization Results

 Parameter with the largest sensitivity has the largest potential 
for energy reduction
 Two discrete supplies closely approximate per-stage VDD
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potential for energy reduction from sizing quickly falls off. At large delay increments, it pays to scale 
the supply voltage of the entire circuit, achieving the sensitivity equal to that of sizing at around 25% 
excess delay. 

We also see from the graph on the left that dual supply voltage closely approximates optimal per-
stage supply reduction, meaning that there is almost no additional benefit of having more than two 
discrete supplies for improving energy in this topology. 

The inverter chain has a particularly simple energy distribution, which grows geometrically until 
the final stage. This type of profile drives the optimization over sizing and VDD to focus on the final 
stages first. However, most practical circuits like adders have a more complex energy profile. 

 

Slide 2.13 
The adder is an interesting 
arithmetic block for DSP 
applications, so let’s take a closer 
look at this example.  This slide 
shows energy-delay tradeoff in a 
64-bit Kogge-Stone tree adder.  
Energy and delay are normalized to 
the reference point, which is the 
design sized for minimum delay at 
nominal supply and threshold 
voltage.  Starting from the 
reference point, by equalizing 
sensitivity to W, VDD, and VTH we 
can move down vertically and 
achieve a 65 % energy reduction 
without any performance penalty. 

Equivalently, we can improve speed about by about 25 % without loss in energy. 

To gain further insights into energy reduction, the energy map for the adder is shown on the 
right for the reference and optimized designs.  This adder is convenient for 3-D representation, 
where the horizontal axes correspond to individual bit slices and logic stages.  For example, a 64-bit 
design requires (1 + log264 + 1 = 8  stages).  The  adder  has  propagate/generate  blocks  at  the  input  
(first stage), followed by carry-merge operators (six stages), and finally XORs for the final sum 
generation (last stage).  The plot shows the impact of sizing optimization on reducing the dominant 
energy peak in the middle of the adder in order to balance sensitivity of W with VDD and VTH. 

The performance range due to tuning of circuit variables is limited to about ±30% around the 
reference point.  Otherwise, optimization becomes costly in terms of delay or energy.  This can also 
be explained by looking into values of the optimization variables. 

 

 

 

Circuit-Level Results: Tree Adder
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Slide 2.14 
Physical limitations put constraints 
on the values of tuning variables. 
While all the variables are within 
their bounds, their sensitivities are 
the same. The reference case, 
optimized for nominal delay, has 
equal sensitivities.  Here, the 
sensitivity of 1 means “reference” 
sensitivity.  In case any of the 
variables hits a constraint, its 
sensitivity cannot be made equal to 

left, speeding up the design requires 
the supply to increase up to the 
device failure limit.  Near that point 

supply has to be bounded and further speed-ups can be achieved most effectively through threshold 
scaling, but with higher energy cost.  

 

Slide 2.15 
After VDD reaches its upper bound, 
only the threshold and sizing 
sensitivities are equalized in further 
optimization. They are equal to 22 
in the case of minimum achievable 
delay.  At the minimum-delay point, 
sensitivity of VDD is 16, because no 
additional benefit is available from 
VDD for speed improvement.  The 
slope of the threshold vs. delay 
increment line clearly indicates that 
VTH has to work “extra hard” 
together with W to further reduce 
the delay. 

Many people just choose a 
subset of tuning variables to optimize.  Choosing a variable with the largest sensitivity is the right 
approach for single-variable optimization.  A more refined heuristic is to use two variables – the 
variable with the highest sensitivity and the variable with the lowest sensitivity – and exploit the 
sensitivity gap by trading off timing slack as described in Slide 2.6 to minimize energy.  For example, 
in the tree adder we analyzed, one would exploit W and VTH in a two-variable approach. 

 

A Look at Tuning Variables
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Slide 2.16 
Looking at the three examples 
(inverter chain, memory decoder, 
and adder) that represent a wide 
variety of circuit topologies, we can 
make general conclusions about 
energy-delay optimization.  The left 
graph shows energy reduction 
versus delay increment for these 
three different circuit topologies, 
which loosely define bounds on 
energy reduction.  We take the best-
case and worst-case energy 
reduction across the three 
examples, so we can observe 
general trends. 

Sizing is the most efficient at small incremental delays. To understand this, we can also take a 
look at sensitivities on the right and observe that at the minimum delay point sizing sensitivity is 
infinite. This makes sense because at minimum delay there is no amount of energy that can be spent 
to improve the delay. This is consistent with the result from Slide 2.7.  The benefits of sizing get 
quickly utilized at about 20% excess delay. For larger incremental delays, supply voltage becomes the 
most dominant variable. Threshold voltage has the smallest impact on energy because this 
technology was not leaky enough, and this is reflected in its sensitivity. If we balance all the 
sensitivities, we can achieve significant energy savings.  A 10 % delay slack allows us to achieve 30–
70 % reduction in energy at the circuit level.  So, peak performance is very power-inefficient and 
should be avoided unless architectural techniques are not available for performance improvement. 

 

Slide 2.17 
It is interesting to analyze the values 
of circuit variables for the examples 
from Slide 2.10.  The reference 
design in all optimizations is sized 
for minimum delay at nominal 
supply and threshold voltages of 
the technology. In this example, for 
a 0.13- m technology, VDD

ref = 1.2 
V, VTH

ref = 0.35 V.  Tuning  of 
circuit variables is related to 
balancing of the leakage and 
switching components of energy. 

The table represents the ratio of 
the total leakage to switching energy 
in the three circuit examples. We 

see about two orders of magnitude difference in nominal leakage-to-switching ratio. This clearly 
suggests that nominal technology parameters are not optimal for all circuit topologies. To explore 
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that further, let’s now look at the optimal values of VDD, VTH, and W, normalized to the reference 
case, in these circuits, as shown in this slide. The delay is normalized to minimum delay (at the 
nominal supply and threshold voltages) in its respective circuit. 

Plots on the left and middle graph show that, at nominal delay, supply and threshold are close to 
optimal only in the memory decoder (red line), which has the highest initial leakage energy. The 
adder has smaller relative leakage, so its optimal threshold has to be reduced to balance switching 
and leakage energy, while the inverter has the smallest relative leakage, leading to the lowest 
threshold voltage. To maintain circuit speed, the supply voltage has to decrease with reduction of 
the threshold voltage. 

The plot on the right shows the relative total gate size versus target delay. The memory decoder 
has the largest reduction in size due to a large number of inactive gates.  The size of inactive gates 
also decreases by the same factor as that in active paths. 

In the past, designers used to tune only one parameter, most commonly being supply voltage 
scaling, in order to minimize energy for a given throughput. However, the only way to truly 
minimize energy is to utilize all variables. This may seem like a complicated task, but it is well worth 
the effort, when we consider potential energy savings. 

 

 

Slide 2.18 
This chapter has so far presented 
sensitivity-based optimization 
framework that equalizes marginal 
costs for the most energy-efficient 
design.  Below are key results we 
have been able to derive from this 
framework.  

First, sizing is most effective for 
small delay increments while supply 
voltage is better at large incremental 
delays relative to the minimum-
delay design. We are going to 
extensively use this result in the 
synthesis based environment by 
performing incremental 

compilations to utilize delay slack.  

We also learned that peak performance is very power inefficient: about 70 % energy reduction is 
possible with only 20% relaxation in timing. We also learned that there is a limited performance 
range of tuning variables so we need to consider other layers in the design abstraction to further 
increase delay and energy efficiency. 

 

Lessons from Circuit Optimization

2.18

 Sensitivity-based optimization framework
– Equal marginal costs Energy-efficient design

 Effectiveness of tuning variables
– Sizing is the most effective for small delay increments
– Vdd is better for large delay increments

 Peak performance is VERY power inefficient
– About 70% energy reduction for 20% delay penalty

 Limited performance range of tuning variables
– Additional variables for higher energy-efficiency
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Slide 2.19 
Energy-delay tradeoff in logic 
blocks can extended hierarchically. 
This slide shows an example of a 
64-bit ALU. This is a simplified bit-
slice model of the ALU that uses 
the Kogge-Stone tree adder from 
Slide 2.13.  Now we need to 
implement input registers.  This can 
be done using a high-speed cycle-
latch based design or using a low-
power master-slave based design. 
What is the optimal energy-delay 
tradeoff in the ALU given the 
energy-delay tradeoff in each of the 
circuit blocks?  Individual circuit 

examples can be misleading because the overall energy cost of the system is what really matters. 

 

 

Slide 2.20 
In this case it actually pays off to 
upsize lower activity blocks such as 
adders and downsize flip-flops so 
that we can more effectively utilize 
the energy that is available to us.  
Globally optimal curves for the 
register and adder combine to 
define the energy-delay curve for 
the ALU.  We find that the cycle 
latch is best used for high 
performance while the master-slave 
design is more suitable for low 
power. 

What happens at the boundary is 
that the adder energy increases to 

create a delay slack that can be much more efficiently utilized by downsizing higher activity blocks 
such as registers (this tradeoff was explained in Slide 2.6).  As a result, sensitivity increases at the 
boundary delay point.  In other words, the slope of optimal energy-delay line in the ALU increases.  
After re-optimizing the adder and register, their sensitivities become equal as shown on the bottom-
right plot.  The concept of balancing sensitivities at the gate level also holds at the block level.  This 
is a nice property which allows us to formulate a hierarchical system optimization approach. 

 

Choosing Circuit Topology

 64-bit ALU (Register selection)
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Slide 2.21 
To achieve a globally optimal 
result, we therefore expand circuit 
optimization hierarchically by 
decomposing the problem into 
several abstraction layers.  Within 
each layer, we try to identify 
independent sub-spaces so we can 
exchange design tradeoffs between 
these various layers.  At the circuit 
level, we minimize energy subject 
to a delay constraint using gate 
size, supply and threshold voltage. 
The result is the optimal value of 
these tuning parameters as well as 
the energy-delay tradeoff.  At the 
micro-architectural level we have 

more degrees of freedom: we can choose circuit topology, we can use parallelism/pipelining or time-
multiplexing, and for a given algorithm, number of bits and throughput.  Finally, at the macro-
architecture level, we may also introduce interleaving and folding to deal with recursive and multi-
dimensional problems.  Since architectural techniques affect design area, we also have to take into 
account implementation area. 

 

Slide 2.22 
To provide motivation for 
architectural optimization, let’s look 
at an example of an 802.11a 
baseband chip.  The DSP blocks 
operate with an 80 MHz clock 
frequency.  The chip performs 
40 GOPS (GOPS = Giga 
Operations per Second) and 
consumes 200 mW, which is typical 
power consumption for a baseband 
DSP.  The chip was implemented in 
a 0.25- m CMOS process.  Since 
the application is fixed, the 
performance requirement would 
not scale with technology.  

However, as technology scales, the speed of technology itself gets faster.  Thus, this architecture 
would be sub-optimal if ported to a faster technology by simply shrinking transistor dimensions.  
The architecture would also need to change in response to technology changes, in order to minimize 
the chip cost.  However, making architectural changes incurs significant design time and increases 
non-recurring engineering (NRE) costs.  We must, therefore, find a way to quickly explore various 
architectural realizations and make use of the available area savings in scaled technologies. 
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Example: 802.11a Baseband

 Direct mapped architecture

 200 MOPS/mW
– 80 MHz clock!
– 40 GOPS
– Power = 200 mW
– 0.25 m CMOS

 The architecture has to track 
technology

ADC/DAC
Viterbi

Decoder

MAC Core

Time/Freq
Synch

FFT
DMA

PCI

AGCFSM

[An 802.11a baseband processor]
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Slide 2.23 
To further illustrate the issue of 
architecture design, let’s examine 
several architectures for digital 
baseband in a radio.  This slide 
shows energy efficiency (to be 
defined in Chap. 4) versus clock 
period in three digital processing 
architectures: microprocessors, 
programmable DSPs, and 
hardwired logic.  Digital baseband 
functionality for a radio is typically 
provided with direct-mapped, 
hardwired logic.   This approach 
offers the highest energy-efficiency, 
which is a prime concern in battery 

operated devices.  Another extreme is the heavily time-multiplexed microprocessor architecture, 
which has the highest flexibility, but it is also the least energy efficient because of extra overhead to 
support the time multiplexing. 

If we take another look at these architectural choices along the horizontal axis, we see that the 
clock speed required from direct-mapped architectures is significantly lower than the speed of 
technology tailored for microprocessor designs.  We can take this as an opportunity to further 
reduce energy and area of chip implementations using architecture design. 

 

Slide 2.24 
As seen in the previous slide, there 
is a large disparity in the required 
clock speed for an application and 
the speed of operation available by 
the technology.  In order to take 
advantage of this disparity, we need 
to tune circuit and architecture 
variables.  The challenge is to come 
up with an optimal combination of 
these variables for a given 
application. Supply voltage scaling, 
sizing and threshold voltage 
adjustment can be used at the 
circuit level, as discussed earlier in 
this chapter. At the architectural 

level, we have pipelining, parallelism etc. that can be used to exploit the available performance 
margin.  The goal is to reduce the performance gap in order to minimize energy per operation.  The 
impact of circuit-level variables on energy and delay can be clearly understood by looking at the 
simple expressions for delay, leakage and switching components of energy.  The next challenge is to 
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figure out how to work-in architectural variables and perform global optimization across circuit and 
architecture levels.  Also, how do we make the optimizations work within existing design flows? 

 

Slide 2.25 
This diagram illustrates algorithm, 
architecture, and circuit design 
levels.  In a typical design flow, we 
start with a high-level algorithm 
model, followed by architectural 
optimization, and further 
optimizations at the circuit level.  
The design starts off in 
MATLAB/Simulink and converts 
into a layout with the help of 
Cadence and Synopsys CAD tools.  
However, in order to ensure that 
the final design is energy- and area-
efficient, algorithm designers need 
to have feedback about power, area 

and timing from the circuit level. Essentially, architecture optimizations ensure that algorithm 
specifications meet technology constraints.  Algorithm sample time and architectural clock rate are 
the timing constraints used to navigate architecture and circuit optimizations, respectively.  It is, 
therefore, important to include hardware parameters in the algorithm model early in the design 
process.  This will be made possible with the hierarchical approach illustrated on Slide 2.19. 

 

Slide 2.26 
In high-level descriptions such as 
MATLAB/Simulink, algorithms 
can be modeled with realistic 
latency and wordlength information 
to provide a bit-true cycle-accurate 
representation.  The sample rate 
can be initially chosen to map the 
design onto FPGA for hardware 
emulation.  Further down the 
implementation path, we have to 
know speed, power and area 
characteristics of the building 
blocks in order to perform top-level 
optimization.  

As technology parameters 
change with scaling, we need a way to provide technology feedback in a systematic manner that 
avoids design iterations.  Simulink modeling (as will be described in later chapters) provides a 
convenient way for this architecture-circuit co-design. 
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Architectural Feedback from Technology

 Simulink hardware library implicitly carries information only 
about latency and wordlength (we can later choose sample 
period when targeting an FPGA)

 For ASIC flow, block characterization also has to include 
technology features such as speed, power, and area

 But, technology parameters scale each generation
– Need a general and quick characterization methodology
– Propagate results back to Simulink to avoid iterations

2.26
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Slide 2.27 
To facilitate architecture-circuit co-
design, it is crucial to obtain speed, 
power, and area estimates from the 
circuit layer and introduce them to 
Simulink to navigate architecture-
level changes.  The estimates can be 
obtained from the logic-level or 
physical-level synthesis, depending 
on the desired level of accuracy and 
available simulation time.  
Characterization of many blocks 
may sound like a big effort, but the 
characterization can be greatly 
simplified by decomposing the 
problem into simple datapaths at 

the circuit level and choosing an adequate level of pipelining at the micro-architectural level.  
Further, designers don’t need to make extensive library characterizations, but only characterize 
blocks used in their designs. 

 

Slide 2.28 
The first step in technology 
characterization is to obtain simple 
energy-delay (E-D) relationships 
with respect to voltage scaling.  
This assumes that pipeline logic has 
uniform logic depth and equal 
sizing sensitivity so that supply 
voltage scaling can be done globally 
to match the sizing sensitivity.  The 
E-D tradeoff curve shown on this 
slide can be generated for a fanout-
of-four inverter, a typical 
benchmark for speed of logic, 
because scaling of other CMOS 
gates follows a similar trend.  The 

E-D curve serves as a guideline for the range of energy and delay adjustment that can be made by 
voltage scaling.  It also tells us about the energy-delay sensitivity of the design.  At the optimal E-D 
point, sizing and supply voltage scaling tradeoff curves have to be tangent, representing equal 
sensitivity.  As shown on the plot, the min-delay point has highest sensitivity to sizing and requires 
downsizing to match supply sensitivity at nominal voltage.  Lowering supply will thus require further 
downsizing to balance the design. 

Simple E-D characterizations provide great insights for logic and architectural adjustments.  For 
example, assume a datapath with LD logic stages where each stage has a delay T1 and let TFF be the 
register delay.  Cycle time Tclk can be expressed simply as: Tclk = LD·T1 + TFF.  We can satisfy the 
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 Balance tradeoffs due to gate size (W) and supply voltage (VDD)



 

equation with many combinations of T1 and LD by changing the pipeline depth and the supply 
voltage to reach a desired E-D point.  By automating the exploration, we can quickly search among 
many feasible solutions in order to best minimize area and energy. 

 

Slide 2.29 
Architecture design is typically done 
in a modular block-based approach.  
The common parameter for DSP 
hardware blocks is cycle time.  
Hence, allocating the proper 
amount of latency to each block is 
crucial to achieve overall design 
optimality.  For example, an N-by-
N multiplier is about N times more 
complex than an N-bit adder. This 
complexity difference is reflected in 
multiplier latency as shown on the 
slide. With this characterization 
flow, we can quickly obtain latency 
versus cycle time for library blocks. 

This way, we augment high-level Simulink blocks with library cards for area, power, and speed.  This 
characterization approach greatly simplifies top-level retiming (to be discussed in Chaps. 3, 9 and 
11).  

 

Slide 2.30 
Energy-delay optimization at circuit 
level was discussed. The 
optimization uses sensitivity-based 
approach to balance marginal 
returns with respect to tuning 
variables. Energy and delay models 
from Chap. 1 allow for convex 
formulation of delay-constrained 
energy minimization. As a result, 
optimal energy-delay tradeoff is 
obtained by tuning gate size, supply 
and threshold voltage. Sensitivity 
theory suggests that gate sizing is 
the most effective at small delays 
(relative to the minimum-delay 

point), supply voltage reduction is the most effective variable for medium delays and threshold 
voltage is the most effective for long delays (around minimum-energy point). Circuit-level 
optimization is limited to about ±30 % around the minimum delay; outside of this region 
optimization becomes too costly either in energy or delay. To expand the optimization across 

Cycle Time is Common for All Blocks

Simulink

Synopsys

RTL

netlist

Area
Power

Speed

Switch-level
accuracy

HSPICE

12

9

6

3

0
0 1 2 3

cycle time (norm.)

la
te

nc
y

mult
add

Area
Power

Speed

2.29

Summary

 Optimal energy-delay tradeoff obtained by tuning gate size, 
supply and threshold voltage can be calculated by optimization
– Energy and delay models allow for convex formulation of delay-

constrained energy minimization
– Circuit-level energy-delay tradeoff allows for quick comparison 

of multiple circuit topologies for a given logic function
 Insights from circuit optimization
– Minimum-delay design consumes the most energy
– Gate sizing is the most effective for small delays
– Supply voltage is the most effective for medium delays
– Threshold voltage is the most effective for large delays

 Circuit optimization is effective around min-delay; more degrees 
of freedom (e.g. architectural) are needed for broader range of 
performance tuning in an energy-efficient manner

2.30
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broader range of performance, more degrees of freedom are needed. Next chapter discusses the use 
of architectural-level variables for area-energy-delay optimization. 
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Slide 3.1 

This chapter discusses architectural 
techniques for area and energy 
reduction in chips for digital signal 
processing.  Parallelism, time-
multiplexing, pipelining, 
interleaving and folding are 
compared in the energy-delay space 
of pipeline logic as a systematic way 
to evaluate different architectural 
options.  The energy-delay analysis 
is extended to include area 
comparison and quantify time-
space tradeoffs.  So, the energy-
area-performance representation 
will serve as a basis for evaluating 

multiple architectural techniques.  It will also give insight into which architectural transformations 
need to be made to track scaling of the underlying technology for the most cost- and energy-
efficient solutions.  

 

Slide 3.2 

Three basic architectural techniques 
are parallelism, pipelining, and time-
multiplexing.  Figure (a) shows the 
reference datapath with logic blocks 
A and B between pipeline registers.  
Starting from the reference 
architecture, we can make 
transformations into parallel, 
pipelined, or time-multiplexed 
designs without affecting the data 
throughput.   

Parallelism and pipelining are 
used for power reduction.  We 
could introduce parallelism as 
shown in Figure (b).  This is 

accomplished by replicating the input register and the datapath, and adding a multiplexer before the 
output register.  Parallelism trades increased area (blocks shaded in g ray) for reduced speed of the 
pipeline logic (A and B are running at half the original speed), which allows for supply voltage 
reduction to decrease power. Another option is to pipeline the blocks, as shown in Figure (c).  An 
extra pipeline register is inserted between logic blocks A and B.  This lets blocks A and B run at half 
the speed and also allows for supply voltage reduction, which leads to a decrease in power.  The 
logic depth is reduced at the cost of increased latency. 

Time-multiplexing is used for area reduction, as shown in Figures (d) and (e). The reference case 
shown in Figure (d) has two blocks to execute two operations of the same kind. An alternative is to 
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do the same by using a single hardware module, but at twice the reference speed, to process the two 
data streams as shown in Figure (e).  If the area of the multiplexer and demultiplexer is less than the 
area of block A, time-multiplexing results in an area reduction.  This is most commonly the case 
since datapath logic is much more complex than a de/multiplexing operation. 

 

Slide 3.3 

To establish a baseline for 
architecture study, let’s consider a 
reference datapath which includes 
an adder that adds two operands A 
and B, followed by a comparator 
that compares the sum to a third 
operand C [1].  The critical-path 
delay here is tadder + tcomparator, which is 
equal to 25 ns, for example (this is a 
delay for the 0.6- m technology 
used in [1]). Let Cref be the total 
capacitance switched at a reference 
voltage VDD,ref =5V.  The switching 
power for the reference datapath is 
fref · Cref · VDD,ref

2.  Now, let’s see 
what kind of tradeoffs can be made by restructuring the datapath by using parallelism. 

 

Slide 3.4 

Parallelism is now employed on the 
previous design. The two modules 
now process odd and even samples 
of the incoming data, which are 
then combined by the output 
multiplexer. The datapath is 
replicated and routed to the output 
multiplexer.  The clock rate for 
each of the blocks is reduced by 
half to maintain the same 
throughput.  Since the cycle time is 
reduced, supply voltage can also be 
reduced by a factor of 1.7.  The 
total capacitance is now 2.15Cref 
including the overhead capacitance 

of 0.15Cref . The total switching power, however, is ( fre f/2) · 2.15Cref · (VDD, ref/1.7)2   0.36 Pref .  
Therefore, over 60 % of power reduction is achieved without performance penalty by using a 
parallel-2 architecture. 

 

Parallel Datapath Architecture

 The clock rate of a parallel datapath can be reduced by half with 
the same throughput as the reference datapath fpar = fref/2
– VDD,par = VDD,ref /1.7, Cpar = 2.15 · Cref

– Ppar = (fref/2) · (2.15 · Cref) · (VDD,ref/1.7)2  0.36·Pref
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Slide 3.5 

It should, however, be kept in mind 
that parallelism adds latency, as 
illustrated in this slide.  The top half 
of the slide shows the incoming 
data stream A and the 
corresponding output Z.  The 
design has a single-cycle latency, so 
samples of Z are delayed by one 
clock cycle with respect to samples 
of A.  The parallel-2 design takes 
samples of A and propagates 
resulting samples of Z after two 
clock cycles.  Therefore, one extra 
cycle of latency is introduced.  
Parallelism is, therefore, possible if 

extra latency is allowed.  This is the case in most low-power applications.  Besides energy reduction, 
parallelism can also be used to improve performance; if the clock rate for each of the blocks were 
kept at the original rate, for example, then the throughput would increase by twofold. 

 

Slide 3.6 

The plot in this slide shows energy 
per operation (Eop) versus 
throughput for architectures with 
varying degrees of parallelism [2].  
We see that parallelism can be used 
to reduce power at the same 
frequency or increase the frequency 
for the same energy.  Squares show 
the minimum energy-delay product 
(EDP) point for each of the 
architectures.  The results indicate 
that as the amount of parallelism 
increases, the minimum EDP point 
corresponds to a higher throughput 
and also a higher energy. With an 

increasing amount of parallelism, more energy is needed to support the overhead. Also, leakage 
energy has more impact with increasing parallelism. 

The plot also shows the increased performance range of micro-architectural tuning as compared 
to circuit-level optimization.  The reference datapath (min-delay sizing at reference voltage) is shown 
as the black dot in the energy-delay space.  This point is also used as reference for energy.  The 
reference design shows the tunability at the circuit level, which is limited in performance to ±30% 
around the reference point as discussed in Chap. 2.  Clearly, parallelism goes much beyond ±30 % 
in extending performance while keeping the energy consumption low.  However, the area and 
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performance benefits of parallelism come at the cost of increased area, which imposes a practical 
(cost) limit on the amount of parallelism. 

Slide 3.7 

Area is not the only limiting factor 
to increasing the level of 
parallelism.  Total energy also 
increases at some point due to the 
large impact of leakage.  Let’s look 
at the E-D tradeoff curve to explain 
this effect.  The total energy we 
expend in a parallel design is the 
sum of switching energy of the 
active block, the leakage energy of 
all the parallel blocks and the 
energy incurred in the multiplexing. 
Even if we neglect the multiplexing 
overhead, (which is a fair 
assumption for complex blocks), 

the increase in leakage energy at high levels of parallelism would imply that the minimum-energy 
point now shifts to a higher voltage. The total energy to perform one operation with higher levels of 
parallelism is thus higher, since the increased leakage and cost of overhead pull the energy per 
operation to a higher value. 

 

Slide 3.8 

Let us now use the same example 
to look into pipelining.  We 
introduce latency via a set of 
pipeline registers to cut down the 
critical path of tadder + tcomparator to the 
maximum of (tadder, tcomparator). The 
clock frequency is the same as the 
original design.  Given the reduced 
critical path, the voltage can now be 
reduced by a factor of 1.7 (same as 
in the parallelism example on Slide 
3.4). The capacitance is slightly 
higher than the reference 
capacitance to account for the 
switching energy dissipated in the 

pipeline registers. The switching power of the pipelined design is thus given by fref · (1.15Cref)-

 · (VDD,ref/1.7)2  0.39Pref .  Pipelining, therefore, can also be used to reduce the overall power 
consumption. 

Pipelined Datapath Architecture

 Critical-path delay is less max (tadder , tcomparator)
– Keeping clock rate constant: fpipe = fref

– Voltage can be dropped VDD,pipe = VDD,ref/1.7
– Capacitance slightly higher: Cpipe = 1.15 · Cref

– Ppipe = fref · (1.15 · Cref) · (VDD,ref /1.7)2  0.39 · Pref
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More Parallelism is Not Always Better
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 Leakage and overhead start to dominate at high levels of 
parallelism, causing minimum energy (dot) to increase

 Optimum voltage also increases with parallelism
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Slide 3.9 

Pipelining is one of the key 
techniques used in microprocessor 
design.  This slide shows a practical 
design: a superscalar processor 
from IBM, which illustrates the 
effect of pipelining on power and 
performance.  This example is 
taken from the paper by Srinivasan 
et. al. (see Slide 3.13 for complete 
reference).  A latch-level accurate 
power model in the PowerTimer 
tool is developed for a power-
performance analysis. The analysis 
accounts for power of several 
processor units in hold and 

switching modes.  The approach to model energy is illustrated on the slide.  The processor can be 
analyzed as a set of sub-units (micro-architectural-level structures), where each sub-unit consists of a 
number of macros.  Each macro can execute an operation on input SF Data or be in the Hold 
mode.  Power consumption of all such macros in the processor gives an estimate of the total power. 

 

 

Slide 3.10 

The timing model for the processor 
is based on the delay per stage of 
the pipeline including register 
(latch) delay.  The processor front 
end dispatches operations into four 
units: fixed-point (FXU), floating-
point (FPU), load/shift (LSU), and 
branching unit (BRU).  Each of 
these units is modeled at the 
datapath level by the number of 
stages (s), logic delay (t), and latch 
delay per stage (c).  The time per 
stage of pipeline is Ti = ti/si + ci.  
This gate-level model is used to 
calculate the time it takes to 

perform various operations by the processor units. 

 

 

 

 

Pipelining: Microprocessor Example

 Superscalar processor
– Determine optimal pipeline depth and target frequency

 Power model
– PowerTimer toolset developed at IBM T.J. Watson
– Methodology to build energy models based on results of 

circuit-level power analysis tool

Power = C1 · SF + HoldPower
Power = C2 · SF + HoldPower

Power = CN · SF + HoldPower

. . .

Macro 1
Macro 2

Macro N

Sub-units ( Arch-level structures)

SF Data

Energy Models

Power Estimate

3.9

Timing: Analytical Pipeline Model

 Time per stage of pipeline: Ti = ti/si + ci

Front End

FXU FPU LSU BRU

Stages: s1 s2 s3 s4
Logic delay: t1 t2 t3 t4
Latch delay/stage:   c1 c2 c3 c4

3.10



 

Slide 3.11 

Using the model from the previous 
slide, we can now estimate the time 
for completing instructions and 
taking into account instruction 
dependence.  For instance, the 
fixed-point unit may be stalled if an 
instruction m depends on 
instruction (m – i ).  Hence, the time 
to complete a fixed-point operation 
is the sum of the time to complete 
the operation without stalls, T1, 
time to clear a stall within FXU, 
Stallfxu-fxu·T1, time to clear a stall in 
FPU, Stallfxu-fpu·T2, and so on for all 
functional units which may have 

co-dependent instructions.   Suppose that parameter u is the fraction of time that a pipeline has 
instructions arriving from the front end (0 indicates no utilization, 1 indicates full utilization).  Based 
on the time it takes to complete an instruction and the pipeline utilization, we can calculate 
throughput of a processor as highlighted on the slide [3].  Lower pipeline utilization naturally results 
in a lower throughput and vice versa.  Fewer stalls reduce the time per instruction and increase 
throughput. 

 

Slide 3.12 

Simulation results from the study 
are summarized here. Relative 
performance versus the number of 
logic stages (logic depth) for a 
variety of metrics was investigated. 
The metrics include performance in 
billion instructions per second 
(BIPS), various degrees of power-
performance tradeoffs, and power-
aware optimization (that maximizes 
BIPS3/W). The results show that 
performance is maximized with 
shallow logic depth (LD = 10). This 
is in agreement with earlier 
discussion about pipelining 

(equivalent to shortening logic depth), when used for performance improvement. The situation in 
this processor is a bit more complex with the consideration of stalls, but general trends still hold. 

Power is minimized for LD = 18.   Therefore,  more  logic  stages  are  needed  for  lower  power.  Other  
applications such as TPC-C require 23 logic stages for power minimization while performance is 
maximized for LD = 10. 

Timing: Analytical Pipeline Model

 Time to complete FXU operation in presence of stalls   
Tfxu = T1 + Stallfxu-fxu · T1 + Stallfxu-fpu · T2 + … + Stallfxu-bru · T4

Stallfxu-fxu = f1 · (s1  1) + f2 · (s1  2) + …
fi is conditional probability that an FXU instruction m depends 
on FXU instruction (m  i)

Throughput = u1/Tfxu + u2/Tfpu + u3/Tlsu + u4/Tbru

ui fraction of time pipe i has instructions arriving from FE of 
the machine ui = 0 unutilized pipe, ui = 1 fully utilized

3.11

[3] V. Srinivasan et al., “Optimizing Pipelines for Power and Performance,” in Proc. IEEE/ACM Int. 
Symp. on Microarchitecture, Nov. 2002, pp. 333-344.

[3]

Simulation Results

 Optimal pipeline depth was determined for two applications 
(SPEC 2000, TPC-C) under different optimization metrics
– Performance-aware optimization: maximize BIPS
– Power-aware optimization: maximize BIPS3/W

 More pipeline stages are needed for low power (BIPS3/W)

3.12

Application Max BIPS Max BIPS3/W
Spec 2000 10 FO4 18 FO4

TPC-C 10 FO4 25 FO4

 Choice of pipeline register also impacts BIPS
– Overall BIPS performance improved by 20% by using a register 

with 2 FO4 delay as compared to a register with 5 FO4 delay

44  Chapter 3 

Increasing the logic depth reduces the power, due to the decrease in register power overhead.  
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The performance also depends on the underlying datapath implementation. A 20% performance 
variation is observed for designs that use latches with delay from 2 FO4 to 5 FO4 delays. Although 
the performance increases with faster latches, the study showed that the logic depth at which 
performance is maximized increases with increasing latch delay. This makes sense, because more 
stages of logic are needed to compensate for longer latch delay (reduce latch overhead). 

This study of pipelining showed several important results. Performance-centric designs require 
shorter pipelines than power-centric designs. A ballpark number for logic depth is about 10 for 
high-performance designs and about 20 for low-power designs. 

 

 

Slide 3.13 

This slide summarizes the benefits 
of pipelining and parallelism for 
power reduction for the two 
examples presented in Slides 3.3– 
3.9 [1].  Adding one level of 
parallelism or pipelining to the 
reference design has a similar 
impact on power consumption 
(about 60% power reduction).  This 
assumes that the reference design 
operates at its maximum frequency.  
Power savings achieved are 
consistent with energy-delay 
analysis from Chap. 2.  Also, 
since the delay increase is 100 %, 

supply reduction is the most effective for power reduction.  The gains summarized in this slide 
could have been even larger had gate sizing been used together with VDD reduction.  The inclusion 
of sizing, however, would complicate the design since layout would need to be modified to include 
new sizing of the gates.  When parallelism and pipelining are combined, even larger energy/power 
savings can be achieved: the slide shows 80 % power reduction when both parallelism and pipelining 
are employed. 

 

 

 

 

 

 

 

 

Architecture Summary (Simple Datapath)

Architecture type Voltage Area Power
Reference datapath 
(no pipelining of parallelism) 5 V 1 1

Pipelined datapath 2.9 V 1.3 0.39
Parallel datapath 2.9 V 3.4 0.36
Pipeline-Parallel 2.0 V 3.7 0.2

 Pipelining and parallelism relax performance of a datapath, 
which allows voltage reduction and results in power savings
 Pipelining has less are overhead than parallelism, but is generally 

harder to implement (involves finding convenient logic cut-sets)

3.13

[1] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital Design,” IEEE J. 
Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.
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Slide 3.14 

Let us further analyze parallelism 
and pipelining using the energy-
delay space for pipeline logic. The 
block diagrams show reference, 
parallel and pipeline 
implementations of a logic function. 
Parallelism simply slows down the 
computation by introducing 
redundancy in area. It directs 
operands to parallel branches in an 
interleaved fashion and later 
combines them at the output. 
Pipelining introduces an extra 
pipeline registers to relax timing 
constraints on blocks A and B so 

that we can then scale the voltage to reduce energy. 

The energy-delay behavior of logic blocks during these transformations is very important to 
understand, because pipeline logic is a fundamental micro-architectural component.  From a 
datapath logic standpoint, parallelism and pipelining are equivalent to moving the reference energy-
delay point toward reduced Energy/Op and increased Time/Op on the energy-delay curve.  Clearly, 
the energy saving would be the largest when the reference design is in the steep-slope region of the 
energy-delay curve.  This corresponds to the minimum-delay design (which explains why parallelism 
and pipelining were so effective in previous examples).  It is also possible to reduce energy when the 
performance requirement on the reference design is beyond its minimum achievable delay as 
illustrated on Slide 3.6.  In that case, parallelism would be needed to meet the performance first, 
followed by the use of voltage scaling to reduce energy.  How is the energy minimized? 

 

Slide 3.15 

Minimum energy is achieved when 
the leakage energy is about one half 
of the switching energy, ELk/ESw  
0.5.  This ratio can be analytically 
derived, as shown in the box [4].  
The equation states that the optimal 
ELk/ESw depends on the logic depth 
(LD), switching activity ( ), and the 
technology process (parameter K).  
The minimum is quite broad, due 
to the logarithmic formula, with 
total energy being within about 
10% of the minimum for ELk/ESw 
from 0.1 to 10. 

These diagrams show reference, 
parallel and pipeline implementations of an ALU.  In this experiment, VTH was swept in increments 

Parallelism and Pipelining in E-D Space
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of 5mV and for each VTH, the optimal VDD and sizing were found to minimize energy.  Each point, 
hence, has an ELk/ESw ratio that corresponds to minimum energy.  The plot illustrates several points.  
First, the energy minimum is very flat and roughly corresponds to equalizing the leakage and 
switching components of energy.  This is the case in all three architectures.  The result coincides 
with the three examples from the circuit level: inverter chain, adder, and memory decoder, as shown 
in the table.  Second, parallel and pipeline designs are more energy efficient than the reference 
design, because their logic runs slower and voltage scaling is possible.  Third, the supply voltage at 
the minimum-energy point is lower in the pipeline design than in the parallel design, because the 
pipeline design has smaller area and less leakage.  This is also evidenced by a lower VTH in the 
pipeline design.   

Optimal designs, therefore, have high leakage when the total energy is minimized.  This makes 
sense for high-activity designs where we can balance the ELk/ESw ratio to minimize energy.  In the 
idle mode ESw = 0, so the energy minimization problem reduces to leakage minimization. 

 

 

Slide 3.16 

Time multiplexing does just the 
opposite of pipelining/parallelism.  
It executes a number of parallel 
data streams on the same 
processing element (A).  Due to the 
parallel-to-serial conversion at the 
input of block A, logic block A 
works with up-sampled data ( 2·f ) 
to maintain external throughput. 
This imposes a more aggressive 
timing constraint on logic block A.  
The reference design, hence, moves 
toward higher energy and lower 
delay in the E-D space. Since the 
hardware for logic is shared, the 

area of the time-multiplexed design is reduced. 
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Slide 3.17 

We frequently encounter parallel 
data in signal processing algorithms 
such as those found in multi-carrier 
communication systems or medical 
applications.  The example shown 
in the upper figure shows N 
processing elements (PEs) that 
process N independent streams of 
data.  Given the speed of nano-
scale technologies, the processing 
element can work much faster than 
the application requirement.  Under 
such conditions we can time-
interleave parallel data streams on 
the same hardware in order to take 

advantage of the difference in application speed requirements and the speed of the technology.  The 
interleaving approach is used to save hardware area. 

Parallel-to-serial (P/S) conversion is applied to the incoming data stream to time-interleave the 
samples.  The processing element in the interleaved architecture now runs at a rate N-times faster to 
process all incoming data streams.  A serial-to-parallel (S/P) converter then splits the output data 
stream back into N parallel channels.  It is important to note that extra pipeline registers need to be 
introduced for the interleaved processing element. 

 

Slide 3.18 

Let us consider a simple example of 
a processing element to illustrate 
interleaving.  We assume a simple 
add-multiply operation and two 
inputs C1 and C2. 

The processing element shown 
in this slide is a two-stream 
interleaved implementation of the 
function 1/(1  a·z 1).  Two input 
streams at a rate fs are interleaved at 
a rate 1/2fs.  The key point of 
interleaving is to add an extra 
pipeline stage (re d ) as a memory 
element for the stream C2.  This 
extra pipeline register can be 

pushed into the multiplier, which is convenient because the multiplier now needs to operate at a 
higher speed to support interleaving.  Interleaving, thus, means up-sampling and pipelining of the 
computation.  It saves area by sharing datapath logic (add, mult).  In recursive systems, the total loop 
latency has to be equal to the number of input sub-channels to ensure correct functionality. 

Data-Stream Interleaving

SVDSVDSVDSVDSVDSVDSVDSVDSVDPE

Interleaved Architecture

N blocks

N N

fsymbol

PE

fsymbol fsymbol

P/S S/P

N · fsymbol

N

fsymbol fsymbol

N

… …

PE too fast
Large area

Reduced area
P/S overhead
Pipelined

PE = recursive operation
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PE Performs Recursive Operation

 Interleave = up-sample & pipeline

fs

a

c1(k + 1), c1(k)

fs

c2(k + 1), c2(k)

1/fs 1/fs

2fs

c2(k + 1), c1(k + 1), c2(k), c1(k)
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1/2fs

2fs
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Slide 3.19 

The example in this slide is an N 
data stream generalization of the 
previous example. 

The initial PE that implements 
H(z) = 1/(1  c·z 1)  is  now 
interleaved to operate on N data 
streams. This implies that N – 1 
additional registers are added to the 
original single-channel design. Since 
the design now needs to run N-
times faster, the extra registers can 
be used to pipeline the adder and 
multiplier.  This could result in 
further performance improvement 
or energy reduction.  The number 

of pipeline stages pushed into the adder/multiplier is determined in such a way as to keep uniform 
logic depth for all paths.  If, for a given cycle time, N is greater than the number of registers needed 
to pipeline the adder and multiplier, b = N – a – m  extra  registers  are  needed  to  balance  the  latency  
of the design.  Data-stream interleaving is applicable for parallel data processing. 

 

 

Slide 3.20 

Folding, which is similar to data-
stream interleaving in principle, is 
used for time-serial data processing.  
It involves up-sampling and 
pipelining of recursive loops, like in 
data-stream interleaving.   Folding 
also needs an additional data 
ordering step (the mux in the 
folded architecture) to support 
time-serial execution.  Like 
interleaving, folding also reduces 
area.  As shown in the slide, a 
reference design with N PEs in 
series is transformed to a folded 
design with a single PE.  This is 

possible if the PE can run faster than the application requires, so the excess speed can be traded for 
reduced area.  The folded architecture operates at a rate N-times higher than the reference 
architecture.  The input to the PE is multiplexed between the external input and PE’s output. 

 

 

Data-Stream Interleaving Example

Recursive operation:
z(k) = x(k) + c ·z(k – 1)

N data streams:

bm

c

a

xN … x2 x1

zN … z2 z1

time index k

y1 y2 … yN

time index k – 1

z

a + b + m = N
N · fclk

fclk

c

z(k)x(k)

y(k – 1)
x1, x2, …, xN

Extra b registers
to balance latency
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Slide 3.21 

This example illustrates folding of 
16 data streams representing 
frequency sub-carriers in a multi-
input multi-output (MIMO) 
baseband DSP.  Each stream is a 
vector of dimensionality four  

 rate fclk. The PE performs 
recursive operations on the sub-
carriers (PE* indicates extra 
pipelining inside the PE in order to 
accommodate all sub-carriers).  We 
can take the output of the PE block 
and fold it over in time back to its 
input or select the incoming data 
stream y1 by using the life-chart on 

the right. The 16 sub-carriers, each carrying a vector of real and imaginary data, are sorted in time 
and space, occupying 16 consecutive clock cycles to allow folding by 4.  This amount of folding 
corresponds to four antennas in a MIMO system. 

 

 

Slide 3.22 

Both interleaving and folding 
introduce pipeline registers to store 
internal states, but share pipeline 
logic to save overall area.  We can 
use this simple area model to 
illustrate area savings.  Both 
techniques introduce more area 
corresponding to the states, but 
share the logic area.  Timing and 
energy stay the same because in 
both cases we do pipelining and up-
sampling, which basically brings us 
back to the starting point.  Adding 
new pipeline registers raises the 
question of how to optimally 

balance the pipeline stages (retiming).  Retiming will be discussed at the end of this chapter. 

 

 

 

 

Folding Example

16 data streams
data sorting

16 clk cycles

y2(k)y3(k)y4(k)
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 Folding = up-sampling & pipelining
– Reduced area (shared datapath logic)

c1c16 c2
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Area Benefit of Interleaving and Folding

 Area:  A = Alogic + Aregisters

 Interleaving or folding of level N
– A = Alogic + N · Aregisters
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Slide 3.23 

The energy-delay tradeoff in 
datapath logic helps explain 
architectural transformations.  To 
include area, we plot the energy-
area tradeoff beside the energy-
delay tradeoff [5].  The energy axis 
is shared between the energy-area 
and energy-delay curves.  This way, 
we can analyze energy-delay at the 
datapath level and energy-area at 
the micro-architecture level.  The 
energy-delay tradeoff from the 
datapath logic drives energy-area 
plots on the left.  The E-D tradeoff 
can be obtained by simple VDD 

scaling, as shown in this slide.  The reference point indicates a starting design for architecture 
transformations.  The energy-area-delay framework shown in this slide is a simple guideline for 
architectural transformations, which will be described next. 

 

 

Slide 3.24 

Pipelining and parallelism both 
relax the timing constraint on the 
pipeline logic and they map roughly 
to the same point on the energy-
delay line.  Voltage is scaled down 
to reduce energy per operation, but 
the area increases as shown on the 
left.  Area increases more in the 
parallel design than in the pipeline 
design.  The energy-area tradeoff is 
very important design consideration 
the system, because energy relates 
to the battery life and area relates to 
the cost of silicon. 

 

 

 

 

 

Architectural Transformations

VDD scaling

reference

DelayArea 0

reference

Energy

 Procedure:
move toward desired E-D point while minimimizing area [5]
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[5] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University 
of California, Berkeley, 2006.

Architectural Transformations (Cont.)

 Parallelism & Pipelining
– reduce Energy, increase Area

reference
pipeline,

reference

pipelineparallel
parallel

0 DelayArea

Energy

3.24

VDD scaling



 

Slide 3.25 

In contrast to pipelining and 
parallelism, time multiplexing 
requires datapath logic to run faster 
in order to process many streams 
sequentially.  Starting from the 
reference design, this means shorter 
time available for computation.  
Voltage and/or sizing need to 
increase in order to achieve faster 
delay.   As a result of resource 
sharing, the area of the time-
multiplexed design is reduced as 
compared to the reference design.  
The area reduction comes at the 
expense of increased energy-per-

operation. 

 

 

Slide 3.26 

Interleaving and folding reduce the 
area for the same energy by sharing 
the logic gates.  Both techniques 
involve up-sampling and 
interleaving, so there is no time 
slack available to utilize and, hence, 
the supply voltage remains 
constant.  That is why interleaving 
and folding map back to the 
reference point in the energy-delay 
space, but move toward reduced 
area in the energy-area space. 

We can use these architectural 
techniques to reach a desired 
energy-delay-area point and this 

slide shows a systematic way of how to do it. 

 

 

 

 

 

Architectural Transformations (Cont.)

 Interleaving & Folding
–  const Energy, reduce Area

time-mux

reference
pipeline,intl,

time-mux

reference

pipelineparallel
parallelfold

intl,
fold

0 DelayArea

Energy
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VDD scaling

Architectural Transformations (Cont.)

 Time multiplexing
– increase Energy, reduce Area

time-mux

reference
pipeline,

time-mux

reference

pipelineparallel
parallel

0 DelayArea

Energy
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Slide 3.27 

We can also use the sensitivity 
curve to decide on which 
architectural transformation to use.  
The plot shows energy-per-
operation (Eop) versus time-per-
operation (Top) for an ALU design.  
The reference design is made such 
that energy-delay sensitivities are 
balanced so that roughly 1% of 
energy increase corresponds to 1% 
of delay reduction (and vice versa).  
This point has sensitivity S = 1. 

In the S >1 region, a small 
decrease in time-per-operation 
costs a significant amount of 

energy. Hence, it would be better to move back to longer Top by using parallelism/pipelining and 
save energy. 

In the S<1 region, a small reduction in energy corresponds to a large increase in delay.  Thus we 
can use time multiplexing to move to a slightly higher energy point, but save on area. 

 

Slide 3.28 

Here is another way to look into 
area-energy-performance tradeoff.  
This graphs plots energy-per-
operation versus time-per-operation 
for various implementations of a 
64-bit ALU.  Reference, parallel and 
time-multiplexed designs are 
shown.  The numbers indicate the 
relative area of each design (2–4 for 
parallelism, 1/5-1/2 for time 
multiplexing) as compared to the 
reference design (Aref = 1).   

Suppose that energy is limited to 
Eop ( green line).  How fast can we 
operate?  We can see that 

parallelism is a good technique for improving throughput while time multiplexing is a good solution 
for low throughput when the required delay per operation is long.  

When a target performance (Ttarget) is given, we choose the architecture with the lowest area that 
satisfies the energy budget.  For the max Eop given by the green line, we can use time multiplexing 
level 5 that has 1/5 Aref. However, if the maximum Eop is limited to the purple line, then we can only 

Energy-Area Tradeoff

Max Eop

1 1
2

1
3

1
4 1

5

234

Ttarget

A =       Aref
1
5

A =       Aref
1
3

64-b ALU

High throughput: Parallelism = Large Area

Low throughput: Time-Mux = Small Area
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use time multiplexing by level 3, so the area increases to 1/3 Aref . 



 

Therefore, parallelism is good for high-throughput applications (requires large area) and time-
multiplexing is good for low-throughput applications (requires small area).  The “high” and “low” 
are relative to the speed of technology. 

 

Slide 3.29 

Essentially, by employing time-
multiplexing and parallelism, we are 
trading off energy for area. This 
plot shows the energy-area tradeoff 
for different throughput 
requirements.  The lines show 
points of fixed throughput ranging 
from Top

ref/4 to 4Top
ref.  Higher 

throughput means larger area (the 
use of parallelism).  For any given 
throughput, an energy-area tradeoff 
can be made by employing various 
levels of time-multiplexing (low 
area, high energy) or parallelism 
(low energy, high area).  

 

Slide 3.30 

An important issue to consider with 
pipelining-based transformations is 
how many cycles of latency to 
allocate to each DSP block.  
Remember, pipelining helps 
performance, but we also need to 
balance logic depth within a block 
to maximize performance out of 
our design.  This step is called 
retiming and involves moving 
existing registers around.  This 
becomes particularly challenging in 
recursive designs when registers 
need to be shifted around loops.  
To simplify the problem, it is very 

important to assign the correct amount of latency to each block and retime feed-forward blocks. 

DSP block characterization for latency vs. cycle time is shown on the slide.  In a given design, we 
have blocks of varying complexity which take different number of cycles to propagate input to 
output. The increased latency of the complex block comes from the motive to balance pipeline 
depths for all paths in the block. Once all the logic depths are balanced, then we can globally scale 
supply voltage on locally sized logic pipelines. In balanced datapaths, design optimization consists of 
optimizing a chain of gates (i.e. circuit optimization, which we have learned how to do in Chap. 2). 

It is Basically a Time-Space Tradeoff
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Another Issue: Block Latency / Retiming

 Goal: balance logic depth within a block
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 Select block latency to achieve 
target TClk

– Balances pipeline logic 
depth

 Apply W and VDD scaling to the 
underlying pipelines

Target 
Tclk

Micro-Architecture Level
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Slide 3.31 

Supply voltage scaling is an 
important variable for energy 
minimization, so we need to include 
it in our block characterization 
flow.  This is done by translating 
timing specifications for logic 
synthesis to a more aggressive 
target, so that the design can 
operate with a reduced voltage.  
The amount of delay vs. voltage 
scaling is estimated from gate-level 
simulations [5]. 

On the left, we have a graph that 
plots an E-D curve for a fanout-4 
inverter for a target technology.  

From synthesis, we have the cycle time and latency as shown on the right.  Given a cycle time target, 
we select the latency for all building blocks.  For instance, in the plot shown on the slide, for a unit 
cycle time (normalized), the multiplier has a latency of 8 and the adder has a latency of 2 in order to 
meet the delay specification.  Now, suppose that the target delay needs to be met at supply voltage 
of 0.6 V.  Since libraries are characterized at a fixed (reference) voltage, we need to account for the 
delay margin in synthesis.  For example, if the cycle time of adder at 0.6V is found to be four units, 

the target cycle time for synthesis at 1V would 

constraints of chip synthesis tools. 

 

Slide 3.32 

Architecture techniques for direct 
and recursive algorithms are 
presented. Techniques of 
parallelism and pipelining can be 
used to reduce energy for the same 
performance or, equivalently, 
improve performance for the same 
level of energy per operation. Study 
of a practical processor showed that 
performance-centric designs require 
shallower pipelines while power-
centric designs require deeper 
pipelines. Optimization of energy 
subject to a delay constraint showed 
that optimal designs have balanced 

leakage and switching components. This is intuitively clear because otherwise one could trade one 
type of energy for another to achieve further energy reduction. Techniques of interleaving and 
folding involve up-sampling and pipelining of recursive loops to share logic area without impacting 

Including Supply Voltage Scaling

 Characterize blocks with predetermined wordlength [5]

– Translate timing specification to a target supply voltage
– Determine optimal latency for a given cycle time
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[5] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University 
of California Berkeley, 2006.

Summary

 Architecture parallelism and pipelining can be used to reduce 
power (improve energy efficiency) by voltage scaling
– Equivalently, performance can be improved for the same 

energy per operation
 Performance-centric designs (that maximize BIPS) require shorter 

(fewer FO4 stages) logic pipelines
 Energy-performance optimal designs have about equal leakage 

and switching components of energy
– Otherwise, one can be traded for another for further energy 

reduction
 Architecture techniques for direct (parallelism, pipelining) and 

recursive (interleaving, folding) systems can be analyzed in area-
energy-performance plane for compact comparison
– Latency (number of pipeline stages) is dictated by cycle time

3.32

and if the delay at 0.6 V is 5x the delay at 1V, then 
be assigned as 4/5= 0.8 units.  This way, we can incorporate supply voltage optimization within 



 

power and performance. Architectural examples emphasizing the use of parallelism and time-
multiplexing will be studied in the next chapter to show energy and even area benefits of parallelism. 
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Slide 4.1 

This chapter studies architecture 
flexibility and its implication on 
energy and area efficiency. Having a 
flexible architecture would be nice. 
It would be convenient if we could 
design a chip and program it to do 
whatever it needs to do.  There 
would be no need for optimizations 
prior to any design decisions. What 
is the cost of flexibility?  What are 
we giving up?  How much more 
area, power, etc?  

This chapter provides answers 
to those questions.  First, energy- 
and area-efficiency metrics for DSP 

computations will be defined, and then we will study how architecture affects energy and area 
efficiency.  Examples of general-purpose microprocessors, programmable DSPs, and dedicated 
hardware will be compared.  The comparison for a number of chips will show that architecture 
parallelism is the key for maximizing energy (and even area) efficiency. 

 

 

Slide 4.2 

The main issue is determining 
how much flexibility to include, how 
to do it in the most efficient way 
and how much it would cost [1].  
There are good reasons to make 
flexible designs, and we will discuss 
the cost of doing it in this chapter.  
However there are different ways to 
provide flexibility.  Flexibility has in 
some sense become equal to 
software programmability.  There 
are lots of ways to do flexibility, and 
software programmability is only 
one of those. 

 

 

 

 

Architecture Flexibility
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Slide 4.3 

There are several good reasons for 
flexibility: 

A flexible design can serve 
multiple applications. By selling one 
design in large volume, the cost of 
the layout masks can be greatly 
reduced.  This applies to Intel’s and 
TI’s processors, for instance. 

Another reason is that we are 
unsure of specifications or can’t 
make a decision.  This is the reason 
flexibility is one of the key factors 
for cell phone companies, for 
example.  Flexibility is so important 

because they have to delay the decisions until the last possible minute. People who are making the 
decisions on what the features, standards, etc. will be won’t make a decision until they absolutely 
have to.  If the decision can be delayed until software design stage, then the most up-to-date version 
would be available and that will have the best sales. 

Despite the fact that dedicated design could provide orders of magnitude better energy efficiency 
than DSP processors, the DSP parts still sell in large volumes (on the order of a million chips a day).  
For the DSPs the main reason flexibility is so important is backwards compatibility.  Software is so 
difficult to do, so difficult to verify, that once it is done, people don’t want to change it.  It actually 
turns out that software is not flexible and easy to change.  Customers are attracted by the idea of 
getting new hardware that is compatible with legacy code. 

Building dedicated chips is very expensive.  For a 90-nm technology, the cost for a mask set is 
over $1 million and even more for advanced technologies.  If designers do something that may 
potentially be wrong, that scares people. 

 

Slide 4.4 

We need some metrics to determine 
the cost of flexibility. 

Let’s use a power metric, which 
is for thermal limitations.  This is 
how many computations (number of 
atomic operations) we do per mW.   

An energy metric tells us how 
much a set of operations cost in 
energy.  In other words, how much 
we can do with one battery.  The 
energy is measured in the number of 
operations per Joule.  Energy issue 
is a battery issue, whereas 
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operations/mW is a power issue. 

We also need a cost metric, which is equal to the area of a chip.   

Finally, performance requirements need to be met.  We will assume that designs meet 
performance metrics and we look at the other metrics. 

 

Slide 4.5 

The metrics are going to be defined 
around operations.  An operation is 
an algorithmically interesting 
computation, like a multiply, add or 
delay.  It is related to the function an 
algorithm performs.  This is 
different from an instruction.  Often 
we talk about MIPS (millions of 
instructions per second) and we 
categorize complexity by how many 
instructions it takes.  Instructions 
are tied to a particular 
implementation, a particular 
architecture.  If we talk about 
operations, we want to get back to 

what we are trying to do (algorithm), not to the particular implementation.  So, in general it takes 
several instructions to do one operation.  We are going to base ourselves around operations. 

MOPS is millions of OP/sec (OP = operation).  This is a rate at which operations are being 
performed. 

Nop is number of parallel operations per clock cycle.  This is an important number because it tells 
us the amount of parallelism in our hardware.  For each clock cycle, if we have 100 multipliers and 
they each contribute to an algorithm, we have an Nop of 100 in that clock cycle, or that chip has a 
parallelism of 100. 

Pchip is the total power of the chip, the area of the chip * Csw (Csw is switched capacitance, some 
average value of capacitance and its activity that’s being switched each cycle per unit area).  Some 
parts of the chip will be changing rapidly, so all that capacitance will be linearly factored in.  Other 
parts will be changing slowly, so that capacitance will be weighted down, because the activity factor 
is lower.  Csw = activity factor * Capacitance of gates, as explained in Chap. 1. 

Csw is equal to switched capacitance/mm2.  Solving for Csw yields power of the chip divided by 
area of the chip, divided by VDD

2, divided by fclk.  Csw is the average capacitance over the chip.  To 
find the power of the chip, Csw needs to multiply area of the chip, the clock rate, and VDD

2.  The 
question is how Csw changes between different variations of the design?  

Achip is the total area of the chip. 

Aop is the average area of each operation.  So if we take Nop (the number of parallel operations in 
each clock cycle), divide that by the area of the chip, this tells us how much area each parallel 
operation takes. 

Architecture Flexibility
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The idea is to figure out what the basic metrics are so we can see how good a design is.  How do 
we compare different implementations and see which ones are good? 

 

Slide 4.6 

Energy efficiency is the number of 
useful OPs divided by the energy 
required to do them.  So if we have 
1000 operations, we know how 
many nJ it takes to do them, and 
therefore we can calculate the 
energy efficiency.  Energy efficiency 
is the OP/nJ, the average number of 
Joules per operation.  Joules are 
power * time (Watt * s).  OP/sec 
divided by nJ/sec gives 
MOPS/mW.  Therefore, if we 
calculate OP/nJ, it is exactly the 
same as MOPS/mW.  This implies 
that the energy metric is exactly the 

same as the power metric.  Therefore, power efficiency and energy efficiency are actually the same. 

 

 

Slide 4.7 

Now we can compare different 
designs and answer the question of 
how many mW does it take to do 
one million operations or how many 
nJ per operation. 
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Slide 4.8 

This slide summarizes a number of 
chips from ISSCC, top international 
conference in chip design, over a 5-
year period (1996–2001).  Only chips 
for 0.18µm to 0.25µm were analyzed 
(because technology will have a big 
effect on these numbers).  In this 
study, there were 20 different chips.  
The chips which had all the 
numbers needed for calculating Csw, 
power, area and OPs were chosen.  
Eight of the chips were 
microprocessors; the DSPs are 
another set of chips – software 
programmable with extra hardware 

to support the particular domain they were interested in (multimedia, graphics, etc); the final group 
is dedicated chips – hard-wired, do-one-function chips.  How does MOPS/mW change over these 
three classes? 

 

Slide 4.9 

The y-axis is energy efficiency, in 
MOPS/mW or nJ/op on a log 
scale, and the x-axis indicates the 
chip analyzed.  The numbers range 
from 0.01 to about 0.1 MOPS/mW 
for microprocessors.  The general 
purpose DSPs (still software 
programmable, so quite flexible), 
are about 10 to 100 times more 
efficient than the general purpose 
microprocessors, so this parallelism 
is having quite an effect – a factor 
of 10.  The dedicated chips are 
going up another couple orders of 
magnitude.  Overall, we can 

observe a factor of 1000 between dedicated chips and software-programmable chips.  This number 
is sometimes intuitively clear when people say there are just some things you don’t do in software.  
For a really fast bit manipulation, for example, you would not think to do it in software. 

We had many good reasons for software programmability, but at a cost higher by a factor of 
1000.  We can’t be trading off things that are so different.  There are other reasons for doing high 
levels of flexibility, but it is not going to come from engineers optimizing the area or energy 
efficiency.  The numbers are too different. 
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Slide 4.10 

Let’s look at the components of 
MOPS/mW.  Operations per 
second: Nop is the number of parallel 
operations per clock cycle.  If we 
want to look at MOPS, we take the 
clock rate times the number of 
parallel operations.  Parallelism is 
the key to understanding energy and 
area efficiency metrics. 

Power of the chip is equal to the 
same formula we had in Slide 4.5. 

If we put in the values for MOPS 
and take that ratio (MOPS/Pchip), we 
end up with 1/(Area per operation 

per clock cycle * Csw * VDD
2).  (Aop * Csw) is the amount of switched capacitance per operation.  For 

example, consider having 100 multipliers on a chip.  The chip area divided by 100 will give Aop.  
Take Csw (area cap/unit area for that design), that gives the average switched cap per op, times VDD

2 
would be the average power per op.  1 over that is the MOPS/mW. 

Let’s look at the three components, VDD, Csw, and Aop , and see how they change between these

 

Slide 4.11 

Supply voltage could be lower for 
the general purpose microprocessor 
than for the dedicated chips.  The 
actual reason is that parts run faster 
if they are run at higher voltages.  If 
microprocessors run at higher 
voltages, the chips would burn up.  
Microprocessors run below the 
voltages they can be run at.  
Dedicated chips use all the voltage 
they can get because they don’t 
have a power problem in terms of 
heat sinking on a chip.  Therefore, 
it is not VDD

2 that is causing the 
different designs to be so different.  

From Chap. 3, you might think it is voltage scaling that is making the difference. It is not. 

 

 

Supply Voltage, VDD
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Microprocessors
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What about Csw?  It is the 
capacitance per unit area * activity 
factor.  The CPU is running very 
fast, which gets hot, but the rest of 
the chip is memory. The activity 
factor of that memory would be 
very low, since you are not 
accessing all that memory.  
However, Csw for the 
microprocessor is actually higher, 
despite the fact that most of the 
chip is not doing much.  Dedicated 
chips have the lowest Csw, despite 
the fact that all the chips are 
executing every cycle.  Why?  

Essentially, a microprocessor is time multiplexing to do lots of tasks and there is big overhead 
associated with time multiplexing.  To run logic at 2GHz, there are clocks that are buffered, big 
drivers (the size of the drivers is in meters), and huge transistors.  That leads to big capacitance 
numbers.  With time multiplexing, high-speed operation, and long busses, as well as the necessity to 
drive and synchronize the data, a lot of power is required. 

What about fanout, where you drive buses that end up not using that data?  When we look at 
microprocessor designs of today that try to get more parallelism, we see that they do speculative 
execution, which is a bad thing for power.  You spawn out 3 or 4 guesses for what the next 
operation should be, perform those operations, figure out which one is going to be used, and throw 
away the answer to the other 3.  In an attempt to get more parallelism, the designers traded off 
power.  When power limited, however, designers have to rethink some of these techniques.  One 
idea is the use of hardware accelerators. If we have to do MPEG decoding, for example, then it is 
possible to just use an MPEG decoder in hardwired logic instead of using a microprocessor to do 
that. 

 

 

 

 

 

 

 

 

 

 

Switched Capacitance, Csw (pF/mm2)

4.12

Microprocessors

General 
Purpose DSPs Dedicated

Csw is lower for dedicated, but only by a factor of 2-3
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So if it is not VDD or Csw, it has to be 
the Aop.   A microprocessor can only 
do three or four operations in parallel.  

every one of the parallel units is 
being executed.  Aop is equal to 100’s 
of mm2 per operation for a 
microprocessor, because you only 
get one operation per clock cycle.  
Dedicated chips give 10’s or 100’s of 
operations per clock cycle, which 
brings Aop down from hundreds of 
mm2 per op down to 1/10 of mm2 
per op.  It is the parallelism 
achievable in a dedicated design that 

makes them so efficient. 

 

Slide 4.14 

Energy is not everything.  The 
other part is cost.  Cost is equal to 
area.  How much area does it take 
to do a function?  What is the best 
way to reduce area?  It may seem 
that the best way to reduce area is 
to take a bit of area and time 
multiplex it, like in the von 
Neumann model.  When von 
Neumann built his architecture 
over 50 years ago, his model of 
hardware was that an adder 
consumed a rack.  A register was 
another rack.  If that is a model of 
hardware, you don’t think about 

parallelism.  Instead, you think about time sharing each piece of hardware.  The first von Neumann 
computer was a basement, and that was just one ALU.  Chips are cost/mm2.  Cost is more often 
more important than energy.  So wouldn’t the best way to reduce cost be to time multiplex? 

Let’s look at Power PC, the NEC DSP chip, and the MUD chip (multi-user detection chip done 
at Berkeley) to gain some insight into the three architectures. 

 

 

 

 

Let’s Look at Some Chips to 
Actually See the Different Architectures
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Slide 4.15 

 

 

Slide 4.16 

Let’s take the NEC DSP chip, 
which has MOPS/mW of 7 (70 
times that of the Power PC).  It has 
4 DSP units, each of which can do 4 
parallel operations.  Therefore, it 
can do 16 ops/clock cycle, which is 
equivalent to 8 times more 
parallelism than the PPC.  The NEC 
DEC chip has a 50 MHz clock, but 
it can do 800 MOPS, whereas for 
the PPC with a 450 MHz clock, it 
can do 900 MOPS.  That is the 
power of parallelism.  Aop is 5.3 
mm2.  Area efficiency and energy 
efficiency are a lot higher for this 

chip.  We see some shared memory on the chip.  This is a wasted area, just passing data back and 
forth between these parallel units.  Memories are not very efficient.  80% of the chip is operational, 
whereas in the microprocessor only a fraction of the chip building blocks (see previous slide) are 
doing operations. 

 

 

 

 

 

 

Let’s look at the Power PC.  
MOPS/mW = 0.13.  The processor 
is a 2-way superscalar consisting of 
an integer unit and a floating-point 
unit, so it executes 2 operations 
each cycle.  The clock rate is 
450MHz, so the number of real-
time instructions is 900 MIPS.  
Here, we have blurred the line 
between instructions and 
operations.  Let’s say instruction = 
operation for this microprocessor.  
Aop = 42 mm2 per operation. 

Architecture Flexibility
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For the dedicated chip, there are 96 
ops per clock cycle.  At 25 MHz, 
this chip computes 2400MOPS.  
We have dropped the clock rate 
but ended up with three times more 
throughput, so clock rate and 
throughput have nothing to do 
with each other.  Reducing clock 
rate actually improves throughput 
because more area can be spent to 
do operations.  Aop  is  0.15 mm2, a 
much smaller chip.  Power is 12 
mW.  The key to lower power is 
parallelism. 
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Parallelism is probably the foremost 
architectural issue – how to provide 
flexibility and still retain the 
area/energy efficiency of dedicated 
designs.  A company called 
Chameleon systems began working 
on this problem in the early 2000’s 
and won many awards for their 
architecture.  FPGAs are optimized 
for random logic, so why not 
optimize for higher logic – adders, 
etc?  They were targeting the TI 
DSP chips and their chips didn’t 
improve fast enough.  They had just 
the right tools to get flexibility for 

this DSP area that works better than an FPGA or TI DSP – they still did not make it.  Companies 
that do the general purpose processors like TI know their solution isn’t the right path, and they’re 
beginning to modify their architecture, make dedicated parts, move towards dedicated design, etc.  
There should probably be a fundamental architecture like an FPGA that is reconfigurable that 
somehow addresses the DSP domain – that is flexible yet efficient.  It is a big time opportunity. 

We would argue that the basic problem is time multiplexing.  To try to use the same architecture 
over and over again is at the root of the problem [2].  It is not that it shouldn’t be used in some 
places, but to use it as the main basic architectural strategy seems to be overdoing it. 
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Slide 4.19 

Let’s look at MOPS/mm2, area 
efficiency.  This metric is equivalent 
to the chip cost.  You may expect 
that parallelism would increase cost, 
but that is not the case.  Let’s look 
at the same examples and compare 
area efficiency for processors, DSP 
chips, and dedicated chips. 
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You would think that with all that 
time multiplexing you would get 
more MOPS/mm2.  The plot shows 
area efficiency on a log scale for the 
example chips.  Microprocessors 
achieve around 10 MOPS/mm2.  
DSPs are getting a little better, but 
not much.  Dedicated, some 
designs do a lot better, some don’t.  
The low point is a hearing aid that 
uses a very low voltage, so this gets 
very low area efficiency due to 
reduced processing speed.  In 
general, it is orders of magnitude 
more area efficient to use 

parallelism and time multiplex very little.  That is also very surprising.  You would think the ALU, 
overdesigned to be 32 or 64 bits, while the dedicated chips are 12 or 16 bits, would be the most area 
efficient. What causes the area inefficiency in microprocessors?  To be more flexible you have to pay 
an area cost.  Signals from the ALU need to get to different places so busses are ran all over the 
place whereas in dedicated you know where everything is.  In flexible designs, you also have to store 
intermediate values.  The CPU is running very fast and you have to feed data constantly into it. 
There is all sorts of memory all over that chip.  Memory is not as fast as the logic, so we put in 
caches and cache controllers.  A major problem is that technology improves the speed of logic much 
more rapidly than it does memory.  All the time multiplexing and all the controllers create lots of 
area overhead. 

The overhead of flexibility in processor architectures is so high that there are about two orders of 
magnitude of area penalty as compared to dedicated chips. 

Surprisingly, the Area Efficiency 
Roughly Tracks the Energy Efficiency
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There is no hardware/software 
tradeoff.  The cost of flexibility is 
extremely high.  What we want is 
something more flexible that can do 
a lot of different things that is 
somehow near the efficiency of 
these highly optimized parallel 
solutions.  Part of the solution has 
to do with high levels of parallelism. 
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Slide 5.1 

This chapter reviews number 
representation and DSP arithmetic.  
It starts with floating-point number 
representation. Fixed-point 
representations are then introduced, 
as well as related topics such as 
overflow and quantization modes.  
Basic implementations of add and 
multiply operations are shown as a 
baseline for studying the impact of 
micro-architecture on switching 
activity and power. 

 

 

 

Slide 5.2 

The chapter topics include 
quantization effects, floating-point 
and fixed-point arithmetic.  Data 
dependencies will be exploited for 
power reduction, which will be 
illustrated on adder and multiplier 
examples.  Adders and multipliers 
are core operators of DSP 
algorithms. We will look into gate-
level implementation of these 
operations and analyze their 
performance and energy. 

 

 

 

 

 

 

 

 

 

 

Arithmetic for DSP

Chapter 5

Chapter Overview

 Number systems

 Quantization effects

 Data dependencies

 Implications on power

 Adders and multipliers

5.2
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Slide 5.3 

Let’s start the discussion with a 
high-level symbolic abstraction of 
the variables [1].  For example, 
variable a is the sum of the constant 
 and variable b, a =  + b.   This  is  

a notation with infinite precision.  It 
is convenient for symbolic calculus, 
and it is often very easy to 
understand.  Although such a 
representation is suitable for 
algorithm development, it is 
impractical for physical realization.  
The hardware cost to implement 
the calculation of a can vary greatly 
depending on the desired level of 

accuracy.  Hence, we need to study various options and their practical feasibility. 

 

 

Slide 5.4 

Floating point is a commonly used 
representation in general processors 
such as CPUs.  It has very high 
precision and serves well for 
algorithm study and validation.  
There are several standards for 
floating-point numbers; the table 
on this slide [2] shows the IEEE 
754 standard.  The value is 
represented using a sign, fraction, 
exponent, and bias bits.  The single-
precision format uses 32 bits, out of 
which 1 is used for the sign, 8 for 
the exponent and the remaining 23 
for the fraction.  A bias of 127 is 

applied to the exponent.  The double-precision format requires 64 bits and has greater accuracy. 

 

 

 

 

 

 

Number Systems: Algebraic

 High-level abstraction
 Infinite precision
 Often easier to understand
 Good for theory/algorithm development
 Hard to implement

5.3

Algebraic Number
e.g. a = + b

[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley, 
2004.

[1]

Number Systems: Floating Point

5.4

Value = ( 1)Sign × Fraction × 2(Exponent – Bias)

IEEE 754 standard Sign Exponent Fraction Bias
Single precision [31:0] 1 [31] 8 [30:23] 23 [22:0] 127

Double precision [63:0] 1 [63] 11 [62:52] 52 [51:00] 1023

 Widely used in CPUs
 Floating precision
 Good for algorithm study and validation

[2] J.L. Hennesy and D.A. Paterson, Computer Architecture: A Quantitative Approach, (2nd Ed), 
Morgan Kaufmann, 1996.

[2]
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Slide 5.5 

As an example of floating-point 
representation, we look at the 10-
bit representation of the constant .  
The sign bit is zero, since  is 
positive.  The fractional and 
exponent parts are computed using 
weighted bit-sums, as shown in the 
first bullet.  The truncated value for 
 in this representation is 3.125.  

Since a small number of bits are 
used in this representation, the 
number deviates from the accurate 
value (3.141592654…) even at the 
second decimal point.  The IEEE 
754 standard formats with 32 or 64 

bits would provide a much higher precision. 

 

 

Slide 5.6 

Algorithm developers use floating-
point representation, which also 
serves as a reference for algorithm 
performance.  After the algorithm is 
developed, it is refined for fixed-
point accuracy.  Let’s look into the 
properties of the floating-point 
representation for the IEEE 754 
standard. 

The first property is the 
rounding of the “half-way” result to 
the nearest available even number.  
For example, 3.05 rounds to 3.0 
(even number).  Otherwise, 
rounding goes to the nearest 

number (round-up if the last digit that is being discarded is greater than 5; round-down if the last 
digit that is being discarded is less than 5). 

The second property concerns the representation of special values such as NaN (not a number), 
 (infinity), and .  These numbers may occur as a result of arithmetic operations.  For instance, 

taking the square root of a negative number will result in a NaN, and any function performed on a 
NaN result will also produce a NaN.  Readers may be familiar with this notation in MATLAB, for 
example. Division by zero results in , while division by  yields 0.  We can, however, take  as a 
function argument.  For example, arctan( ) gives /2. 

 

Example of Floating-Point Representation

5.5

A non-IEEE-standard floating point 

0 1 1 0 0 0 11 0 1

Frac ExpSign

=

Bias = 3

= ( 1)0 × (1×2 1 + 1×2 2 + 0×2 3 + 0×2 4 + 1×2 5 + 0×2 6)

× 2                                 = 3.125(1×22 + 0×21 + 1×20  3)

Value = ( 1)Sign × Fraction × 2(Exponent – Bias)

 Calculate 

 Very few bits are used in this representation, which results in low 
accuracy (compare to actual value = 3.141592654…)

Floating-Point Standard: IEEE 754

 Property #1
– Rounding a “half-way” result to the nearest float 

(picks even)

Example:
6.1 × 0.5 = 3.05 (base 10, 2 digits)

3.0    3.1 (base 10, 1 digit)

 Property #2
– Includes special values (NaN, , )

Examples:
sqrt( 0.5) = NaN, f(NaN) = NaN [check this in MATLAB]
1/0 = , 1/  = 0
arctan(x)  /2 as x   arctan( ) = /2

even

5.6
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A very convenient technique that 
aids in the representation of out-of-
range numbers is the use of 
“denormals.”  Denormals allow 
representation of numbers smaller 
than 10Emin, where Emin is the 
minimum exponent.  Instead of 
flushing the result to 0, a 
significand < 1.0 is used.  For 
instance, consider a decimal system 
with 4 significant digits and 

x = 1.234 · 10Emin.  
Denormals are numbers where the 
result is less than 10Emin.  The use of 
denormals guarantees that if two 

numbers, x and y, are equal then the result of their subtraction will be zero.  The reverse also holds.  
A flush-to-0 system does not satisfy the reverse condition.  For example, if x  =  1.256  · 10Emin  and  y  = 
1.234 · 10Emin, the result of x– y in the flush-to-0 sysetm will be 0 although x and y are not equal.  
The use of denormals effectively allows us to approach 0 more gradually. 

 

 

Slide 5.8 

There are four different rounding 
modes that can be used.  The 
default mode is to round to the 
nearest number; otherwise user can 
select rounding toward 0, , or . 

 

 

 

 

 

 

 

 

 

 

 

Floating-Point Standard: IEEE 754 (Cont.)

 Property #3
– Uses denormals to represent the result < 1.0  eEmin

Emin = min exponent

Example:
base 10, 4 significant digits, x = 1.234  10Emin

denormals: x/10 0.123  10Emin

x/1,000 0.001  10Emin

x/10,000  0
x = y  x – y = 0

flush-to-0: x = 1.256  10Emin, y = 1.234  10Emin

x – y = 0.022  10Emin = 0 (although x  y)

denormal number (exact computation)

Flush to 0
Use significand < 1.0 and Emin
(“gradual underflow”)

5.7

Floating-Point Standard: IEEE 754 (Cont.)

 Property #4
– Rounding modes

Nearest (default)
Toward 0
Toward 
Toward 

5.8

the        number 
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This slide gives an example of a 
single-precision 32-bit floating-
point number.  According to the 
standard, 1 bit is reserved for the 
sign, 8 bits for the exponent, and 23 
bits for the fraction, and the bias is 
127.  In the case that the fraction is 
< 1, the significand is calculated as 
1 + fraction.  The numerical 
example in the slide shows the use 
of these techniques.  The bit-wise 
organization of the sign, exponent, 
and fraction fields is shown.  A sign 
bit of 1 indicates a negative 
number, the exponent of 129 is 

offset by the bias of 127, and the fractional part evaluates to 0.25.  Since the fractional part is < 1, 
the significand is 1.25.  We calculate the result as 1.25 · 22 = 5. 

 

Slide 5.10 

Now, let’s consider fixed-point 2’s 
complement representation.  This is 
the most common fixed-point 
representation used in DSP 
arithmetic.  The slide shows a bit-
wise organization of  in the 2’s 
complement notation.  The sign bit 
= 0 indicates a positive number.  
Besides the sign bit, there are 
integer and fractional bits that 
correspond to data range and 
accuracy.  This representation is 
often expressed in the (WTot, WFr) 
format, where WTot and WFr are the 
total and fractional number of bits, 

respectively.  A simple weighted bit-sum is used to calculate the value as illustrated on the slide. 

Fixed-point arithmetic is very convenient for implementation due to a reduced bit count as 
compared to floating-point systems.  The fixed-point representation has a much narrower dynamic 
range than floating-point representation, however.  The implementation also has to consider 
overflow (large positive or negative numbers) and quantization (fine-precision numbers) effects.  2’s 
complement is commonly used in hardware due to its simplicity and low numerical complexity. 

 

 

Representation of Floating-Point Numbers

 Single precision: 32 bits
– Sign: 1 bit
– Exponent: 8 bits
– Fraction: 23 bits

Fraction < 1  Significand = 1 + Fraction
– Bias = 127

Example:
1 10000001 0100…0

sign exponent fraction
129 – 127 0.012 = 0.25

1.25  22 = 5

(significand = 1.25)

5.9

Fixed Point: 2’s Complement Representation

 WInt and WFr suitable for predictable dynamic range
– o-mode (overflow, wrap-around)
– q-mode (trunc, roundoff)

 Economic for implementation

5.10

Overflow mode Quantization mode

= 0×23 + 0×22 + 1×21 + 1×20 + 0×2 1 + 0×2 2 + 1×2 3 + 0×2 4 + 0×2 5 + 1×2 6

= 3.140625

fractional

0 0 1 1 0 1 00 0 1

WInt WFrSign

=
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Another fixed-point representation 
is unsigned magnitude.  When the 
overflow bit is “1”, it indicates 
negative values.  For instance, in 8-
bit representation, 12910 = 
100000012, which indicates 1.  No 
additional bit-wise arithmetic is 
required for negative numbers like 
in 1’s or 2’s complement. 

MATLAB has a number of 
built-in functions for number 
conversion.  The reader is 
encouraged to read the tool help 
pages.  Some of these functions are 
listed on this slide.  Additionally, 

Simulink has a graphical interface for fixed-point types.  The example shows an unsigned format 
with a total of 10 bits of which 6 bits are fractional. 
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Commonly used fixed-point 
representations are summarized 
here.  Sign-magnitude is the most 
straightforward approach based on 
a sign bit and magnitude bits.  2’s 
complement and 1’s complement 
numbers require bit-wise inversion 
to convert between positive and 
negative numbers.  2’s complement, 
which is most commonly used for 
DSP applications, also requires 
adding a 1 to the least significant bit 
position.  Finally, there is a biased 
representation in which a bias is 
applied to negative numbers k such 

that k + bias is always non-negative.  Typically, bias = 2n 1, where n is the number of bits. 

 

 

 

 

Fixed-Point Representations

 Sign magnitude

 2’s complement
– x + ( x) = 2n (complement each bit, add 1)
– Most widely used (signed arithmetic easy to do)

 1’s complement 
– x + ( x) = 2n  1 (complement each bit)

 Biased   add bias, encode as ordinary unsigned number
– k + bias  0, bias = 2n–1 (typically)

5.12

Fixed Point: Unsigned Magnitude Representation

 Useful built-in MATLAB functions: 
– fix, round, ceil, floor, dec2bin, bin2dec, etc.

5.11

 In MATLAB: 
– dec2bin(round(pi*2^6), 10)
– bin2dec(above)*2^-6

 In SysGen/Simulink: 
– (10, 6) = (total # bits, # frac bits)

Overflow mode Quantization mode

0 0 1 1 0 1 00 0 1

WInt WFr

= [1] C. Shi, Floating-point to Fixed-
point Conversion, PhD thesis, 
University of California, Berkeley, 
Spring 2004.

[1]
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Slide 5.13 

Here are a few examples.  Suppose 
n=4 (number of bits) and k=3.  
Given k, we want to come up with 
a representation of –k. 

In sign-magnitude, k= 00112 
with MSB being reserved for the 
sign.  Therefore, the negative value 
is obtained by simply inverting the 
sign bit, k=10112. 

In 2’s complement, k+( k)= 

is obtained in two steps.  In the first 
step, we do a bit-wise inversion of k 
and obtain 11002.  In the second 

step, we add 1 to the LSB and obtain –k =11 012 .   Now,  we  can  go  back  and  verify  the  assumption: 
k+( k)=00112 +11012 =100002= 2 4. The carry out of 1 is ignored, so the resultant 4-bit 
number is 0. 

In 1’s complement, the concept is similar to that of 2’s complement except that we stop after the 
first step (bit-wise inversion).  Therefore, k=11002.  As a way of verification, k+( k)=00112+ 
11002 = 11112 = 24 – 1. 

In biased representation, bias = 2n 1 = 8.  k + bias = 10112, k + bias = 01012 = 5  0. 

 

Slide 5.14 

The 2’s complement representation 
is the most widely used in practice 
due to its simplicity.  Arithmetic 
operations are preformed regardless 
of the sign (as long as the overflow 
condition is being tracked).  For 
example, the addition of 5 and 2 
is performed by simple binary 
addition, as shown on the slide.  
Since 4 bits are sufficient to 
represent the result, the sign bit is 
discarded and we have the correct 
result, 00112 = 310. 

To keep track of the overflow, 
we have to look at carries at MSB.  

If the carry into and out of MSB differ, then we have an overflow.  In the previous example, 
repeated here with annotation of the carry bit, we see that carries into and out of the MSB match, 
hence no overflow is detected. 

Fixed-Point Representations: Example

Example: n = 4 bits, k = 3, k = ?

 Sign magnitude: k = 00112 k = 10112

 2’s complement: k + 1011 = 2n 0011
k = 1100         +1101

+       1         10000
11012

 1’s complement: k = 11002 k + ( k) = 2n 1

 Biased: k + bias = 10112 –k + bias = 01012 = 5  0
2n–1 = 8 = 10002

5.13

Procedure:
• Bit-wise inversion
• Add “1”

2’s Complement Arithmetic

 Most widely used representation, simple arithmetic

 Example: 5 + 2 0010    ( 2)
01012 (5) 1101

+11102 ( 2) +     1
10011 = +3 11102

5.14

Discard the sign bit (if there is no overflow)

 Overflow occurs when Carry into MSB  Carry out of MSB

0 1 0 12 (5) 
+1 1 1 02 ( 2)
1 0 0 1 1 (3)

Carry: 1 1 0 0

MSB

Carry into MSBCarry out of MSB =  No overflow!

2n has to hold.  The negative value 



 

Slide 5.15 

An example of overflow is provided 
in this slide.  If we assume 4-bit 
numbers and perform the addition 
of 6 and 11, the result is 17 = 
100012.  Since the result is out of 
range, an extra bit is required to 
represent the result.  In this 
example, overflow occurs. 

A nice feature of 2’s 
complement is that by simply 
bringing a carry into the LSB, 
addition turns into subtraction.  
Mathematically, a + b (Cin = 0) 
becomes a – b (Cin = 1).   Such 
property is very convenient for 

hardware realization. 

 

 

Slide 5.16 

To study quantization, this slide 
shows a continuous-time analog 
waveform xa(t) and its sampled 
version xs[n].  Sampling occurs at 
discrete time intervals with period 
T.  The dots indicate the sampled 
values.  The sampled waveform 
xs[n] is quantized with a finite 
number of bits, which are coded 
into a fixed-point representation.  
The quantizer and coder implement 
analog-to-digital conversion, which 
works at a rate of 1/T. 

 

 

 

 

 

 

 

Overflow

 Example: unsigned 4-bit addition

6 =   01102
+11 =   10112

= 17 = 100012 (5 bits!)

5.15

extra bit

 Property of 2’s complement
– Negation = bit-by-bit complement + 1 Cin = 1, result: a  b

Quantization Effects

5.16

S&H
xa(t)

T

Quantizer Coder
xs[n] x[n] xB[n]ˆ ˆ

A/D

time

T = sample period

3T 2T T 0 T 2T 3T 4T

xa(t)
xs [n] sampled 

waveform

samples, n3 2 1 0 1 2 3 4
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Slide 5.17 

To maintain an accurate 
representation of xa(t) over the 
sampling period, quantized values 
Q(x) are computed as the average 
of xa(t) at the beginning and end of 
the sampling period, as illustrated 
on the right.  The quantization step 

 is chosen to cover the maximum 
absolute value xm of input x with B 
bits.  B+1 bits are required to 
cover the full range of 2xm, which 
also includes both positive and 
negative values.  The corresponding 
quantization characteristic is shown 
on the left. 

The quantization error e[n] can be computed from the quantization characteristic.  Due to the 
nature of quantization, the absolute value of e[n] cannot exceed /2. The error can be modeled as 
Additive White Noise (AWN). 

 

 

Slide 5.18 

In practical systems, we can 
implement quantization with 
rounding or truncation.  The 
rounding quantization characteristic 
is shown on the left and is the same 
as that on the previous slide.  The 
solid stair-case Q[x] intersects with 
the dashed 45-degree line Q[x]=x, 
thereby providing a reasonably 
accurate representation of x. 

Truncation can be implemented 
simply by just discarding the least 
significant bit, but it introduces 
two-times larger error than 
rounding. The quantization 

characteristic Q[x] is always below the 45-degree line.  This representation may work in some feed-
forward designs due to its simplicity, but can result in significant error accumulation in recursive 
algorithms.  Feedback systems, for this reason, use rounding as the preferred quantization mode. 

 

Quantization Modes: Rounding, Truncation

5.18

/2 x

Q[x]

3
2

5
2

7
2

2

3

4

3
2

2

3

7
2

5
2

x

Q[x]

2

3

4

2

3

2 3 4

234

Rounding Truncation

Feedback systems 
use rounding

Quantization

5.17

x

2

3 /2/2

3 /2 /2

2
x = Q(x)ˆ

Full range: 2xm

xa(t)
x[n]ˆ

=
2xm

2B+1
m

2B=

B = # bits of quantization

2’s complement representation

ˆe[n] = x[n]  x[n]
/2 < e[n]  /2

(AWN process)

x
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Slide 5.19 

Quantization affects least 
significant bits.  We also need to 
consider accuracy issues related to 
overflow, which affects the most 
significant bits.  One idea is to use a 
wrap-around scheme, as shown in 
this slide [3].  We simply discard the 
most significant bit when the 
number goes out of range and keep 
the remaining bits.  This is simple 
to implement, but could be very 
inaccurate since large positive 
values can be represented as 
negative and vice versa. 

 

 

 

Slide 5.20 

Another way to deal with overflow 
is to use saturation, as shown on 
this slide.  In this case, we also keep 
the same number of bits, but 
saturate the result to the largest 
positive (negative) value.  Saturation 
requires extra logic to detect the 
overflow and freeze the result, but 
provides more accurate 
representation than wrap-around.  
Saturation is particularly used in 
recursive systems that are sensitive 
to large signal dynamics. 

 

 

 

 

 

 

 

Overflow Modes: Wrap Around

5.19
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011
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011

010

001

111

110

101

100

[3]

[3] A.V. Oppenheim, R.W. Schafer, with J.R. Buck, Discrete-Time Signal Processing, (2nd Ed), Prentice 
Hall, 1998. 

Overflow Modes: Saturation

5.20
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Slide 5.21 

Per the discussion in Slide 5.17, 
quantization noise can be modeled 
as the Additive White Noise 
(AWN) process illustrated here.  
Given the flat noise characteristic, 
we can calculate the noise variance 
(corresponding to the noise power) 
by solving the integral of e2·(1/ ) 
when e varies between – /2 and 

/2.  The variance equals 2/12.  
For B+1 bits used to quantize xm ,
e = 2 2B·xm2/12. 

The noise power can now be 
used to calculate the signal-to-
quantization-noise ratio (SQNR) 

due to quantization as given by the formula in this slide.  Each extra bit of quantization improves 
the SQNR by 6dB. 

 

 

Slide 5.22 

As an example of fixed-point 
operations, let us look at a 
multiplier.  The multiplier takes 
input arguments X and Y, which 
have M and N bits, respectively. To 
perform multiplication without loss 
of accuracy, the product Z requires 
M+N bits [4]. If we now take the 
product as input to the next stage, 
the required number of bits will 
further increase. After a few stages, 
this strategy will result in 
impractical wordlength. Statistically, 
not all output bit combinations will 
occur with the same probability. In 

fact, the number of values at the output will often be smaller than the total number of distinct values 
that M + N bits can represent. This gives rise to opportunities for wordlength reduction. 

One approach to reduce the number of bits is to encode numbers in a way so as to increase the 
probability of occurrence of certain output states. Another technique is to reduce the number of bits 
based on input statistics and desired signal-to-noise specification at the nodes of interest. More 
details on wordlength optimization will be discussed in Chap. 10. 

 

Quantization Noise

5.21
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Binary Multiplication

5.22

 Arguments: X, Y

 Product: Z
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[4] J. Rabaey, A. Chandrakasan, B. Nikoli , Digital Integrated Circuits: A Design Perspective, (2nd Ed), 
Prentice Hall, 2003.
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xm: full-scale signal



 

Slide 5.23 

Even without considering 
wordlength reduction, multiplier 
cost can be reduced by using circuit 
implementation techniques. 
Consider a 6-bit multiplier and a 4-
bit multiplicand as shown in the 
slide. Binary multiplication is 
performed in the same way as 
decimal multiplication. Each bit of 
the multiplicand is multiplied with 
the multiplier to create partial 
products. The partial products are 
summed to create the result, which 
is 10 bits in this example. How to 
implement the multiplier? 

 

 

Slide 5.24 

A straightforward implementation 
is shown in Slide 5.23. Single-bit 
multiplies are implemented with an 
array of AND gates to realize the 
partial products. The partial 
products are then summed with three 
stages of additions. A simple ripple-
carry adder is used as an illustration. 
Each adder block starts with a half-
adder at the least significant bit and 
propagates the carry to the most 
significant bit. Intermediate bits are 
realized with full-adder blocks since 
they have carry inputs. In all adder 
stages but the last, the MSBs are 

also realized using half-adders. This realization is a good reference point for further analysis and 
optimization. 

 

 

 

 

Binary Multiplication: Example

Multi-bit multiply 
= bit-wise multiplies (partial products) + final adder

5.23

1   0   0   1   0   1

1   0   1 1×

1   0   0   1   0   1
1   0   0   1   0   1

0   0   0   0   0   0
1   0   0   1   0   1+

Multiplier

Multiplicand

Partial products

Result1   1   0   0   1   0   1   1   1
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Array Multiplier

5.24

HA: half adder
FA: full adder

Partial product

HAFAFAHA

Y1

Y0

Z0

X0

X0

X1

X1

X2

X2

X3

X3

HAFAFAFA

Y2

X0X1X2X3
Z1

Z2

HAFAFAFA

Y3

X0X1X2X3

Z3Z4Z5Z6Z7

[J.M. Rabaey, UCB]
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Slide 5.25 

The speed of the multiplier can be 
improved by restructuring the logic 
blocks. This slide shows a critical-
path analysis of the multiplier 
architecture from the previous slide. 
For an M-by-N bit multiplier, there 
are several critical paths that 
propagate through the same 
number of logic blocks. Two such 
paths are illustrated by the blue 
(critical path 1) and red c( ritical 
path 2) arrows. The green arrow 
indicates shared portion of the two 
paths. As noted on Slide 5.23, the 
number of adder stages needed for 

N partial products is equal to N–1. 

Tracing the paths through the adder stages, we can calculate the critical path for the multiplier as: 

 tmult = [(M – 1) + (N – 2)]·tcarry + (N – 1)·tsum + tand,  

where tand is the delay through the AND gates that compute the partial products, (N–1)·t sum is the 
delay of the sum bits (vertical arrows), and [(M– 1)+ (N–2)]·t carry is the delay of the carry bits 
(horizontal arrows). The multiplier delay, therefore, increases linearly with M and N.  Since N has 
more weight in the tmult formula than M, it is of interest to investigate techniques that would reduce 
the number of adder stages or make them faster. 

Slide 5.26 

One way to speed up the 
multiplication is to use carry-save 
arithmetic, as shown on this slide. 
The idea is to route the carry signals 
vertically down to the next stage 
instead of horizontally within the 
same adder stage. This is possible, 
because the addition of the carry 
out bits in each stage is deferred to 
final stage, which uses a vector-
merge adder. The computation is 
faster, because the result is 
propagated down as soon as it 
becomes available, as opposed to 
propagating further within the 

stage. This scheme is, hence, called “carry-save” and is commonly used in practice. 

The carry-save architecture requires a final vector-merging adder, which adds to the delay, but the 
overall delay is still greatly reduced. The critical path of this multiplier architecture is: 

HAFAFAHA

HAFAFAFA

HAFAFAFA

M-by-N Array Multiplier: Critical Path

Critical path 1 & 2

5.25

Critical path 2

Critical path 1

M

N

Note: number of horizontal adder slices = N – 1

 ( 1) ( 2) · ( 1)·mult carry sum andt M N t N t t      

[J.M. Rabaey, UCB]

Carry-Save Multiplier

5.26

FAFAFAHA

FAFAFAHA

HAFAFAHA

HAHAHAHA

Vector-merging adder

M

N

( 1)·mult carry and merget N t t t   
[J.M. Rabaey, UCB]



 

tmult = (N – 1)·tcarry + tand + tmerge, 
where tmerge is the delay of the vector-merging adder, tand is the delay of AND gates in the partial 
products, and (N– 1)·tcarry is the delay of carry bits propagating downward. The delay formula thus 
eliminates the dependency on M and reduces the weight of N.  

Assuming the simplistic case where tcarry = tand = tsum = tmerge = tunit, the delay of the adder in Slide 
5.25 would be equal to [(M–1)+2·(N– 1)]·tunit  as  compared  to  (N+1)·tunit.  For  M=N=4, the 
vector-merging adder architecture has a total delay of 5·tunit, as compared to 9·tunit for the array-
multiplier architecture. The speed gains are even more pronounced for a larger number of bits. 

 

Slide 5.27 

The next step is to implement the 
multiplier and to maximize the area 
utilization of the chip layout. A 
possible floorplan is shown in this 
slide. The blocks organized in a 
diagonal structure have to fit in a 
square floorplan as shown on this 
slide. At this point, routing also 
becomes important. For example, 
X and Y need to be routed across 
all stages, which poses additional 
constraints on floorplanning. The 
placement and routing of blocks 
has to be done in such a way as to 
balance the wire length (delay) of 

input signals. 

 

Slide 5.28 

The partial-product summation can 
also be improved at the 
architectural level by using a 
Wallace-Tree multiplier. The partial 
product bits are represented by the 
blue dots. At the top-left is a direct 
representation of the partial 
products. The dots can be re-
arranged in a tree-like fashion as 
shown at the top-right. This 
representation is more convenient 
for the analysis of bit-wise add 
operations. Half adders (HA) take 
two input bits and produce two 
output bits.  Full adders (FA) take 

Multiplier Floorplan

5.27

HA: half adder
FA: full adder
VM: vector-merging cell

X and Y signals are
broadcasted through
the complete array
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Wallace-Tree Multiplier

5.28

6    5    4    3    2    1    0 6    5    4    3    2    1    0

6    5    4    3    2    1    0 6    5    4    3    2    1    0

Partial products

Bit position

Second stage Final adder
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three input bits and produce two output bits. Applying this principle from the root of the tree allows 
for a systematic computation of the partial-product summation. 

The bottom-left of the figure shows bit-wise partial-product organization after executing the 
circled add operations from the top-right. There are now three stages. Applying the HA at bit 
position 2 and propagating the result towards more significant bits yields the structure in the 
bottom-right. The last step is to execute final adder. 

 

Slide 5.29 

The partial-product summation 
strategy described in the previous 
slide is graphically shown here. Full-
adder blocks are also called 3:2 
compressors because they take 3 
input bits and compress them to 2 
output bits. Effective organization 
of partial adds, as done in the 
Wallace Tree, results in a reduced 
critical-path delay, which allows for 
voltage scaling and power 
reduction. The Wallace-Tree 
multiplier is a commonly used 
implementation technique. 

 

Slide 5.30 

The multiplier can be viewed as 
hierarchical extension of the adder. 

Other techniques to consider 
include the investigation of 
logarithmic adders vs. linear adders 
in the adder tree. Logarithmic 
adders require fewer stages, but 
generally also consume more 
power.  Data encoding as opposed 
to simple 2’s complement can be 
employed to simplify arithmetic.  
And pipelining can reduce the 
critical-path delay at the expense of 
increased latency. 

 

 

 

Wallace-Tree Multiplier

5.29

Partial products
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Second stage

Final Adder
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Multipliers: Summary

 Optimization goals different than in binary adder

 Once again: Identify critical path

 Other possible techniques
– Logarithmic versus linear (Wallace-Tree multiplier)
– Data encoding (Booth)
– Pipelining

5.30



 

Slide 5.31 

Apart from critical-path analysis, we 
also look at power consumption. 
Switching activity is an important 
factor in power minimization. 
Datapath switching profile is largely 
affected by implementation. This 
slide shows parallel and time-
multiplexed bus architectures for 
two streams of data. The parallel-
bus design assumes dedicated buses 
for the I and Q channels with 
signaling at a symbol rate of 1/T. 
The time-shared approach requires 
just one bus and increases the 
signaling speed to 2/T to 

accommodate both channels. 

Suppose that each of the channels consists of time samples with a high degree of correlation 
between consecutive samples in time as shown on signal value vs. time sample plot on the left. This 
implies low switching activity on each of the buses and, hence, low switching power. The time-
shared approach would result in very large signal variations due to interleaving.  It also results in 
excess power consumption. This example shows that lower area implementation may not be better 
from a power standpoint and suggests that arithmetic issues have to be considered both at algorithm 
and implementation levels. 

 

Slide 5.32 

Signal activity can be leveraged for 
power reduction. This slide shows 
an example of how to exploit signal 
correlation for a reduction in 
switching. Consider an unknown 
input In that has to be multiplied by 
0011 to calculate A, and by 0111 to 
calculate B. 

Binary multiplication can be 
done by using add-shift operations 
as shown on the left. To calculate 
A, In is shifted to the right by 3 and 
4 bit positions and the two partial 
results are summed up. The same 
principle is applied to the 

calculation of B. When A and B are calculated independently, shifting by 4 and shifting by 3 are 
repeated, which increases the overall switching activity. This gives rise to the idea of sharing 
common sub-expressions to calculate both results. 

Time-Multiplexed Architectures

5.31

 Time-shared bus destroys signal correlations and increases 
switching activity
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A = in × 0  0  1  1
B = in × 0  1  1  1

A = (in >> 4 + in >> 3)
B = (A + in >> 2)

A = (in >> 4 + in >> 3)
B = (in >> 4 + in >> 3 + in >> 2)
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Since the shifts by 3 and by 4 are common, we can then use A as a partial result to calculate B. By 
adding A and In shifted by 2 bit positions, we obtain B. The plot on this slide shows the number of 
shift-add operations as a function of the input activity factor for the two implementations. The 
results show that the use of common sub-expressions greatly reduces the number of operations and, 
hence, power consumption. Again, we can see how the implementation greatly affects power 
efficiency. 

 

 

Slide 5.33 

In addition to the implementation, 
the representation of numbers can 
also play a role in switching activity. 
This slide shows a comparison of 
the transition probabilities as a 
function of bit position for 2’s 
complement and sign-magnitude 
number representations [5].  Cases 
of slowly and rapidly varying input 
are considered.  Lower bit positions 
will always have switching 
probability around 0.5 in both 
cases, while more significant bits 
will vary less frequently in case of 
the slowly varying input. In 2’s 

complement, the rapidly varying input will cause higher-order bits to toggle more often, while in the 
sign-magnitude representation only the sign bit would be affected. This makes sense, because many 
bits will need to flip from positive to negative numbers and vice versa in 2’s complement. Sign-
magnitude representation is, therefore, more naturally suited for rapidly varying input. 

 

 

 

 

 

 

 

 

 

 

 

Number Representation

5.33

 Sign-extension activity is significantly reduced using 
sign-magnitude representation

Bit Number
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[5] A. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Thesis, University of California, 
Berkeley, 1994.

[5]



 

Slide 5.34 

Input reordering can be used to 
maintain signal correlations and 
reduce switching activity. The sum 
S2 can be computed with different 
orders of the inputs. On the left, S1 
is a sum of inputs that are 7 bits 
apart, which implies very little 
correlation between the operands. 
S1 is then added to the input shifted 
by 8 bits. On the right, S1 is a sum 
of inputs that differ by only one bit 
and, hence, have a much higher 
degree of correlation. The transition 
probability plots show this result.  

The plot on the right clearly 
shows a reduced switching probability of S1 for lower-order bits in the scheme on the right. S2 has 
the same transition probability for both cases since the final result is computed from the same 
primary inputs. Input reordering can lead to a 30% reduction in switching energy.  This example, 
once again, emphasizes the need to have joint consideration of the algorithm and implementation 
issues. 

 

Slide 5.35 

The concept of switching activity 
also applies to the memory 
architecture. For example, this slide 
compares serial- and parallel-access 
memories used to implement a k-
bit display interface. On the left, a 
single k-bit word is multiplexed 
from 8 words available in memory 
at a rate of f. This value is then 
latched at the same rate f. On the 
right, 8 words are latched in at rate 
f/8 and the multiplexer selects one 
word at rate f. 

Looking at the switching activity 
of the two schemes, k latches are 

switched at rate f on the left, while the scheme on the right requires the switching of k·N latches (N 
=8 in our example) at rate f/8. Since the critical-path delay of the serial scheme is longer, the parallel 
scheme can operate at lower supply voltage (VDD2 < VDD1) to save power. The parallel-access 
scheme needs more area for pipeline registers, but the overall switched capacitance is the same for 
both schemes. Power reduction enabled by pipelining could outweigh the area penalty. 

 

Reducing Activity by Reordering Inputs

30% reduction in switching energy

5.34
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Memory Architecture

5.35

Memory 
Cell Array

Row
 decoder

Addr

k k k

f

Latch

k

f
k k-bit display interface

k latches

Serial access

Memory 
Cell Array

Row
 decoder

Addr

k k k

f /8 Latch

f
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Parallel access

k · N latches

 Pipelining and voltage scaling

k k k

VDD1 VDD2 < VDD1

88  Chapter 5 



DSP Arithmetic  89 
 

 
 

Slide 5.36 

DSP arithmetic was discussed in 
this chapter. Algorithms developed 
in algebraic form are validated in 
floating-point simulations, after 
which a fixed-point representation 
is typically used for hardware 
implementation. Translation to 
fixed point involves determining 
the number of bits as well as 
quantization and overflow modes. 
Rounding and saturation are most 
often used in feedback systems. 
Key building element of DSP 
systems, an adder, requires the 
reduction in carry-path delay for 

improved performance (or energy efficiency). The use of carry-save addition was discussed as a way 
of speeding multiplication. Data activity plays an important role in power consumption. In 
particular, time-shared buses may increase the activity due to reduced signal correlation and hence 
increase power. Designers should also consider number representation when it comes to reduced 
switching activity: it is know that 2’s complement has higher switching activity than sign-magnitude. 
Fixed-point realization of iterative algorithms is discussed in the next chapter. 
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Summary

 Algorithms are developed in algebraic form and verified using 
floating-point precision
 Fixed-point representation degrades algorithm performance due 

to quantization noise arising from finite precision
– Of particular importance are quantization (rounding, 

truncation) and overflow (saturation, wrap-around) modes
Rounding has zero-mean error and is suitable for recursive systems
Saturation is typically used in feedback systems

 Implementation of a fixed-point adder (key building block in DSP 
algorithms) needs to focus on the carry-path delay minimization
– Carry-save addition can be used to speed up multiplication

 Data correlation can impact power consumption
– Time-shared buses increase the activity (reduce correlation)
– 2’s complement has higher switching than sign-magnitude

5.36



 

Slide 6.1 

This chapter studies iterative 
algorithms for division, square 
rooting, trigonometric and 
hyperbolic functions and their 
baseline architecture. Iterative 
approaches are suitable for 
implementing adaptive signal 
processing algorithms such as those 
found in wireless communications. 

 

 

 

 

 

 

Slide 6.2 

Many DSP algorithms are iterative 
in nature. This chapter analyzes 
three common iterative operators: 
CORDIC (COordinate Rotation 
DIgital Computer), division, and 
square root. CORDIC is a widely 
used block, because it can compute 
a large number of non-linear 
functions in a compact form. 
Additionally, an analysis of 
architecture and convergence 
features will be presented. Newton-
Raphson formulas for speeding up 
the convergence of division and 
square root will be discussed. 

Examples will illustrate convergence time and block-level architecture design. 

 

 

 

 

 

 

Chapter Overview

 The chapter focuses on several important iterative algorithms
– CORDIC
– Division
– Square root

 Topics covered include
– Algorithms and their implementation
– Convergence analysis
– Speed of convergence
– The choice of initial condition

6.2

CORDIC, Divider, Square Root

Chapter 6
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Slide 6.3 

The CORDIC algorithm is most 
commonly used in communication 
systems to translate between 
Cartesian and polar coordinates. 
For instance, yR and yI, representing 
the I and Q components of a 
modulated symbol, can be 
transformed into their respective 
magnitude (|y|) and phase ( ) 
components using CORDIC. The 
CORDIC algorithm can also 
accomplish the reverse 
transformation, as well as an array 
of other functions. 

 

 

 

Slide 6.4 

CORDIC uses rotation as an 
atomic recursive operation to 
implement a variety of functions. 
These functions include: Cartesian-
to-polar coordinate translation; 
square root; division; sine, cosine, 
and their inverses; tangent and its 
inverse; as well as hyperbolic sine 
and its inverse.  These functions are 
implemented by configuring the 
algorithm into one of the several 
modes of operation. 

 

 

 

 

 

 

 

 

 

CORDIC

 To perform the following transformation

and the inverse, we use the CORDIC algorithm 

CORDIC - COordinate Rotation DIgital Computer

6.3

y(t) = yR + j · yI  |y| · ej

CORDIC: Idea

 Use rotations to implement a variety of functions

Examples:

6.4

1· ( / )2 2· | | j tan y xx j y x y e

2 2z x y cos( / )z y x tan( / )z y x

/z x y sin( / )z y x sinh( / )z y x

1( / )z tan y x 1( )z cos y
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Slide 6.5 

Let’s analyze a CORDIC rotation. 
We start from (x, y) and rotate by 
an arbitrary angle  to calculate (x’, 
y’) as described by the equations on 
this slide. By rewriting sin( ) and 
cos( ) in terms of cos( ) and tan( ), 
we get a new set of expressions. To 
simplify the math, we do rotations 
only by values of tan( ) that are 
powers of 2. In order to rotate by 
an arbitrary angle , several 
iterations of the algorithm are 
needed. 

 

 

 

Slide 6.6 

The number of iterations required 
by the algorithm depends on the 
intended precision of the 
computation. The table shows 
angles  corresponding to tan( ) =  
2 i. We can see that after 7 
rotations, the angular error is less 
than 1o.  A sequence of 
progressively smaller rotations is 
used to rotate to an arbitrary angle. 

 

 

 

 

 

 

 

 

 

 

 

CORDIC (Cont.)

 How to do it?

 Start with general rotation by 

 The trick is to only do rotations by values of tan( ) which are 
powers of 2

6.5

x’ = x · cos( )  y · sin( )
y’ = y · cos( ) + x · sin( )

x’ = cos( ) · [x  y · tan( )]
y’ = cos( ) · [y + x · tan( )]

CORDIC (Cont.)

Rotation Number

6.6

 To rotate to any arbitrary angle, we do a sequence of rotations to 
get to that value

tan( ) k i
45o 1 1 0

26.565o 2 1 2 1
14.036o 2 2 3 2
7.125o 2 3 4 3
3.576o 2 4 5 4
1.790o 2 5 6 5
0.895o 2 6 7 6



 

Slide 6.7 

The basic CORDIC iteration (from 
step i to step i +1) is described by 
the formulas highlighted in gray. Ki 
is the gain factor for iteration i that 
is used to compensate for the 
attenuation caused by cos( i). If we 
don’t multiply (xi+1, yi+1) by Ki, we 
get gain error that converges to 
0.61. In some applications, this 
error does not have to be 
compensated for. 

An important parameter of the 
CORDIC algorithm is the direction 
of each rotation. The direction is 
captured in parameter di = ±1, 

which depends on the residual error. To decide di, we also accumulate the rotation angle zi+1 = zi  
di·tan 1(2 i) and calculate di according to the angle polarity. The gain error is independent of the 
direction of the rotation. 

 

 

Slide 6.8 

Let’s do an example of a Cartesian-
to-polar coordinate translation. The 
initial vector is described by the 
coordinates (x0, y0). A sequence of 
rotations will align the vector with 
the x-axis in order to calculate (x0

2 
+ y0

2)0.5 and . 

 

 

 

 

 

 

 

 

 

 

Basic CORDIC Iteration

The di is chosen to rotate by 

6.7

 If we don’t multiply (xi+1, yi+1) by Ki we get a gain error which is 
independent of the direction of the rotation
 The error converges to 0.61 - May not need to compensate for it
 We also can accumulate the rotation angle: zi+1 = zi  di · tan 1(2 i)

xi+1 = (Ki) · [xi  yi · di · 2 i ]
yi+1 = (Ki) · [yi + xi · di · 2 i ]

Ki = cos(tan 1(2 i )) = 1/(1 + 2 2i)0.5

di = ±1

Example

6.8

x0

y0

Initial vector

 We want to find and (x0
2 + y0

2)0.5

 Initial vector is described by x0 and y0 coordinates
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Slide 6.9 

The first step of the algorithm is to 
check the sign of the initial y-
coordinate, y0, to determine the 
direction d1 of the first rotation. In 
the first iteration, the initial vector 
is rotated by 45o (for y0 < 0) or  by 

45o (for y0 > 0). In our example,  y0 
> 0, so we rotate by 45o. The new 
vector is calculated as x1 = x0 + 
y0/2, y1 = y0 – x0/2. 

 

 

 

 

 

Slide 6.10 

The next step is to apply the same 
procedure to (x1, y1) with an 
updated angle.  The angle of the 
next rotation is ±26.57o (tan 1(2 1) 
= 26.57o), depending upon the sign 
of y1.  Since y1>0, we continue the 
clockwise rotation to reach (x2, y2) 
as shown on the slide.  With each 
rotation, we are closer to the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Check the Angle / Sign of y0

6.9

 If positive, rotate by 45o

 If negative, rotate by +45o

x0

y0

45o

d1 = 1 (y0 > 0)

x1 = x0 + y0 /2
y1 = y0  x0 /2y1

x1

Step 2: Check the Sign of y1

6.10

 If positive, rotate by 26.57o

 If negative, rotate by +26.57o

26o
y1

x1

x2

y2

d2 = 1 (y1 > 0)

x2 = x1 + y1 /4
y2 = y1  x1 /4



 

Slide 6.11 

The procedure is repeated until yn =  
0. The number of iterations is a 
function of the desired accuracy 
(number of bits). When the 
algorithm converges to yn = 0,  we 
have xn = An·(x0

2 + y0
2)0.5,  where An 

represents the accumulated gain 
error. 

 

 

 

 

 

 

 

Slide 6.12 

The accumulation of the gain error 
is illustrated on this slide. The 
algorithm has implicit gain unless 
we multiply by the product of the 
cosine of the rotation angles. The 
gain value converges to 1.642 after 
4 iterations. Starting from (x0, y0), 
we end up with an angle of z3 = 71o 
and magnitude with an accumulated 
gain error of 1.642. That was the 
conversion from rectangular to 
polar coordinates. 

 

 

 

 

 

 

 

 

 

The Gain Factor

6.12

G0 = 1
G0G1 = 1.414
G0G1G2 = 1.581
G0G1G2G3 = 1.630
G0G1G2G3G4 = 1.642

 Gain accumulation:

 So, start with x0, y0; end up with:

z3 = 71o

(x0
2 + y0

2)0.5 = 1.642 (…)

Shift & adds of x0, y0

 We did the rectangular-to-polar coordinate conversion

Repeat Step 2 for Each Rotation k

6.11

 Until yn = 0

xn

yn

yn = 0

xn = An · (x0
2 + y0

2)0.5

accumulated gain

96   Chapter 6 



CORDIC, Divider, Square Root  97 
 

Slide 6.13 

We can also do the reverse 
transformation: conversion from 
polar to rectangular coordinates. 
Given A = |A|·ej ,  we  start from 
x0 = |A| and y0 = 0,  and  a  residual 
angle of z0 = . The algorithm starts 
with a vector aligned to the x-axis. 
Next, we rotate by successively 
smaller angles in directions 
dependent on the sign of zi. If zi > 
0, positive (counterclockwise) 
rotation is performed. In each 
iteration we keep track of the 
residual angle zi+1 and terminate the 
algorithm when zi+1 = 0.  The polar-

to-rectangular translation is also known as the rotation mode. 

 

 

Slide 6.14 

The CORDIC algorithm analyzed 
so far can be summarized with the 
formulas highlighted in the gray 
box. We can choose between the 
vectoring and rotation modes.  In 
the vectoring mode, we start with a 
vector having a non-zero angle and 
try to minimize the y component.  
As a result, the algorithm computes 
vector magnitude and angle. In the 
rotation mode, we start with a 
vector aligned with the x-axis and 
try to minimize the z-component. 
As a result, the algorithm computes 
the rectangular coordinates of the 

original vector.  In both cases, the built-in gain An converges to 1.647 and, in cases where scaling 
factors affect final results, has to be compensated. 

 

 

 

 

 

Rectangular-to-Polar Conversion: Summary

 Start with vector on x-axis

6.13

x0

y0

A = |A| · ej

x0 = |A|
y0 = 0, z0 = 

zi < 0, di = 1
zi > 0, di = +1

zi+1 = zi  di · tan 1(2 i )

CORDIC Algorithm

6.14

xi+1 = xi  yi · di · 2 i

yi+1 = yi + xi · di · 2 i

zi+1 = zi  di · tan 1(2 i )
1, yi > 0

+1, yi < 0
di =

1, zi < 0
+1, zi > 0

di =

Rotation mode
(rotate by specified angle)

Minimize residual angle

Vectoring mode
(align with the x-axis)

Minimize y component

Result
xn = An · [x0 · cos(z0)  y0 · sin(z0)]
yn = An · [y0 · cos(z0) + x0 · sin(z0)]
zn = 0

Result
xn = An · (x0

2+ y0
2)0.5

yn = 0
zn = z0 + tan 1(y0/x0)

An = (1+2 2i) · 0.5  1.647
n



 

Slide 6.15 

This slide graphically illustrates 
algorithm convergence for 
vectoring mode, starting with a 
vector having an initial angle of 30o. 
We track the accumulated gain and 
residual angle, starting from the red 
dot (Iteration: 0). Rotations are 
performed according to sign of yi 
with the goal of minimizing the y-
component. The first rotation by 

45o produces a residual angle of 
15o and a gain of 1.414. The 

second rotation is by +26.57o, 
resulting in an accumulated gain of 
1.581. This process continues, as 

shown on the slide, toward smaller residual angles and an accumulated gain of 1.647. 

 

 

Slide 6.16 

The algorithm can converge in a 
single iteration for the case when  
= 45o. This trivial case is interesting, 
because it suggests that the 
convergence accuracy of a recursive 
algorithm greatly depends upon the 
initial conditions and the granularity 
of the rotation angle in each step. 
We will use this idea later in the 
chapter. 

 

 

 

 

 

 

 

 

 

 

Vectoring Example

6.15

45o

0

26.57o

14.04o

7.13o

3.58o

It: 0

It: 1

It: 2

It: 3

It: 4
It: 5

Acc. Gain Residual angle
K0 = 1 = 30o

K1 = 1.414 = 15o

K2 = 1.581 = 11.57o

K3 = 1.630 = 2.47o

K4 = 1.642 = 4.65o

K5 = 1.646 = 1.08o

Etc.

Vectoring Example: Best-Case Convergence

6.16

45o

0

It: 0

It: 1

Acc. Gain Residual angle
K0 = 1 = 45o

K1 = 1.414 = 0o

K2 = 1.581 = 0o

K3 = 1.630 = 0o

K4 = 1.642 = 0o

K5 = 1.646 = 0o

Etc.

 In the best case ( = 45o), we can converge in one iteration
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Slide 6.17 

CORDIC can also be used to 
calculate trigonometric functions. 
This slide shows sin( ) and cos( ). 
We start from a scaled version of x0 
to account for the gain that will be 
accumulated and use CORDIC in 
the rotation mode to calculate 
sin( ) and cos( ). 

 

 

 

 

 

 

 

Slide 6.18 

With only small modifications to 
the algorithm, it can be used to 
calculate many other functions.  So 
far, we have seen the translation 
between polar and rectangular 
coordinates and the calculation of 
sine and cosine functions.  We can 
also calculate tan 1 and the vector 
magnitude in the vectoring mode, 
as described by the formulas on the 
slide. 

 

 

 

 

 

 

 

 

 

Functions

6.18

Vectoring mode

z0 = angle
y0 = 0, x0 = 1/An

xn = An · x0 · cos(z0)
yn = An · x0 · sin(z0)

xn = An · (x0
2 + y0

2)0.5

Rotation mode

sin/cos tan 1

(=1)

z0 = 0
zn = z0 + tan 1(y0/x0)

Vector/Magnitude

x0 = r
z0 = 
y0 = 0

Polar  Rectangular Rectangular  Polar

xn = r · cos( )
yn = r · sin( )

r = (x0
2 + y0

2)0.5

= tan 1(y0/x0)

Calculating Sine and Cosine

6.17

cos( )

sin( )

(1/1.64)

yn = sin( )
xn = cos( )

To calculate sin and cos:
 Start with x0 = 1/1.64, y0 = 0
 Rotate by 
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Slide 6.19 

CORDIC can be used to calculate 
linear operations such as division. 
CORDIC can be easily re-
configured to support linear 
functions by introducing 
modifications to the x and z 
components as highlighted in this 
slide. The x component is trivial, 
xi+1 = xi. The z component uses 2 i 
instead of tan 1(2 i). The 
modifications can be generalized to 
other linear functions. 

 

 

 

 

Slide 6.20 

The generalized algorithm is 
described in this slide.  Based on m 
and ei, the algorithm can be 
configured into one of three modes: 
circular, linear, or hyperbolic.  For 
each mode, there are two sub-
modes: rotation and vectoring.  
Overall, the algorithm can be 
programmed into one of the six 
modes to calculate a wide variety of 
functions. 

 

 

 

 

 

 

 

 

 

 

CORDIC Divider

 To do a divide, change CORDIC rotations to a linear function
calculator

6.19

xi+1 = xi  0 · yi · di · 2 i = xi

yi+1 = yi + xi · di · 2 i

zi+1 = zi  di · (2 i)

Generalized CORDIC

6.20

xi+1 = xi  m · yi · di · 2 i

yi+1 = yi + xi · di · 2 i

zi+1 = zi  di · ei

di

Rotation Vectoring
di = 1, zi < 0
di = +1, zi > 0

di = 1, yi > 0
di = +1, yi < 0

sign(zi) sign(yi)

Mode m ei

Circular +1 tan 1(2 i)
Linear 0 2 i

Hyperbolic 1 tanh 1(2 i)
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Slide 6.21 

This slide shows a direct-mapped 
realization of CORDIC [1]. 
Algorithm operations from the tree 
difference equations are mapped to 
hardware blocks as shown on the 
left. The registers can take either 
the initial conditions (x0, y0, z0) or 
the result from previous iteration 
(xn, yn, zn) to compute the next 
iteration. The shift by n blocks 
(>> n) indicate multiplication by 2 n 
(in iteration n). The parameter m 
controls the operating mode 
(circular, linear, hyperbolic). 
Rotational mode is determined 

based on the sign of yi (vectoring) or the sign of zi (rotation). Elementary rotation angles are stored 
in ROM memory. After each clock cycle CORDIC resolves one bit of accuracy.  

 

 

Slide 6.22 

The block diagram from the 
previous slide can be modeled as 
the sub-system shown here.  Inputs 
from MATLAB are converted to 
fixed-point precision via the input 
ports (yellow blocks).  The outputs 
of the hardware blocks are also 
converted to floating-point 
representations (zs, zd blocks) for 
waveform analysis in MATLAB.  
Blocks between the yellow blocks 
represent fixed-point hardware.  
The resource estimation block 
estimates the amount of hardware 
used to implement each block.  The 

system generator block produces a hardware description for implementing the blocks on an FPGA.  
The complexity of the iterative sqrt and div algorithms in this example is about 15k gates for 14-bit 
inputs and 16-bit outputs.  The block-based model and hardware estimation tools allow for the 
exploration of multiple different hardware realizations of the same algorithm.  Next, we will look 
into the implementation of iterative square rooting and division algorithms [2]. 

 

 

An FPGA Implementation

 Three difference equations directly 
mapped to hardware

 The decision di is driven by the sign of 
the y or z register
– Vectoring: di = sign(yi)
– Rotation: di = sign(zi)

 The initial values loaded via muxes
 On each clock cycle

– Register values are passed through 
shifters and add/sub and the values 
placed in registers

– The shifters are modified on each 
iteration to cause the desired shift 
(state machine)

– Elementary angle stored in ROM
 Last iteration: results read from reg

6.21

Vectoring

Rotation

Cir/Lin/Hyp

[1] R. Andraka, ”A survey of CORDIC algorithms for FPGA based computers,” in Proc. Int. Symp. Field 
Programmable Gate Arrays, Feb. 1998, pp. 191-200.

Reg

>>n

>>n

Reg

±

±

m·di 

di 

yn 

xn 

x0 

y0 

sgn(yi)

ROM

Reg
±

zn 

z0 

sgn(zi)

di 

[1]

Iterative Sqrt and Division

~15k gates

6.22

[2] C. Ramamoorthy, J. Goodman, and K. Kim, "Some Properties of Iterative Square-Rooting 
Methods Using High-Speed Multiplication," IEEE Trans. Computers, vol. C-21, no. 8, pp. 837–847, 
Aug. 1972. 

[2]

 Inputs:
– a (14 bits), reset (active high)

 Outputs:
– zs (16 bits), zd (16 bits) Total: 32 bits
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Slide 6.23 

The hardware model of an 
algorithm can be constructed using 
the Xilinx System Generator (XSG) 
library.  Each block (or hierarchical 
sub-system) has a notion of 
wordlength and latency.  The 
wordlength is specified as the total 
and fractional number of bits; the 
latency is specified as the number 
of clock cycles.  Additional details 
such as quantization, overflow 
modes, and sample period can be 
defined as well. 

Suppose we want to implement 
1/sqrt().  This can be done with 

CORDIC in n iterations for n bits of accuracy or by using the Newton-Raphson algorithm in n/2 
iterations.  The Newton-Raphson method is illustrated here.  The block diagram shows the 
implementation of iterative formula xs(k+1) = xs(k)/2·(3  Z·xs

2(k))  to  calculate  1/sqrt(Z).  It  is 
important to realize that the convergence speed greatly depends not just on the choice of the 
algorithm, but also on the choice of initial conditions.  The initial condition block (init_cond) 
computes the initial condition that guarantees convergence in a fixed number of iterations. 

 

 

Slide 6.24 

The convergence of the Newton-
Raphson algorithm for 1/sqrt(N) is 
analyzed here.  The difference 
equation xs(k) converges to 
1/sqrt(N) for large k.  Since N is 
unknown, it is better to analyze the 
normalized system ys(k) = 
sqrt(N)·xs(k) where ys(k) converges 
to 1.  The error formula for es(k) = 
ys(k) –1 reflects relative error.  The 
algebra yields a quadratic expression 
for the error.  This means that each 
iteration resolves two bits of 
accuracy.  The number of iterations 
depends on the desired accuracy as 

well as the choice of the initial condition. 

 

 

Quadratic Convergence: 1/sqrt(N)
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Iterative 1/sqrt(Z): Simulink XSG Model

User defined parameters:
- data type
- wordlength (#bits, binary pt)
- quantization
- overflow
- latency
- sample period

wordlength

latency

xs(k+1) = 
xs(k)/ 2· (3 – Z· xs

2(k))
xs(k)

Z

6.23

 User defined parameters
– Wordlength (#bits, binary pt)
– Quantization, overflow
– Latency, sample period

 The choice of initial condition
– Determines # iterations
– and convergence…

rst

xs(k+1)
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Slide 6.25 

Following the analysis from the 
previous slide, the convergence of 
the Newton-Raphson algorithm for 
1/N is shown here.  The xd(k) 
converges to 1/N for large k.  We 
also analyze the normalized system 
yd(k) = N·xd(k)  where  yd(k) 
converges to 1.  The relative error 
formula for ed(k) = yd(k) – 1  reflect 
also exhibits quadratic dependence. 

 

 

 

 

 

Slide 6.26 

The choice of the initial condition 
greatly affects convergence speed. 
The plot on this slide is a transfer 
function corresponding to one 
iteration of the 1/sqrt(N) 
algorithm. By analyzing the 
mapping of ys(k) into ys(k+1), we 
can gain insight into how to select 
the initial condition. The squares 
indicate convergence points for the 
algorithms. The round yellow dot is 
another fixed point that represents 
the trivial solution. The goal is thus 
to select the initial condition that is 
closest to the yellow squares. Points 

on the blue lines guarantee convergence.  Points along the dashed pink line would also result in 
convergence, but with a larger number of iterations.  Points on the red dotted lines will diverge. 

 

 

 

 

 

 

Quadratic Convergence: 1/N
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Initial Condition: 1/sqrt(N)
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Slide 6.27 

Similarly, we look at the transfer 
function yd (k +  1)  =  f  (yd  (k))  for  the 
division algorithm. The algorithm 
converges for 0 < yd (0)  < 2; 
otherwise it diverges. 

 

 

 

 

 

 

 

 

 

Slide 6.28 

With some insight about 
convergence, further analysis is 
needed to better understand the 
choice of the initial condition. This 
slide repeats the convergence 
analysis from Slide 6.24 to illustrate 
error dynamics. The error formula 
en+1 = 1.5·en

2 – 0.5·en
3  indicates 

quadratic convergence, but does 
not explicitly account for the initial 
condition (included in e0) [3]. 

 

 

 

 

 

 

 

 

 

Initial Condition: 1/N
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1/sqrt(N): Convergence Analysis

6.28

2
1 3

2
n

n n
x

x N x
1

n
n

x
N

n
n

y
x

N

2
1 3

2
n

n n
y

y y

1n ne y

2 3
1

3 1
2 2n n ne e e

Error:
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Slide 6.29 

To gain more insight into 
convergence error, let’s revisit the 
transfer function for the 1/sqrt() 
algorithm. The colored segments 
indicate three regions of 
convergence. Since the transfer plot 
is symmetric around 0, we look into 
positive values. For 0 < y0 < sqrt(3), 
the algorithm converges to 1.  For 
sqrt(3) < y0 < sqrt(5), the algorithm 
still converges, but it may take on 
negative values and require a larger 
number of iterations before it 
settles.  For y0 > sqrt(5), the 
algorithm diverges. 

 

 

Slide 6.30 

The error transfer function is 
shown on this plot.  The 
convergence bands discussed in the 
previous slide are also shown.  In 
order to see what this practically 
means, we will next look into the 
time response of yn. 

 

 

 

 

 

 

 

 

 

 

 

 

1/sqrt(N): Convergence Analysis (Cont.)
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Slide 6.31 

This plot shows what happens 
when we select the initial conditions 
in each of the convergence bands as 
previously analyzed. If we start 
from close neighborhood of the 
solution and begin with  1 +  or 1 
– , the algorithm converges in less 
than 3 or 4 iterations. If we start 
from the initial value of sqrt(3) + , 
the algorithm will converge in 5 
iterations, but the solution might 
have the reverse polarity ( 1 
instead of 1). Getting further away 
from sqrt(3) will take longer (10 
iterations for 2  away) and the 

solution may be of either polarity. Starting from sqrt(5) – 2 , we see a sign change initially and a 
convergence back to 1. Getting closer to sqrt(5) will incur more sign changes and a slowly decreasing 
absolute value until the algorithm settles to 1 (or 1).  

 

 

Slide 6.32 

For initial conditions greater than 
sqrt(5), the algorithm diverges as 
shown on this plot. The key, 
therefore, is to pick a suitable initial 
condition that will converge within 
the specified number of iterations. 
This has to be properly analyzed 
and implemented in hardware. 
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Slide 6.33 

The idea is to determine the initial 
condition to guarantee convergence 
in a bounded number of iterations.  
Moreover, it is desirable to have 
decreasing error with every 
iteration.  To do this, we can define 
a function V(xn) and set 
convergence bound by specifying 
V(x0) < a.  To  account  for 
symmetry around 0, we define 
V(xn) to be positive, as given by 
(6.1). This function defines the 
squared absolute error.  To satisfy 
decreasing error requirement, we 
set V(xn+1) – V(xn) < 0  as  in 

(6.2).  Finally, to guarantee convergence in a fixed number of iterations, we need to choose an x0 
that satisfies (6.3). 

 

 

Slide 6.34 

The initial condition for which the 
absolute error decreases after each 
iteration is calculated here.  For the 
square rooting algorithm the initial 
condition is below sqrt(4.25) – 0.5, 
which is more restrictive than the 
simple convergence constraint 
given by sqrt(3).  For the division 
algorithm, initial conditions below 2 
guarantees descending error.  Next, 
we need to implement the 
calculation of x0. 
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Slide 6.35 

The solution to (6.2) yields the 
inequality shown here. The roots 
are positioned at x1 and x2,3, as 
given by the formulas on the slide. 
The plot on the left shows the term 
f3 = (2.5·x0 – N/2·x0

3 – 2/sqrt(N)) 
as a function of x0 for N ranging 
from 1/64 to 16. Zero crossings are 
indicated with dots. The initial 
condition has to be chosen from 
positive values of f3. The function f3 
has a maximum at sqrt(5/3N), 
which could be used as an initial 
condition.  

 

 

 

Slide 6.36 

Here is an implementation of the 
initial condition discussed in the 
previous slide. According to 
(6.3), 1/sqrt(N) – sqrt(a) < x0 < 
1/sqrt(N)+sqrt(a). For N ranging 
from 1/64 to 16, the initial circuit 
calculates 6 possible values for x0. 
The threshold values in the first 
stage are compared to N to select a 
proper value of x0. This circuit can 
be implemented using inexpensive 
digital logic.  

 

 

 

 

 

 

 

 

 

1/sqrt(N): Picking Initial Condition (Cont.)
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Slide 6.37 

This slide shows the use of the 
initial conditions circuit in the 
algorithm implementation. On the 
left, we see the internal node xs(k) 
from Slide 6.23, and on the right we 
have the sampled output xs(k+1). 
The middle plot on the left shows a 
magnified section of the waveform 
on the top. Convergence within 8 
iterations is illustrated. Therefore, it 
takes 8 clock cycles to process one 
input. This means that the clock 
frequency is 8-times higher than the 
input sample rate. The ideal (pink) 
and calculated (yellow) values are 

compared to show good matching between the calculated and expected results. 

Another idea to consider in the implementation is to shift the internal computation (xs(k) from 
Slide 6.23) to effectively extend the range of the input argument. Division by 2 is illustrated on the 
bottom plot to present this concept. The output xs(k+1) has to be shifted in the opposite direction 
to compensate for the input scaling. The output on the bottom right shows correct tracking of the 
expected result. 

 

Slide 6.38 

The convergence speed is analyzed 
here as a function of the desired 
accuracy and of the initial error 
(initial condition). Both the square-
root and the division algorithms 
converge in at most 5 iterations for 
an accuracy of 0.1% with initial 
conditions up to 50% away from 
the solution. The required number 
of iterations is less for lower 
accuracy or lower initial error. 

An idea that can be considered 
for adaptive algorithms with slowly 
varying input is to use the solution 
of the algorithm from the previous 

iteration as the initial condition to the next iteration. This is particularly useful for flat-fading channel 
estimation in wireless communications or for adaptive filters with slowly varying coefficients. For 
slowly varying inputs, we can even converge in a single iteration. This technique will be applied in 
later chapters in the realization of adaptive LMS filters. 

Left: Internal Node, Right: Sampled Output

6.37

Internal node and output Sampled output of the left plot

Zoom in: convergence in 8 iterations Sampled output of the left plot

Internal divide by 2 extends range Sampled output of the left plot

internal
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sampled out
8 iterations
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sampled outextended 
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Convergence Speed

 Adaptive algorithm
– current result  .ic for next iteration

Target relative error (%) 0.1% 1% 5% 10%
e0: 50%,  # iter (sqrt/div) 5 / 4 5 / 3 4 / 3 3 / 2
e0: 25%,  # iter (sqrt/div) 3 / 3 3 / 2 2 / 2 2 / 1

 # iterations required for specified accuracy
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Slide 6.39 

Iterative algorithms and their 
implementation were discussed. 
CORDIC, a popular iterative 
algorithm based on angular 
rotations, is widely used to calculate 
trigonometric and hyperbolic 
functions as well as divide 
operation. CORDIC resolves one 
bit of precision in each iteration 
and may not converge fast enough. 
As an alternative, algorithms with 
faster convergence such as 
Newton-Raphson methods for 
square root and division are 
proposed. These algorithms have 

quadratic convergence, which means that two bits of resolution are resolved in every iteration. 
Convergence speed also depends on the choice of initial condition, which can be set such that 
absolute error decreases in each iteration. Another technique to consider is to initialize the algorithm 
with the output from previous iteration. This is applicable to systems with slowly varying inputs. 
Ultimately, real-time latency of recursive algorithms depends on the choice of initial condition and 
desired resolution in the output. 
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Summary

 Iterative algorithms can be use for a variety of DSP functions
 CORDIC uses angular rotations to compute trigonometric and 

hyperbolic functions as well as divide and other operations
– One bit of resolution is resolved in each iteration

 Netwon-Raphson algorithms for square root and division have 
faster convergence than CORDIC
– Two bits of resolution are resolved in each iteration (the 

algorithm has quadratic error convergence)
 Convergence speed greatly depends on the initial condition
– The choice of initial condition can be made as to guarantee 

decreasing absolute error in each iteration
– For slowly varying inputs, adaptive algorithms can use the 

result of current iteration as the initial condition
– Hardware latency depends on the initial condition and accuracy
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Slide 7.1 

This chapter introduces the 
fundamentals of digital filter design, 
with emphasis on their usage in 
radio applications.  Radios by 
definition are expected to transmit 
and receive signals at certain 
frequencies, while also ensuring that 
the transmission does not exceed a 
specified bandwidth. We will, 
therefore, discuss the usage of 
digital filters in radios, and then 
study specific implementations of 
these filters, along with pros and 
cons of the available architectures.  

 

 

 

Slide 7.2 

Filters are ideally suited to execute 
the frequency selective tasks in a 
radio system [1]. This chapter 
focuses on three classes of filters: 
feed-forward FIR (finite impulse 
response), feedback IIR (infinite 
impulse response), and multi-rate 
filters [2, 3]. A discussion on 
implementation examines various 
architectures for each of these 
classes, including parallelism, 
pipelining, and retiming.  We also 
discuss an area-efficient 
implementation approach based on 
distributed arithmetic.  The 

presentation of each of the three filter categories will be motivated by relevant application examples. 

 

 

 

 

 

 

Chapter Outline

Topics discussed:

 Direct Filters

 Recursive Filters

 Multi-rate Filters

7.2

Example applications:

 Radio systems
– Band-select filters
– Adaptive equalization
– Decimation / interpolation

 Implementation techniques
– Parallel, pipeline, retimed
– Distributed arithmetic
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Slide 7.3 

To motivate filter design, we first 
talk about typical radio architectures 
and derive specifications for the 
hardware implementation of the 
filters.  As a starting example, we 
will discuss the raised-cosine filter 
and its implementation.  Basic 
architectural concepts are 
introduced, and their use will be 
illustrated on a digital baseband for 
ultra-wideband radio. 

 

 

 

 

Slide 7.4 

The slide shows a typical radio 
transmitter chain. The baseband 
signal from the MODEM is 
converted into an analog signal and 
then low-pass filtered before 
mixing.  The MODEM is a DSP 
block responsible for modulating 
the raw input bit stream into AM, 
PSK, FSK, or QAM modulated 
symbols.  Baseband modulation can 
be viewed as a mapping process 
where one or more bits of the input 
stream are mapped to a symbol 
from a given constellation.  The 
constellation itself is decided by the 

choice of the modulation scheme.  Data after modulation is still composed of bits (square-wave), 
which if directly converted to the analog domain will occupy a large bandwidth in the transmit 
spectrum.  The digital data must therefore be filtered to avoid this spectral leakage.  The transmit 
filter executes this filtering operation, also known as pulse shaping, where the abrupt square wave 
transitions in the modulated data stream are smoothened out by low-pass filtering. The band limited 

Further filtering in the analog domain, after D/A conversion, is necessary to suppress spectral 
images of the baseband signal at multiples of the sampling frequency.  In Chap. 13, we will see 
how it becomes possible to implement this analog filter digitally.  The transmit filter in the 
MODEM will be treated as a reference in the subsequent slides. 

 

Filter Design for Digital Radios

[2] A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice Hall, 2009. 
[3] J.G. Proakis and D.K. Manolakis, Digital Signal Processing, (4th Ed), Prentice Hall, 2006.
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Slide 7.5 

In the previous slide, we looked at 
filtering operations in radio 
transmission.  Filters have their use 
in the radio receiver chain as well.  
Digital filtering is once again a part 
of the baseband MODEM block, 
just after the analog signal is 
digitized using the ADC.  The 
receive filter in the MODEM 
attenuates any out-of-band spectral 
components (interference, channel 
noise etc.) that are not in the 
specified receive bandwidth.  This 
receive filter is matched in its 
specifications to the transmit filter 

shown in the previous slide.  After filtering, the baseband data goes through a timing correction 
block, which is followed by equalization.  Equalizers are responsible for reversing the effects of the 
frequency-selective analog transmit channel.  Hence, equalizers are also frequency selective in nature 
and are implemented using filters.  They are an important part of any communication system, and 
their implementation directly affects the quality of service (QoS) of the system.  We will look at 
various algorithms and architectures for equalizers in a later section of the chapter.  

 

Slide 7.6 

Radio design is a multi-stage 
process.  After specifying the 
modulation scheme, sample period, 
and signal bandwidth, algorithm 
designers have to work on the 
different blocks in the radio chain.  
These include transmit and receive 
filters, modulators, demodulators, 
signal detectors, timing correction 
blocks, and equalizers.  Significant 
effort is spent on the design of filter 
components: transmit and receive 
filters, and adaptive equalizers.  
After the algorithm design phase, 
the design needs to be described in 

a sample- and bit-accurate form for subsequent hardware implementation.  This process includes 
choosing the optimal number of bits to minimize the impact of fixed-point accuracy (discussed in 
Chap. 10), and choosing an optimal architecture for implementation (topic of Chap. 11).  These 
steps can be iterated to develop a hardware-friendly design.  The final step is mapping the design 
onto hardware.  
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Slide 7.7 

As noted earlier, the result of 
baseband modulation is a sequence 
of symbols, which are still in digital 
bit-stream form.  The frequency 
domain representation of this bit-
stream will be the well-known sinc 
function, which has about 13 dB of 
attenuation at the first side lobe.  
Typically, the allowable bandwidth 
for transmission is restricted to the 
main lobe, and any data 
transmission in the adjacent 
spectrum amounts to spectral 
leakage, which must be suppressed.  
A transmit filter is therefore 

required before transmission, to restrict the data to the available bandwidth.  If the symbol period 
after modulation is Ts, then the allowable bandwidth (pass band) for transmission is 2/Ts. 

 

 

Slide 7.8 

The diagram on the left of the slide 
illustrates the ideal frequency 
response of a transmit/receive 
filter.  The rectangular response 
shown in red will only allow signals 
in the usable bandwidth to pass, 
and will completely attenuate any 
signal outside this bandwidth. We 
have seen in the previous slide that 
the frequency response of a square 
wave bit-stream is a sinc function.  
Similarly, the impulse response of 
the brick-wall filter shown in the 
figure is the infinitely long sinc 
function. Thus, a long impulse 

response is needed to realize the sharp roll-off characteristics (edges) of the brick-wall filter. A 
practical realization is infeasible in FIR form, when the impulse response is infinitely long.   

 

 

 

 

Ideal Filter

7.8

1

1/2Ts 1/2Ts
then the time response goes on forever.

0 Ts 2Ts 3Ts

 Sample rate = fs

 Baseband BW = fs/2 (pass band BW = fs)

 If we band-limit to the minimum possible amount 1/2Ts,

Signal-Bandwidth Limitation

 Modulation generates pulse train of zeros and ones
 The frequency  response of pulse train is not band-limited
 Filter before transmission to restrict bandwidth of symbols   

0 1/T 2/T1/T2/T

13 dB
|H(f)|

Binary sequence generated after modulation

Frequency response of a single pulse

Attenuate
side-lobes

Symbol period = T

pass band

T

1 0 1 0 0 1

7.7
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Slide 7.9 

Practical FIR implementations of 
transmit/receive filters typically 
adopt a truncated version of the 
impulse response.  Truncation of 
the impulse response results in a 
gentler roll-off in the frequency 
domain, in contrast to the sharp 
roll-off in the brick-wall filter.  One 
such truncated realization is the 
raised-cosine filter, which will be 
discussed in the following slides. 

 

 

 

 

 

Slide 7.10 

The raised-cosine filter is a popular 
implementation of the 
transmit/receive (Tx/Rx) frequency 
response. The equations shown on 
the top of the slide describe the 
frequency response as a function of 
frequency and the parameter α. The 
roll-off slope can be controlled 
using the parameter α, as illustrated 
in the figure.  The roll-off becomes 
smoother with increasing values of 
α.  As expected, the filter 
complexity (the length of the 
impulse response) also decreases 
with higher α value. The 

corresponding impulse response of the raised cosine function decays with time, and can be 
truncated with negligible change in the shape of the response.  The system designer can choose the 
extent of this truncation as well as the wordlength of the filter operations; in this process he/she 
sacrifices filter ideality for reduced complexity. 

 

 

 

 

Practical Transmit / Receive Filters

 Transmit filters
– Restrict the transmitted signal bandwidth to a specified value

 Receive filters
– Extract the signal from a specified bandwidth of interest

Usable Bandwidth
Ideal

Filter response

Practical
Filter response

Ideal filter response has infinitely long impulse response.
Raised-cosine filter is a practical realization.

Brick wall
Sharp roll-off

7.9

Raised-Cosine Filter

 Frequency response of raised-cosine filter

HRC ( f ) =

= 0
= 0.5

= 1

T

1/2T1/2T 1/T1/T

HRC ( f )
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Slide 7.11 

The diagram shows the time-
domain pulse shaping of a digital 
bit stream by the raised-cosine 
filter.  As expected, low-pass filters 
smoothen out the abrupt transitions 
of the square pulses.  When square 
wave pulses are smoothened, there 
is a possibility of overlap between 
adjacent symbols in the time-
domain. If the overlap occurs at the 
sampling instants, then this can lead 
to erroneous signal samples at the 
receiver end. An interesting feature 
of raised cosine pulse shaping is the 
contribution of the adjacent 

symbols at the sampling instants.  The slide illustrates how symbol2 does not have any contribution at 
time T = 0 when symbol1 is sampled at the receiver.  Similarly symbol1 has no contribution at time T 
when symbol2 is sampled.  As such, no inter-symbol interference (ISI) results after pulse shaping using 
raised-cosine filters. 

 

Slide 7.12 

It is simpler to split the raised-
cosine filter response symmetrically 
between the transmit and receive 
filters.  The resulting filters are 
known as square-root raised-cosine 
filters.  The square-root filter 
response is broader than the raised-
cosine one, and there is often 
additional filtering needed to meet 
specifications of spectral leakage or 
interference attenuation. These 
additional filters, however, do not 
share properties of zero inter-
symbol interference, as was true for 
the raised-cosine filter, and will 

require equalization at the receiver end.  

Over-sampling of the baseband signals will result in more effective pulse shaping by the filter. 
This also renders the system less susceptible to timing errors during sampling at the receiver end.  It 
is common practice to over-sample the signal by 4 before sending it to the raised-cosine filter.  The 
sampling frequency of the filter equals that of the ADC on the receive side and that of the DAC on 
the transmit side.  The impulse response of the filter can be obtained by taking an N-point inverse 
Fourier transform of the square-root raised-cosine frequency response (as shown in the slide).  The 
impulse response is finite (= N samples), and the attenuation and roll-off characteristics of the filter 

Raised-Cosine Filter (Cont.)

 Time-domain pulse shaping with raised-cosine filters
 No contribution of adjacent symbols at the sampling instants
– No inter-symbol interference with this pulse shaping

T 2T 3TT 0

symbol1 symbol2

7.11

Raised-Cosine Filter (Cont.)

 Square-root raised-cosine filter response
– Choose sample rate for the filter
– Sample rate is equal to D/A frequency on transmit side and A/D 

frequency on receive side
– If fD/A = fA/D = 4·(1/Tsymbol) 

 Normally we split the filter between the transmit & receive

for –(N – 1)/2 < n < (N – 1)/2

Impulse response is finite, filter can be implemented as FIR

7.12
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will depend on the values of α and N.  Next, we take a look at the structures used for implementing 
this FIR filter. 

 

 

Slide 7.13 

This slide illustrates a basic 
architecture used to implement an 
FIR filter.  An N-tap finite impulse 
response function can be 
symbolically represented by a series 
of additions and multiplications as 
shown in the slide.  The simplest 
way to implement such a filter is 
the brute-force approach of 
drawing a signal-flow graph of the 
filter equation and then using the 
same graph as a basis for hardware 
implementation.  This structure, 
known as the direct-form 
implementation for FIR filters, is 

shown in the slide.  The diagram shows N multiply operations for the N filter taps and N− 1 
addition operations to add the results of the multiplications.  The clock delay is implemented using 
memory units (registers), where z−D represents D clock cycles of delay. 

 

 

Slide 7.14 

The direct-form architecture is 
simple, but it is by no means the 
optimal implementation of the FIR.  
The main drawback is the final 
series of N −1 additions that result 
in a long critical-path delay, when 
the number of filter taps N is large.  
This directly impacts the maximum 
achievable throughput of the direct-
form filters.  Several techniques can 
be used to optimize the signal-flow 
graph of the FIR so as to ensure 
high speed, without compromising 
on area or power dissipation. 

 

 

Direct-Form FIR Filter

 A straightforward implementation of the signal-flow graph
– Critical-path delay proportional to filter order
– Suitable when number of taps are small

critical path

Critical path = tmult + (N 1) · tadd

x(n 1) x(n N+1)
x(n)

y(n)

h0

z 1

×

z 1 z 1

h1 ×

+ +

hN 1 ×
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Implementing the Filter

 An N-tap filter is a series of adds and multiply operations
 Draw the signal-flow graph (SFG) of the FIR function
– Construct the SFG from the filter equation

 Signal flow-graph can be implemented by several architectures
– Architecture choice depends on throughput, area, power specs

x(n)

y(n)

h0

Clock cycle 
latency

(register)
z 1

×

z 1 z 1

h1 ×

+ +

hN 1 ×
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Slide 7.15 

Before we look at optimization 
techniques for filter design, it is 
useful to become familiar with the 
compact signal-flow graph notation 
commonly used to represent DSP 
algorithms. The signal-flow graph 
can be compressed to the line-
diagram notation shown at the 
bottom of the slide. Arrows with 
notations of z D over them are 
clocked register elements, while 
arrows with letters hi next to them 
are notations for multiplication by 
hi.  When nodes come together, 
they represent an add operation, 

and nodes branching out from a point indicate fan-out in multiple directions. 

Signal-flow graph manipulations can result in multiple architectures with the same algorithm 
functionality.  For example, we can fold the signal-flow diagram shown in the slide, since the 
coefficients are symmetrical around the center.  We can also move register delays around, resulting 
in a retimed graph, which vastly reduces the critical path.  Constant coefficient multiplications can 
be implemented using hardwired shifts rather than multipliers, which results in significant area and 
power reduction. 

 

Slide 7.16 

The first optimization technique we 
look at is pipelining.  It is one of 
the simplest and most effective 
ways to speed up any digital circuit.  
Pipelining adds extra registers to 
the feed-forward portions of the 
signal-flow graph (SFG).  These 
extra registers can be placed 
judiciously in the flow-graph, to 
reduce the critical path of the SFG.  
One of the overheads associated 
with pipelining is the additional 
I/O latency equal to the number of 
extra registers introduced in the 
SFG.  Other overheads include 

increased area and power due to the higher register count in the circuit.  Before going into pipelining 
examples, it is important to understand the definition of “cut-sets” [4] in the context of signal-flow 
graphs. A cutest can be defined as a set of edges in the SFG that hold together two disjoint parts G1 
and G2 of the graph.  In other words, if these edges are removed, the graph is no longer a connected 
whole, but is split into two disjoint parts.  A forward cut-set is one where all the edges in the cut-set 

FIR Filter: Simplified Notation

 A more abstract and efficient notation 

z 1 z 1

h0 h1 h2

Assume an add when nodes merge

Multiply notation

+ +

z 1 z 1

×× ×

x(n)

y(n)

h0 h1 h2

x(n)

y(n)
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Pipelining

 Direct-form architecture is throughput-limited
 Pipelining: can be used to increase throughput
 Pipelining: adding same number of delay elements in each forward 

cut-set (in the data-flow graph) from the input to the output
– Cut-set: set of edges in a graph that if removed, graph becomes 

disjoint
– Forward cut-set: all edges in the cut-set are in the same 

direction
 Increases latency
 Register overhead (power, area)

7.16

[4] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons 
Inc., 1999.

[4]
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are oriented in the same direction (either from G1 to G2 or vice versa).  This will become clear with 
the example in the next slide. 

 

Slide 7.17 

The figure shows an example of 
pipelining using cut-sets. In the top 
figure, the dashed blue line 
represents the cut, which splits the 
signal-flow graph into two distinct 
parts.  The set of edges affected by 
the cut constitute the cut-set.  
Pipeline registers can be inserted on 
each of these edges without altering 
the functionality of the flow graph.  
The same number of pipeline 
registers must be inserted on each 
cut-set edge.  In the bottom figure, 
we see that one register is inserted 
on the cut-set edges, which 

increases the I/O latency of the signal-flow graph.  The output of the bottom graph is no longer the 
same as the top graph but is delayed by one clock cycle.  The immediate advantage of this form of 
register insertion is a reduction in the length of the critical path.  In the top figure, the critical path 
includes one multiply and two add operations, while in the second figure the critical path includes 
only one multiply and add operation after pipelining.  In general, this form of pipelining can reduce 
the critical path to include only one add and one multiply operation for any number of filter taps N.  
The tradeoff is the increased I/O latency of up to N clock cycles for an N-tap direct-form filter. The 
second disadvantage is an excessive increase in area and power of the additional registers, when the 
number of taps N is large. 

 

Slide 7.18 

Pipelining results in the insertion of 
extra registers in the SFG, with the 
objective of increasing throughput. 
But it is also possible to move the 
existing registers in the SFG to 
reduce critical path, without altering 
functionality or adding extra 
registers.  This form of register 
movement is called retiming, and it 
does not result in any additional 
I/O latency.  The objective of 
retiming is to balance the 
combinational logic between delay 
elements to maximize the 

High-Level Retiming

 Optimal placement of registers around the combinational logic
– Register movement should not alter SFG functionality 

 Objective: equal logic between registers for maximum throughput

D D D Out

In

D

4 registers

7 registers

× × × ×

++ +

D D D Out

In

× × × ×

++ +

DDDD
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Pipelining Example
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x(n)

y(n 1)

z 1
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Pipeline
regs

tcritical = tmult + 2tadd

tcritical = tmult + tadd

h0 h1 h2
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throughput.  The figure shows two signal-flow graphs, where the top graph has a critical path of one 
adder and multiplier.  The dashed black lines show register retiming moves for the top graph.  After 
retiming, we find that the second graph has a reduced critical path of one multiply operation.  No 
additional I/O latency was introduced in the process, although the number of registers increased 
from 4 to 7. 

 

Slide 7.19 

We saw earlier that the main 
bottleneck in the direct form 
implementation of the FIR was the 
final series of N−1 additions (N is 
the number of filter taps).  A more 
efficient way to implement these 
additions is by using a logarithmic 
adder tree instead of the serial 
addition chain used earlier.  An 
example of a logarithmic tree is 
shown in the figure, where each 
adder takes two inputs.  The critical 
path is now a function of 
tadd·(log2(N)), a logarithmic 
dependence on N. 

Further optimization is possible through the use of compression trees to implement the final 
N− 1 additions.  The 3:2-compression adder, which was introduced in Chap. 5, takes 3 inputs and 
generates 2 outputs, while the 4:2 compression adder takes in 4 inputs and generates 2 outputs.  The 
potential advantage is the reduction in the length of the adder tree from log2(N) to log3(N) or 
log4(N).  But the individual complexity of the adders also increase when compression adders are 
used, resulting in a higher tadd value.  The optimized solution depends on where the product of 
logk(N) and tadd is minimum (k refers to the number of adder inputs). 

 

 

 

 

 

 

 

 

 

 

 

Multi-Operand Addition

 A faster way to add is to use an adder tree instead of a chain
 Critical path is proportional to log2(N) instead of N

tcritical = tmult + (log2N)·tadd

+ +

D D

××

y(n)

h0 h1

x(n 1)

×h2

D

×h3

+

x(n 2) x(n 3)x(n)

log2N
adder
stages
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Slide 7.20 

A major cost in implementing FIR 
filters comes from the bulky 
multiplier units required for 
coefficient multiplication.  If the 
frequency response of the filter is 
stringent (sharp roll-off) then the 
number of taps can be quite large, 
exceeding 100 taps in some cases.  
Since the number of multiply 
operations is equal to the number 
of taps, such long FIR filters 
become area and power hungry 
even at slow operating frequencies.  
One way to reduce this cost is the 
use of power-of-two multiplication 

units.  If the coefficients of the filter can be expressed as powers-of-two, then the multiplication is 
confined to shift and add operations.  Shown in the figure is an example of one such coefficient 
19/32.  This coefficient can be written as 2−1 + 2−3 – 2−5 .  The resultant shift-and-add structure is 
shown in the figure on the right.  It is to be noted that multiplications by powers of two are merely 
hardwired shift operations which come for free, thus making the effective cost of the multiply 
operation to be only 2 adder units. 

Of course, it is not always possible to express all the coefficients in a power-of-two form.  In 
such cases, a common optimization technique is to round off the coefficients to the nearest power 
of two, and analyze the performance degradation in the resulting frequency response.  If the 
frequency response is still acceptable, the cost reduction for the FIR can be very attractive.  If not, 
then some form of search algorithm [5] can be employed to round off as many coefficients as 
possible without degrading the response beyond acceptable limits.  The filter may also be 
overdesigned in the first phase, so that the response is still acceptable after the coefficients are 
rounded off. 

 

 

 

 

 

 

 

 

 

 

 

Multiplier-less FIR Filter Implementation

 Power-of-two multiplications 
– Obtained for free by simply shifting data buses
– Round off multiplier coefficients to nearest power of 2
– Little performance degradation in most cases
– Low complexity multiplier-less FIR

×

0.59375
= 19/32

In Out

+ +

2 1
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Out

2 3 2 5
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[5] H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters with 
Powers-of-Two Coefficients," IEEE Trans. Circuits and Systems, vol. 36 , no. 7, pp. 1044-1047, 
July 1989.

[5]
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Slide 7.21 

Probably the most effective 
technique for increasing the 
throughput of FIRs, without 
significant power or area overhead 
is the use of transposition.  This 
concept comes from the 
observation that reversing the 
direction of arrows in a signal-flow 
graph does not alter the 
functionality of the system.  The 
diagram in this slide shows how 
transposition works.  The direction 
of arrows in the direct-form 
structure (left-hand side) is 
reversed, resulting in the signal-flow 

graph shown on the right-hand side.  In the transposed architecture, the signal branching points of 
the original SFG are replaced with adders and vice versa, also the positions of input and output 
nodes are reversed, leading to the final transposed structure shown at the bottom of the slide. 

The transposed form has a much shorter critical path.  The critical path for this architecture has 
reduced to tadd + tmult .  Note that up to 2N− 2 pipeline register insertions were required to achieve 
the same critical path for the direct-form architecture, while the transposed structure achieves the 
same critical path with no apparent increase in area or power.  One of the fallouts of using a 
transposed architecture is the increased loading on the input x(n), since the input now branches out 
to every multiplier unit.  If the number of taps in the filter is large, then input loading can slow down 
x(n) considerably and lower the throughput.  To avoid this slow-down, the input can be buffered to 
support the heavy loading, which results in some area and power overhead after all.  Despite this 
issue, the transposed architecture is one of the most popular implementations of the FIR filters. 

 

Slide 7.22 

Like pipelining, parallelism is 
another architecture optimization 
technique targeted for higher 
throughput or lower power 
applications.  Low power is 
achieved by speeding up the circuit 
through the use of concurrency and 
then scaling the supply voltage to 
maintain the original throughput, 
with a quadratic reduction in 
power.  For most feed-forward 
DSP applications, parallelism can 
result in an almost linear increase in 
throughput. 

Parallelism can be employed for 

Transposing FIR

 Transposition: 
– Reverse the direction of edges in a signal-flow graph
– Interchange the input and output ports 
– Functionality unchanged 

tcritical = tmult + tadd
(shortened)

Input
loading
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Unfolding / Parallel FIR Implementation
x(n)

y(n)

y(n) = a·x(n) + b·x(n 1) + c·x(n 2) + d·x(n 3)
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both direct- and transposed-forms of the FIR.  This slide shows parallelization of the transposed-
form filter.  Parallel representation of the original flow graph is created by a formal approach called 
“unfolding”.  More details on unfolding will be discussed in Chap. 11.  The figure shows a 
transposed FIR filter at the top of the slide, which has a critical path of tadd + tmult.  The figure on the 
bottom is a twice-unfolded (parallel P =2) version of this filter.  The parallel FIR will accept two 
new inputs every clock cycle while also generating two outputs every cycle.  Functional expressions 
for the two outputs, y(2m) and y(2m + 1), are shown on the slide.  The parallel  filter takes in the 
inputs x(2m) and x(2m + 1) every cycle.  The multiplier inputs are delayed versions of the primary 
inputs and can be generated using registers.  The critical path of the unfolded filter is 2·tadd + tmult .  
Since this filter produces two outputs per clock cycle while also taking in two inputs, x(2m) and 
x(2m +1), every cycle, the effective throughput is determined by Tclk/2 = tadd + tmult/2, where Tclk is 
the clock period (throughput). 

The same concept can be extended to multiple parallel paths (P>2) for a greater increase in 
throughput.  A linear tradeoff exists between the area increase and the throughput increase for 
parallel FIR filters.  Alternatively, for constant throughput, we can use excess timing slack to lower 
the supply voltage and reduce power quadratically. 

 

 

Slide 7.23 

After a detailed look at FIR 
implementations, we will now 
discuss the use of infinite impulse 
response (IIR) filters. This class of 
filters provides excellent frequency 
selectivity, although the occurrence 
of feedback loops constrains their 
implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

Recursive Filters
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Slide 7.24 

FIR filters have distinct advantages 
in terms of ease of design and 
guaranteed stability. The stability 
arises from the fact that all the 
poles of the system are inside the 
unit circle in the z-domain. This is 
because the poles of the z-domain 
transfer function are all located at 
the origin. Also, the phase response 
of FIRs can be made linear by 
ensuring that the tap coefficients 
are symmetric about the central tap.  
FIR filters are attractive when the 
desired frequency response 
characteristics are less stringent, 

implying low attenuation and gentle roll-off characteristics.  In the extreme case of realizing steep 
roll-off filter responses, the FIR filter will end up having a large number of taps and will prove to be 
very computationally intensive.  In these cases, a more suitable approach is the use of infinite 
impulse response (IIR) filters. 

 

 

Slide 7.25 

As the name suggests, IIR filters 
have an infinite impulse response 
ranging from −∞ to +∞ as shown 
in the figure.  The FIR filter was 
completely feed-forward, in other 
words, the output of the filter was 
dependent only on the incoming 
input and its delayed versions.  In 
the IIR filter, on the other hand, 
the expression for the filter output 
has a feed-forward as well as a 
recursive (feedback) part.  This 
implies that the filter output is 
dependent on both the incoming 
input samples and the previous 

outputs y(n i ), i >0.  It is the feedback portion of the filter that is responsible for the infinitely 
long impulse response.  The extra degree of freedom coming from the recursive part allows the filter 
to realize high-attenuation, sharp roll-off frequency responses with relatively low complexity. 

 

 

IIR Filters for Narrow-Band, Steep Roll-Off

 Finite impulse response filters:
– Easy to design, always stable
– Feed-forward, can be pipelined, parallelized
– Linear phase response

 Realizing narrow-band, steep roll-off filters
– FIR filters require large number of taps
– The area and power cost can make FIR unsuitable
– Infinite Impulse response (IIR) filters are more suited to achieve 

such a frequency response with low area, power budget

steep roll-offnarrow band

7.24

++ /10/10

IIR Filters

 Generalized IIR transfer function

Feed-forwardFeedback

Response up to +Response up to 

7.25

1 0

( ) () )(
N N

m p
m p

b y n mn ay x n p



Digital Filters  125 
 

Slide 7.26 

The z-domain transfer function 
H(z) of a generic IIR filter is shown 
in this slide.  The numerator of 
H(z) represents the feed-forward 
section of the filter, while the 
feedback part is given by its 
denominator.  A direct-form 
implementation of this expression 
is shown in the figure.  The 
derivation of the output expression 
for y(n) from the filter structure 
should convince the reader that the 
filter does indeed implement the 
transfer function H(z).  As in the 
FIR case, the direct-form structure 

is intuitive to understand, but is far from being the optimal implementation of the filter expression.  
In the next slide, we will look at optimization techniques to improve the performance of this filter 
structure. 

 

 

Slide 7.27 

An interesting property of 
cascaded, linear, time-invariant 
systems lies in the fact that the 
functionality of the system remains 
unchanged even after the order of 
execution of the blocks is changed.  
In other words, if a transfer 
function H(z) = H1(z)·H2(z)·H3(z), 
then the output is not affected by 
the position of the three units H1, 
H2 or H3 in the cascaded chain.  We 
use this fact to our advantage in 
transforming the signal-flow graph 
for the IIR filter.  The direct-form 
structure is split into two cascaded 

units H1 and H2, and their order of execution is swapped. 

 

 

 

 

IIR Architecture

 The IIR transfer function in the z-domain can be expressed as
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Slide 7.28 

After swapping the positions of 
units H1 and H2, we can see that the 
bank of registers in both the units 
can be shared to form a central 
register chain.  It is, of course, not 
mandatory that both units have the 
same number of registers in them, 
in which case the register chain will 
have the maximum number 
required by either unit.  The 
resultant architecture is shown in 
the slide.  Compared to the direct-
form implementation, we can see 
that a substantial reduction in area 
can be achieved by reducing the 

register count. 

 

 

Slide 7.29 

IIR filters typically suffer from 
various problems associated with 
their recursive nature.  The adder in 
the feedback accumulator ends up 
requiring long wordlengths, 
especially if the order of recursion 
(value of M) is high.  The frequency 
response of the IIR is very sensitive 
to quantization effects.  This would 
mean that arbitrarily reducing the 
wordlength of the adder or 
multiplier units, or truncating the 
coefficients can have a drastic effect 
on the resultant frequency 
response.  These problems can be 

mitigated to some extent by breaking the transfer function H(z) into a cascade of second- or first-
order sections, as shown in the slide. The main advantage of using second-order sections is the 
reduced wordlength of the adder units in the feedback accumulator.  Also, the cascaded realization is 
less sensitive to coefficient quantization effects, making the filter more robust. 

 

 

 

 

IIR Architecture Optimized

 H1, H2 can share the central register bank and reduce area
 For M  N, the central register bank will have max(M,N) registers
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+
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Cascaded IIR

 Implement IIR transfer function as cascade of 2nd order sections
– Shorter wordlengths in the feedback loop adders
– Less sensitive towards finite precision arithmetic effects
– More area and power efficient architecture

7.29
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Slide 7.30 

Another bottleneck associated with 
recursive filters is their inability to 
support pipelining. Inserting 
registers in any feedback loop 
changes the functionality of the 
filter disallowing the insertion of 
pipeline registers.  For example, the 
first-order IIR filter graph shown in 
the left of the slide has one register 
in the feedback loop.  The input-
output relation is given by y1(n) = 
b·a·y1(n −1) + b·a·x(n).  An  extra 
register is inserted in the feedback 

 

 

 

 

 

Recursive-Loop Bottlenecks

 Pipelining loops not possible 
– Number of registers in feedback loops must remain fixed 

y1(n) = b·w1(n)
w1(n) = a·(y1(n 1) + x(n))
y1(n) = b·a·y1(n 1) + b·a·x(n)

x(n)

y1(n)

D

a

w1(n)

b

Changing the number of delays in a loop alters functionality 
y1(n)  y2(n)

×+

×

y2(n) = b·w(n)
w(n) = a·(y2(n 2) + x(n 1))
y2(n) = b·a·y2(n 2) + b·a·x(n 1)

x(n)

y2(n)

D

a

w(n)

b

×+

×

D

7.30 shown on the right. This graph now 
has an input-output relation given by y2(n) = b·a·y2(n−2) + b·a·x(n−1), which is different from the 
filter on the left. Restriction on delay insertion, therefore, makes feedback loops a throughput 
bottleneck in IIR filters.  

loop for the signal-flow graph 

Slide 7.31 

Maximizing the throughput in IIR 
systems entails the optimal 
placement of registers in the 
feedback loops.  For example, the 
two signal-flow graphs shown in the 
slide are retimed versions of each 
other.  The graph shown on the left 
has a critical path of 2tmult.  Retiming 
moves shown with red dashed lines 
are applied to obtain the flow graph 
on the right.  The critical path for 
this graph is tadd + tmult.  This form of 
register movement can ensure that 
the filter functions at the maximum 
possible throughput.  Details on 

algorithms to automate retiming will be discussed in Chapter 11. 

High-Level Retiming of an IIR Filter

 IIR throughput is limited by the retiming in the feedback sections

 Optimal placement of registers in the loops leads to max speed

Retiming 
moves

tcritical = 2tmult tcritical = tadd + tmult

x(n)

y(n)

D

a

b

×+

×

D
x(n)

y(n−1)

D

a

b

×+

×

D
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The feedback portions of the 
signal-flow graph also restrict the 
use of parallelism in IIR filters.  For 
example, the first-order IIR filter 
shown in the slide is parallelized 
with P=2.  After unfolding, the 
critical path for the parallel filter 
doubles, while the number of 
registers in the feedback loop 
remains the same.  Although we 
generate two outputs every clock 
cycle in the parallel filter, it takes a 
total of 2·(tadd +  tmult) time units to do 
so.  This will result in a throughput 
of 1/(tadd +  tmult ) per output sample, 

which is the same as that of the original filter.  Hence, the maximum achievable throughput for the 
IIR is still restricted by the optimal placement of registers in the feedback loops.  More details on 
unfolding IIR systems will be covered in Chap. 11. 

 

 

Slide 7.33 

In summary, IIR filters are a 
computationally efficient way to 
realize attenuation characteristics 
that require sharp roll-off and high 
attenuation.  From an area and 
power perspective, they are 
superior to the corresponding FIR 
realization.  But the recursive nature 
of the filter tends to make it 
unstable, since it is difficult to 
ensure that all poles of the system 
lie inside the unit circle in the z-
domain.  The filter phase response 
is non-linear and subsequent all-
pass filtering may be required to 

linearize the phase response. All-pass filters have constant amplitude response in the frequency 
domain, and can compensate for the non-linear phase response of IIR filters. Their use, however, 
reduces the area efficiency of IIR filters. The IIR filter structure is difficult to optimize for very high-
speed applications owing to the presence of feedback loops. Hence, a choice between FIR and IIR 
realization should be made depending on system constraints and design objectives.  

 

 

IIR Summary

 Pros
– Suitable when filter response has sharp roll-off, has narrow-

band, or large attenuation in the stop-band
– More area- and power-efficient compared to FIR realizations

 Cons
– Difficult to ensure filter stability
– Sensitive to finite-precision arithmetic effects (limit cycles)
– Does not have linear phase response unlike FIR filters
– All-pass filters required if linear phase response desired
– Difficult to increase throughput 

● Pipelining not possible
● Retiming and parallelism has limited benefits

7.33

Unfolding: Constant Throughput

 Unfolding recursive flow graphs

– Maximum attainable throughput limited by iteration bound

– Unfolding does not help if iteration bound already achieved

y(n) = x(n) + ay(n−1)

y(2m) = x(2m) + ay(2m−1)

y(2m+1) = x(2m+1) + ay(2m)

tcritical = tadd + tmult

tcritical = 2tadd + 2tmult

tcritical/iter = tcritical / 2

x(n) a×+
D

y(n)

x(2m) a×+
D* = 2D

x(2m+1) a×+

y(2m)

y(2m+1)

7.32
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Slide 7.34 

We now take a look at a new class 
of filters used for sample-rate 
conversion in DSP systems.  Any 
digital signal processing always 
takes place at a predefined sample 
rate fs .  It is not mandatory, 
however, for all parts of a system to 
function at the same sample rate.  
Often for the sake of lower 
throughput or power consumption, 
it becomes advantageous to operate 
different blocks in a system at 
different sampling frequencies.  In 
this scenario, sample-rate 
conversion has to be done without 

loss in signal integrity.  Multi-rate filters are designed to enable such data transfers. 

 

Slide 7.35 

Multi-rate filters can be subdivided 
into two distinct classes.  If the data 
transfer takes place from a higher 
sample rate fs1 to a lower sample 
rate fs2, then the process is called 
“decimation.”  On the other hand, 
if the transfer is from a lower rate fs1 
to a higher rate fs2, then the process 
is called “interpolation.”  For 
integer-rate conversion (i.e., fs1/fs2  
I+), the rate conversion process can 
be interpreted easily.  

Decimation implies a reduced 
number of samples. For example, if 
we have 500 samples at the rate of 

500MHz (fs1), then we can obtain 250 samples at the rate of 250MHz (fs2) by dropping alternate 
samples.  The ratio fs1/fs2 = 2, is called the “decimation factor.” But only skipping alternate samples 
from the original signal sequence does not guarantee reliable data transfer.  Aliasing occurs if the 
original frequency spectrum has data content beyond 250 MHz.  We will talk about solutions to this 
problem in the next slide.  

Similarly, interpolation can be interpreted as increasing the number of samples.  Stuffing zeros 
between the samples of the original signal sequence can obtain this increase.  For example, a data 
sequence at 500MHz can be obtained from a sequence at 250MHz by stuffing zeros between 
adjacent samples to double the number of samples in the data stream.  However, this process will 
also result in images of the original spectrum at multiples of 250MHz.  We will take a look at these 
issues in the next few slides. 

Multi-Rate Filtering

Multi-Rate Filters

 Data transfer between systems at different sampling rate
– Decimation 

● Higher sampling rate fs1 to lower rate fs2

– Interpolation 
● Lower sampling rate fs2 to higher rate fs1

 For integer fs1/fs2

– Drop samples when decimating
● Leads to aliasing in the original spectrum

– Stuff zeros when interpolating
● Leads to images at multiples of original sampling frequency

7.35
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In digital systems, the frequency 
spectrum of a signal is contained 
within the band –fs/2 to fs/2, where 
fs is the sampling frequency. The 
same spectrum also repeats at 

This occurs because the Fourier 
transform used to compute the 
spectrum of a periodic signal is also 
periodic with fs. The reader is 
encouraged to verify this property 
from the Fourier equations 
discussed in the next chapter. After 
decimation to a lower frequency fs2, 
the same spectrum will repeat at 

intervals of fs2 as shown in Fig. (b).  A problem arises if the bandwidth of the original data is larger 
than fs2. This will lead to an overlap between adjacent spectral images, shown by the yellow regions 
in Fig. (b).  This overlap or aliasing can corrupt the data sequence, so care should be taken to 
avoid such an overlap.  The only alternative is to remove any spectral content beyond bandwidth fs2 
from the original spectrum, to avoid aliasing.  Decimation filters, discussed in the next slide, are used 
for this purpose. 
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The decimation filter must ensure 
that no aliasing corrupts the signal 
after rate conversion.  This would 
require the removal of any signal 
content beyond the bandwidth of 
fs2, making the decimation filter a 
low-pass filter.  Figure (a) shows the 
original spectrum of the data at 
sampling frequency fs1.  The 
multiples of the original spectrum 
are formed at frequency fs1.  Before 
decimating to sampling frequency 
fs2, the signal is low-pass filtered to 
restrict the bandwidth to fs2.  This 
will ensure that no aliasing occurs 

after down sampling by a factor D, as shown in Fig. (b). The low-pass filter is usually an FIR, if the 
decimation factor is small (2–4).  For large decimation factors, the filter response has a sharp roll-off.  
Implementing FIR filters for such a response can get computationally expensive.  For large 
decimation factors, a viable alternative is the use of IIR filters to realize the sharp roll-off frequency 
response.  However, the non-linear phase in IIR filters may require the use of additional all-pass 
filters for phase compensation. An alternative implementation is the use of cascade integrated comb 

D

Decimation

 Samples transferred from higher rate fs1 to lower rate fs2

 Frequency-domain representation
– Spectrum replicated at intervals of fs1 originally
– Spectrum replicated at intervals of fs2 after decimation
– Aliasing of spectrum lying beyond B/W fs2 in original spectrum

 Decimation filters to remove data content beyond bandwidth fs2

3fs1/2 +3fs1/2fs1/2 +fs1/2 3fs2/2 +3fs2/2fs2/2 +fs2/2

Fig. (a) Fig. (b)

Decimate

7.36

Decimation Filters

 Low-pass filters used before decimation 
– Usually FIR realization
– IIR if linear phase is not necessary
– Cascade integrated comb filter for hardware efficient 

realization
● Much cheaper to implement than FIR or IIR realizations
● Less attenuation, useful in heavily over-sampled systems

3fs1/2 +3fs1/2fs1/2 +fs1/2 3fs2/2 +3fs2/2fs2/2 +fs2/2

Fig. (b)

Decimate

Fig. (a)
7.37

D

intervals of fs , as shown in Fig (a). 
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(CIC) filters.  CIC filters are commonly used for decimation due to their hardware-efficient 
realization.  Although their stop-band attenuation is small, they are especially useful in decimating 
over-sampled systems. More details on CIC filtering will be discussed in Part IV of the book. 

 

Slide 7.38 

Interpolation requires the 
introduction of additional data 
samples since we move from a 
lower sampling frequency to a 
higher one.  The easiest way to do 
this is the zero-stuffing approach. 
For example, when moving from 
sampling frequency fs2 to a higher 
rate fs1  3 ·= fs2, we need three samples

sample in the original data 
sequence.  This can be done by 
introducing two zeros between 
adjacent samples in the data 
sequence.  The main problem with 

this approach is the creation of spectral images at multiples of fs2.  Figure (a) shows the spectrum of 
the original data sampled at fs2.  In Fig. (b) the spectrum of the new data sequence after zero stuffing 
is shown.  However, we find that images of the original spectrum are formed at –fs2 and +fs2 in Fig. 
(b). This phenomenon occurs because zero-stuffing merely increases the number of samples without 
additional information about the values of the added samples. If we obtain a Fourier transform of 
the zero-stuffed data we will find that the spectrum is periodic with sample rate fs2. The periodic 
images have to be removed to ensure that only the central replica of the spectrum remains after 
interpolation.  The solution is to low-pass filter the new data sequence and remove the images.  The 
use of interpolation filters achieves this image rejection. Low-pass filtering will ensure that the zeros 
between samples are transformed into a weighted average of adjacent samples, which gives an 
approximation of the actual value of the input signal at the interpolated instances. 

 

 

 

 

 

 

 

 

in the interpolated data for every one 

Interpolation

Samples transferred from lower rate fs2 to higher rate fs1
Frequency domain representation
– Spectrum spans bandwidth of fs2 originally
– Spectrum spans bandwidth of fs1 after interpolation
– Images of spectrum at intervals of fs2 after interpolation 

Interpolation filters to remove images at multiples of fs2

−fs1 /2 fs1/2−fs2/2 +fs2/2

Fig. (b)

−fs2/2 +fs2/2

Fig. (a)

Zero-stuff

7.38
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The interpolation filter is essentially 
a low-pass filter that must suppress 
the spectral images in the zero-
stuffed data sequence.  A typical 
frequency response of this filter is 
shown in red in Fig. (b).  For small 
interpolation factors (2–4), the 
frequency response has a relaxed 
characteristic and is usually realized 
using FIR filters.  IIR realizations 
are possible for large up-sampling 
ratios (U), but to achieve linear 
phase additional all-pass filters may 
be necessary.  However, this 
method would be preferable to the 

corresponding FIR filter, which tends to become very expensive with sharp roll-off in the response.  
Another alternative is the use of the cascade integrated comb (CIC) filters that were discussed 
previously.  CIC filters are commonly used for interpolation due to their hardware-efficient 
realization.  Although their stop-band attenuation is small, they are useful in up-sampling by large 
factors (e.g. 10–20 times).  More details on CIC filters, particularly their implementation, will be 
discussed in Chap. 14. 
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Let us now go back to the original 
problem of designing radio systems 
and look at the application of digital 
filters in the realization of 
equalizers. The need for 
equalization stems from the 
frequency selective nature of the 
communication channel. The 
equalizer must compensate for the 
non-idealities of the channel 
response. The equalizer examples 
we looked at earlier assumed a 
time-invariant channel, which 
makes the tap-coefficient values of 
the equalizer fixed.  However, the 

channel need not be strictly time-invariant.  In fact, wireless channels are always time-variant in 
nature.  The channel frequency response then changes with time, and the equalizer must also adjust 
its tap coefficients to accurately cancel the channel response.  In such situations the system needs 
adaptive equalization, which is the topic of discussion in the next few slides.  The adaptive 
equalization problem has been studied in detail, and several classes of these types of equalizers exist 
in literature.  The most prominent ones are zero-forcing and least-mean-square both of which are 

Interpolation Filters

 Low-pass filter used after interpolation
– Suppress spectrum images at multiples of fs2

– Usually FIR realizations
– IIR realization if linear phase not necessary
– Cascade integrated comb filter for hardware efficient 

realization
● Much cheaper to implement than FIR or IIR realizations
● Less attenuation, useful for large interpolation factors (U)

fs1/2 fs1/2fs2/2 +fs2/2
Fig. (b)

fs2/2 +fs2/2
Fig. (a)

Zero-stuff

7.39

U

Application Example:
Adaptive Equalization
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feed-forward structures.  The feedback category includes decision feedback equalizers. We will also 
take a brief look at the more advanced fractionally spaced equalizers. 
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The figure in this slide shows a 
channel impulse response with non-
zero values at multiples of the 
symbol period T.  These non-zero 
values, marked by dashed ovals, will 
cause the adjacent symbols to 
interfere with the symbol being 
sampled at the instant t0.  The 
expression for the received signal r 
is given at the bottom of the slide.  
The received signal includes the 
contribution from inter-symbol 
interference (ISI) as well as additive 
white noise from the channel. 
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The most basic technique for 
equalization is creating an equalizer 
transfer function, which nullifies 
the channel frequency response.  
This method is called the zero-
forcing approach.  Although this 
will ensure that the equalized data 
has no inter symbol interference, it 
can lead to noise enhancement for a 
certain range of frequencies.  Noise 
enhancement can degrade the bit 
error rate performance of the 
decoder, which follows the 
equalizer.  For example, the left 
figure in the slide shows a typical 

low-pass channel response.  The figure on the right shows the zero-forcing equalizer response.  The 
high-pass nature of the equalizer response will enhance the noise at higher frequencies.  For this 
reason, zero forcing is not popular for practical equalizer implementations.  The second algorithm 
we will look at is the least-mean-square, or LMS, algorithm. 

 

 

Introduction

ISI noise

ISI

7.41

 Inter-symbol interference (ISI)
– Channel response causes delay spread in transmitted symbols
– Adjacent symbols contribute at sampling instants

 ISI and additive noise modeling

0 0 0 0( ) ( ) ( ) ( )k j
j k

r t kT x h t x h t kT jT n t kT

t0 – 2T

t0 – T
t0

t0 + T

t0 + 2T

t0 + 3T

t0 + 4T

h(t)

time

Zero-Forcing Equalizer

Q(e j T)

0

WZFE(e j T)

0

Noise enhancement

7.42

 Basic equalization techniques
– Zero-forcing (ZF)

● Causes noise enhancement

 Adaptive equalization
– Least-mean square (LMS) algorithm

● More robust

T T
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The least-mean-square algorithm 
adjusts the tap coefficients of the 
equalizer so as to minimize the 
error between the received symbol 
and the transmitted symbol.  
However, in a communication 
system, the transmitted symbol is 
not known at the receiver.  To 
solve this problem a predetermined 
training sequence known at the 
receiver can be transmitted 
periodically to track the changes in 
the channel response and re-
calculate the tap coefficients.  The 
expression for the error value ek and 

the objective function are listed in the slide. The equalizer is feed-forward with N taps denoted by cn, 
n є {0,1,2,…,N}, and the set of N tap coefficients at time k is denoted by cn(k).  Minimizing the 
expected error requires solving N equations where the partial derivative of E[ek

2] with respect to 
each of the N tap coefficients is set to zero.  Solving these equations give us the value of the tap 
coefficient at time k. 

To find the partial derivative of the objective function, we have to express the error ek as a 
function of the tap coefficients.  The error ek is the difference between the equalized signal zk and 
the transmitted signal xk, which is a constant.  The equalized signal zk, on the other hand, is the 
convolution of the received signal rk and the equalizer tap coefficients cn.  This convolution is shown 
at the end of the slide.  Now we can take the derivative of the expectation of error with respect to 
the tap coefficients cn.  This computation will be illustrated in the next slides. 
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The block diagram of the LMS 
equalizer is shown in the slide.  The 
equalizer operates in two modes.  
In the training mode, a known 
sequence of transmitted data is used 
to calculate the tap coefficients.  In 
the active operational mode, normal 
data transmission takes place and 
equalization is performed with the 
pre-computed tap coefficients.  
Shown at the bottom of the slide is 
the curve for the mean square error 
(MSE), which is convex in nature.  
The partial derivative of the MSE 
curve with respect to any tap 

coefficient is a tangent to the curve.  When we set the partial derivative equal to zero, we reach the 

Adaptive Equalization

 Achieve minimum mean-square error (MMSE)
– Equalized signal: zk, transmitted signal: xk

– Error: ek = zk xk

– Objective:
– Minimize expected error, min E[ek

2]
– Equalizer coefficients at time instant k: cn(k), n {0,1,…,N}
– For real optimality: set

7.43

 Equalized signal zk given by:
zk = c0rk + c1rk 1 + c2rk 2 + … + cn 1rk n+1

 zk is convolution of received signal rk with tap coefficients
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LMS Adaptive Equalization

 Achieve minimum mean-square error (MMSE)
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reduces 

{cn}r(t)

t0 + kT zk

ek

xk

+

equalizer decision device

error

Train

Training
sequence
generator

7.44

xk

2

( )
k

n

e
c k



Digital Filters  135 
 

bottom flat portion of the convex curve, which represents the position of the optimal tap coefficient 
(red circle in the figure).  The use of steepest-descent method in finding this optimal coefficient is 
discussed next. 
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The gradient function is a vector of 

being the partial derivative of the 
function argument with respect to cj.  
The (+) symbol represents the 
convolution operator and r is the 
vector of received signals from time 
instant k−N+1 to k.  From the 
mathematical arguments discussed, 
we can see that the gradient 
function for the error ek is given by 
the received vector r where r =[rk, 
rk−1,…,rk−N+1].  The expression for 
the partial derivative of the 
objective function E with respect to 

cn is given by 2ekrk−n, as shown in the slide.  Now, ∂E[ek
2]/∂cn(k) is a vector, which points towards the 

steepest ascent of the cost function. To find the minimum of the cost function, we need to take a 
step in the opposite direction of ∂E[ek

2]/∂cn(k), or, in other words, to make the steepest descent. In 
mathematical terms, we get the coefficient update equation given by: 

( 1) ( ) ( ), 0,1,..., 1n n kc k c k e r k n n N . 

Here ∆ is the step size by which the gradient is scaled and used in the update equation.  If the 
step size ∆ is small then a large number of iterations are required to converge to the optimal 
coefficients.  If ∆ is large, then the number of iterations is small. However, the tap coefficients will 
not converge to the optimal points but to somewhere close to it.  A good approximation of the tap 
coefficients is found when the error signal power for the LMS coefficients becomes less than or 
equal to the zero-forcing error-signal power. 

 

 

 

 

 

 

 

 

LMS Adaptive Equalization (Cont.)

 Alternative approach to minimize MSE
– For computational optimality

● Set: E[ek
2]/ cn(k) = 2ekrk–n = 0

– Tap update equation: ek = zk – xk

– Step size: 
– Good approximation if using:

cn(k+1) = cn(k) – ekr(k – n), n = 0, 1, …, N – 1

● Small step size
● Large number of iterations

– Error-signal power comparison: LME
2  ZF

2

7.45

dimension N with the j th element 
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Up until now we have looked at the 
FIR realization of the equalizer.  
The FIR filter computes the 
weighted sum of a sequence of 
incoming data.  However, a symbol 
can be affected by inter-symbol 
interference from symbols 
transmitted before as well as after 
it.  The interference caused by the 
symbols coming before in time is 
referred to as “pre-cursor ISI,” 
while the interference caused by 
symbols after is termed “post-
cursor ISI.”  An FIR realization can 
remove the pre-cursor ISI, since the 

preceding symbols are available and can be stored in registers.  However, removal of post-cursor ISI 
will require some form of feedback or recursion.  The post-cursor ISI translates to a non-causal 
impulse response for the equalizer, which requires recursive cancellation.  Such equalizers are known 
as “decision-feedback equalizers.”  The name stems from the fact that the output of the 
decoder/decision device is fed back into the equalizer to cancel post-cursor ISI.  The accuracy of 
equalization is largely dependent upon the accuracy of the decoder in detecting the correct symbols.  
The update equation for the feedback coefficients is once again derived from the steepest-descent 
method and is shown on the slide. Instead of using the received signal rk−n, the update equation uses 
previously detected symbols dk−m. 
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The decision-feedback equalizer 
(DFE) is shown on this slide.  The 
architecture has two distinct parts; 
the feed-forward filter with 
coefficients cn to cancel the pre-
cursor ISI, and the feedback filter 
with coefficients bm to cancel the 
post-cursor ISI.  The DFE has less 
noise enhancement as compared to 
the zero-forcing and LMS 
equalizers.  Also, the feed-forward 
equalizer need not remove the ISI 
fully now that the feedback portion 
is also present.  This offers more 
freedom in the selection of the 

feed-forward coefficients cn.  Error propagation is possible if previously detected symbols are 
incorrect and the feedback filter is unable to cancel the post-cursor ISI correctly. This class of 
equalization is known to be robust and is very commonly used in communication systems. 

Decision-Feedback Equalizers

 To cancel the interference from previously detected symbols 
– Pre-cursor channel taps and post-cursor channel taps
– Feed-forward equalizer

● Remove the pre-cursor ISI
● FIR (linear)

– Feedback equalizer
● Remove the post-cursor ISI
● Like a ZF equalizer

– If previous symbol detection is correct
– Feedback equalizer coefficient update equation:

7.46

bm+1(k+1) = bm(k) ekdk m
x–3

x–2
x–1

x0
x1 x2 x3

Decision-Feedback Equalizers (Cont.)
 Less noise enhancement compared with ZF or LMS 
 More freedom in selecting coefficients of feed-forward equalizer
– Feed-forward equalizer need not fully invert channel response

 Symbol decision may be incorrect
– Error propagation (slight)

7.47
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To avoid these issues, a common solution is to over-sample the incoming signal at rates higher 
than 1/T, for example at twice the rate of 2/T.  This would mean that the equalizer impulse 
response is spaced at a time period of T/2 and is called a “fractionally-spaced equalizer.”  Over-
sampling will lead to more computational requirements in the equalizer, since we now have two 
samples for a symbol instead of one.  However it simplifies the receiver design since we now avoid 
the problems associated with spectral aliasing, which is removed with the higher sampling frequency.  
The sensitivity to the phase of the sampling clock is also mitigated since we now sample the same 
symbol twice.  The attractiveness of this scheme has resulted in most equalizer implementations 
being at least 2x faster than the symbol rate.  The equalizer output is still T-spaced, which makes 
these equalizers similar to decimating or re-sampling filters. 

 

Slide 7.49 

To summarize, we have looked at 
the application of FIR and feedback 
filters as equalizers to mitigate the 
effect of inter-symbol interference 
in communication systems.  The 
equalizer coefficients can be 
constant if the channel is time-
invariant.  However, for most 
practical cases an adaptive equalizer 
[6] is required to track the changes 
in a time-variant channel.  Most 
equalizers use the least-mean-square 
(LMS) criterion to converge to the 
optimum tap coefficients.  The 
LMS equalizer has an FIR structure 

Summary

 Use equalizers to reduce ISI and achieve high data rate
 Use adaptive equalizers to track time-varying channel response
 LMS-based equalization prevails in MODEM design
 Decision feedback equalizer makes use of previous decisions to 

estimate current symbol
 Fractionally spaced equalizers resilient to sampling phase 

variation
 Properly select step size for convergence

7.49

[6] S. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, 
Sep. 1985.

Fractionally-Spaced Equalizers

 Sampling at symbol period
–
– Sensitive to sampling phase

 Can over-sample (e.g. 2x higher rate)
– Avoid spectral aliasing at the equalizer input
– Sample the input signal of Rx at higher rate (e.g. 2x faster)
– Produce equalizer output signal at symbol rate
– Can update coefficients at symbol rate
– Less sensitive to sampling phase

7.48

cn(k+1) = cn(k) ek·r(t0 + kT – NT/2)

Equalizes the aliased response

Slide 7.48 

Until now we have looked at 
equalizers that sample the received 
signal at the symbol period T.  
However, the received signal is not 
exactly limited to a bandwidth of 

 , 
40% larger bandwidth after passing 
through the frequency-selective 
channel.  Hence, sampling at symbol 
period T can lead to signal 
cancellation and self-interference 
effects that arise when the signal 
components alias into a band of 
1/T.  This sampling is also 
extremely sensitive to the phase of 

the sampling clock.  The sampling clock should always be positioned at the point where the eye 
pattern of the received signal is the widest. 

1/T.  In fact, it usually spans a 10  –
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and is capable of cancelling pre-cursor ISI generated from preceding symbols.  The decision-
feedback equalizer (DFE) is used to cancel post-cursor ISI using feedback from previously detected 
symbols.  Error propagation is possible in the DFE if previously detected symbols are incorrect.  
Fractionally-spaced equalizers which sample the incoming symbol at rates in excess of the symbol 
period T, are used to reduce the problems associated with aliasing and sample phase variation in the 
received signal. 

 

 

Slide 7.50 

FIR filters may consume a large 
amount of area when a large 
number of taps is required.  For 
applications where the sampling 
speed is low, or where the speed of 
the underlying technology is 
significantly greater than the 
sampling speed, we can greatly 
reduce silicon area by resource 
sharing.  Next, we will discuss an 
area-efficient filter implementation 
technique based on distributed 
arithmetic. 

 

 

 

Slide 7.51 

In cases when the filter 
performance requirement is below 
the computational speed of 
technology, the area of the filter can 
be greatly reduced by bit-level 
processing.  Let’s analyze an FIR 
filter with N taps and an input 
wordlength of W (index W –1 
indicates MSB, index 0 indicates 
LSB).  Each of the xk−n terms from 
the FIR filter response formula can 
be expressed as a summation of 
individual bits.  Assuming |xk−n|≤ 
1, the bit-level representation of 
xk −n is shown on the slide.  Next, 

we can interchange the summations and unroll filter taps. 

Implementation Technique:
Distributed Arithmetic

Distributed Arithmetic: Concept

 FIR filter response

 Equivalent representation
– Bit-level decomposition

 Filter parameters
– N: number of taps
– W: wordlength of x
– |xk n|  1

MSB Remaining bits

 Next step: interchange summations, unroll taps

7.51
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Slide 7.52 

After the interchange of 
summations and unrolling of the 
filter taps, we obtain an equivalent 
representation expressed as a sum 
over all filter coefficients (n=0, …, 
N −1) bit-by-bit, where xk −N ,j 

In other words, we create a bit-wise 
expression for the filter response 
where each term HW−1− i in the bit-
sum has contributions from all N 
filter taps.  In this notation, i is the 
offset from the MSB (i=0, …, W 
–1), and H is the weighted bit-level 
sum of filter coefficients. 
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Here’s an example of a 3-tap filter 
where input wordlength is also W = 
3.  Consider bit slice i.  As 
described in the previous slide, Hi is 
the bit-level sum of filter 
coefficients hk, as shown in the 
truth table on this slide.  The last 
column of the table can be treated 
as memory, whose address space is 
defined by the bit values of filter 
input.  For example, at bit position 
i, where x = [0 0 1], the value of 
bit-wise sum of coefficients is equal 
to h2.  The filter can, therefore, be 
simply viewed as a look-up table 

containing pre-computed coefficients. 

 

 

Distributed Arithmetic: Concept (Cont.)

 FIR filter response: bit-level decomposition

 Interchange summations, unroll taps into bits

MSB

Other
bits

tap 1 tap Ntap 2

tap 1 tap Ntap 2 Bit: MSB  i

7.52

1 1 1

, 1 , 1
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W
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Example: 3-tap FIR

xk xk 1 xk 2 Hi (bit slice i)

0 0 0 0

0 0 1 h2

0 1 0 h1

0 1 1 h1 + h2

1 0 0 h0

1 0 1 h0 + h2

1 1 0 h0 + h1

1 1 1 h0 + h1 + h2

xk

xk 1

xk 2

0 … 0 … 0

0 … 0 … 1

0 … 1 … 1

MSB LSBi
0
h2

…
h0 + h1 + h2

0

1

7

3 bits

address

LUT

Hi is the weighted
bit-level sum of 
filter coefficients

7.53

1 1 1
0 1 2 1((...(0 )·2 )·2 ... )·2k W Wy H H H H

represents j th bit of coefficient xk−N.  
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Slide 7.54 

The basic filter architecture is 
shown on this slide.  A W-bit 
parallel data stream x sampled at 
rate fsample forms an N-bit address 
(xk, …, xk−N+1) for the LUT 
memory.  In each clock cycle, we 
shift the address by one bit and add 
(subtract if the bit is the MSB) the 
result.  Since we sample the input at 
fsample and process one bit at a time, 
we need to up-sample the 
computation W times.  All blocks in 
red boxes operate at rate W·fsample.  
Due to the bit-serial nature of the 
computation, it takes W clock 

cycles to do one filtering operation.  While this architecture provides a compact realization of the 
filter, the area savings from the bit-serial approach may be outweighed by the large area of the LUT 
memory.  For N taps we need 2 N words.  If N=16, for example, LUT memory with 64k words is 
required!  Memory size grows exponentially with the number of taps.  There are several ways to 
address this problem. 

 

 

Slide 7.55 

Memory partitioning can be used to 
address the issue of the LUT area.  
The concept of memory 
partitioning is illustrated in this 
slide.  Assume N=6 taps and M= 
2 partitions.  A design with N=6 
taps would require 26 = 64 LUT 
words without partitioning.  
Assume that we now partition the 
LUT memory into M=2 segments.  
Each LUT segment uses 3 bits for 
the address space, thus requiring 23 
= 8 words.  The total number of 
words for the segmented memory 
architecture is 2·23 = 16  words.   

This is a 4x (75%) reduction in memory size as compared to the direct memory realization.  
Segmented memory requires an adder at the output to sum the partial results from the segments. 

 

Basic Architecture

i

…

i

…

xk xk N+1

N bits

address

LUT
precomputed
coefficients

Add / Sub >>

LSB

Out select

yk

Clock rate: 
(W·fsample)

Add/Sub

2N words for
an N-tap filter
N = 6: 64
N = 16: 64k

MSB

LSB

Reg

Parallel data stream
(fsample)

(fsample)Issue: memory size grows quickly!
7.54

#1: LUT Memory Partitioning

xk

xk−1

xk−2

…

…

…

3 bits

address

xk−3

xk−4

xk−5

…

…

…

3 bits

address

LUT
Part 1

(h0, h1, h2)

LUT
Part 2

(h3, h4, h5)

+

N = 6 taps, M = 2 partitions

7.55

[7] M. Ler, An Energy Efficient Reconfigurable FIR Architecture for a Multi-Protocol Digital Front-End, 
M.S. Thesis, University of California, Berkeley, 2006. 
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Slide 7.56 

Another idea to consider is memory 
code compression.  The idea is to 
use signed-digit offset binary coding 
that maps the {1, 0} base into {1, 
−1} base for computations.  Using 
the newly formed base, we can 
manipulate bit-level expressions 
using the x = 0.5·(x – (−x)) 
identity. 
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Substituting the new representation 
into the yk formula yields the 
resulting bit-level coefficients. The 
bit-level coefficients could take 2N−1 
values.  Compared to the original 
formulation that maps the 
coefficients into a 2N-dimensional 
space, code compression yields a 2x 
reduction in the required memory.  
Code compression can be 
combined with LUT segmentation 
to minimize LUT area. 

 

 

 

 

 

 

 

 

#2: Memory Code Compression

 Idea:

 Bit-level expression

cW 1

cW 1 i

 Signed-digit offset binary coding: {1, 1} instead of {1, 0}

 Next step: plug this inside expression for yk

7.56

1
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W
i W

W i W i
i

x x

#2: Memory Code Compression (Cont.)

 Use:

 Another representation of yk

 Term HW 1 i has only 2N 1 values
– Memory requirement reduced from 2N to 2N 1

7.57
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Slide 7.58 

An example of memory code 
compression is illustrated in this 
slide [3].  For a 3-tap filter (3-bit 
address), we can observe similar 
entries in memory locations 
corresponding to MSB=0 and 
MSB=1.  The only difference is 
the sign change.  In terms of gate-
level implementation, the sign bit 
can be arbitered by the MSB bit 
(shown in red ) and two XOR gates 
that control reduced address space. 

 

 

 

 

Slide 7.59 

Digital filters are important building 
blocks in DSP systems. FIR filters 
can be realized in direct or 
transposed form. The direct form 
realization has long critical-path 
delay (if no pipelining is used) while 
transposed form has large input 
loading. Multiplier coefficients can 
be approximated with a sum of 
power-of-two numbers to simplify 
the implementation. IIR filters are 
used where sharp roll-off and 
compact realization are required. 
Multi-rate decimation and 
interpolation filters, which are 

standard in wireless transceivers, are briefly introduced. The chapter finally discussed FIR filter 
implementation based on distributed arithmetic. The idea is to compress coefficient memory by 
performing bit-serial arithmetic. 

 

 

 

 

 

Memory Code Compression: Example

 Example:
3-tap filter, 6-bit coefficients

7.58

[7] M. Ler, An Energy Efficient Reconfigurable FIR Architecture for a Multi-Protocol Digital Front-End, 
M.S. Thesis, University of California, Berkeley, 2006. 

x[n]

x[n 1]

x[n 2]

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

6-bit input data

x[n]

x[n 1]

x[n 2]

6-bit input data

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

x[n] x[n 1] x[n 2] F
0 0 0 (c1+c2+c3)/2
0 0 1 (c1+c2 c3)/2
0 1 0 (c1 c2+c3)/2
0 1 1 (c1 c2 c3)/2
1 0 0 (c1 c2 c3)/2
1 0 1 (c1 c2+c3)/2
1 1 0 (c1+c2 c3)/2
1 1 1 (c1+c2+c3)/2

x[n] xor
x[n 1]

x[n 1] xor
x[n 2] F

0 0 (c1+c2+c3)/2
0 1 (c1+c2 c3)/2
1 0 (c1 c2+c3)/2
1 1 (c1 c2 c3)/2

3-bit
address

2-bit
address

[7]

Summary

 Digital filters are key building elements in DSP systems
 FIR filters can be realized in direct or transposed form
– Direct form has long critical-path delay
– Transposed form has large input loading
– Multiplications can be simplified by using coefficients that can 

be derived as sum of power-of-two numbers
 Performance of recursive IIR filters is limited by the longest loop 

delay (iteration bound)
– IIR filters are suitable for sharp roll-off characteristics
– More power and area efficient than FIR

 Multi-rate filters are used for decimation and interpolation
 Distributed arithmetic can effectively reduce the size of 

coefficient memory in FIR filters by using bit-serial arithmetic

7.59
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Slide 8.1 

In this chapter we will discuss the 
methods for time frequency analysis 
and the DSP architectures for 
implementing these methods. In 
particular, we will use the FFT and 
the wavelet transform as our 
examples for this chapter. The well-
known Fast Fourier Transform 
(FFT) is applicable to the frequency 
analysis of stationary signals. 
Wavelets provide a flexible time-
frequency grid to analyze signals 
whose spectral content changes 
over time. An analysis of algorithm 
complexity and implementation is 

presented. 

 

 

Slide 8.2 

The Discrete Fourier Transform 
(DFT) was discovered in the early 

century by  the  German  
mathematician Carl Friedrich 
Gauss.  More than 150 years later, 
the algorithm was rediscovered by 
the American mathematician James 
Cooley, who came up with a 
recursive approach for calculating 
the DFT in order to reduce the 
computation time and make the 
algorithm more practical. 

The FFT is a fast way to 
compute DFT.  It transforms a 
time-domain data sequence into 

frequency components and vice versa.  The FFT is one of the key building blocks in digital signal 
processors for wireless communications, media/image processing, etc.  It is also used for the 
analysis of spectral content in Electroencephalography (EEG) for brain-wave studies and many 
other applications. 

Many FFT implementation techniques exist to tradeoff the power and area of the hardware.  We 
will first look into the basic architectural tradeoffs for a fixed FFT size (i.e., fixed number of discrete 
points) and then extend the analysis to programmable FFT kernels, for applications such as 
software-defined and cognitive radios. 

 

FFT: Background

 A bit of history
– 1805 - algorithm first described by Gauss
– 1965 - algorithm rediscovered (not for the first time) by Cooley 

and Tukey

 Applications
– FFT is a key building block in wireless communication receivers
– Also used for frequency analysis of EEG signals
– And many other applications

 Implementations
– Custom design with fixed number of points
– Flexible FFT kernels for many configurations

8.2

Time-Frequency Analysis:
FFT and Wavelets

Chapter 8

with Rashmi Nanda and Vaibhav Karkare,
University of California, Los Angeles
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Slide 8.3 

The Fourier transform 
approximates a function with a 
weighted sum of basis functions.  
Fourier transform uses sinusoids as 
the basis functions.  The Fourier 
formulas for the time-domain x(t) 
and frequency-domain X( ) 
representations of a signal x are 
given by the equations on this slide.  
The equations assume that the 
spectral or frequency content of the 
signal is time-invariant, i.e. that x is 
stationary. 
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The FFT is used to calculate the 
DFT with reduced numerical 
complexity. The key idea of the 
FFT is to recursively compute the 
DFT by breaking a sequence of 
discrete samples of length N into 
sub-sequences N1, N2, …, Nm such 
that N = N1·N2·…·Nm.  This 
recursive procedure results in a 
greatly reduced computation time.  
The time complexity is O(N·logN) 
as compared to O(N2) for the direct 
computation.   

Consider the various transform 
lengths shown in the table.  The 

number of operations for the DFT and the FFT is compared for N = 64 to 65,536. For a 1,024-
point FFT, which is typical in advanced communication systems and EEG analysis, the FFT 
achieves a 100x reduction in the number of arithmetic operations as compared to DFT.  The savings 
are even higher for larger N, which can vary from a few hundred in communication applications, to 
a million in radio astronomy applications. 

 

 

 

Fourier Transform: Concept

 A complex function can be approximated with a weighted sum of 
basis functions

 Fourier used sinusoids with varying frequencies as the basis 
functions

 This representation provides the frequency content of the 
original function

 Fourier transform assumes that all spectral components are 
present at all times

8.3

1
( ) ( )

2
j tX x t e dt

1
( ) ( )

2
j tx t X e d

The Fast Fourier Transform (FFT)

 Efficient method for calculating discrete Fourier transform (DFT)

 N = length of transform, must be composite
– N = N1·N2·…·Nm

8.4

Transform length DFT ops FFT ops DFT ops / FFT ops
64 4,096 384 11

256 65,536 2,048 32
1,024 1,048,576 10,240 102

65,536 4,294,967,296 1,048,576 4,096
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Slide 8.5 

The DFT algorithm converts a 
complex discrete-time sequence 
{xn} into the discrete samples {Xk} 
which represent its spectral content, 
as given by the formula near the top 
of the slide. As discussed before, 
the FFT is an efficient way to 
compute the DFT.  A direct-sum 
DFT evaluation would take O(N2) 
operations, while the FFT takes 
O(N·logN) operations.  The same 
algorithm can also be used to 
compute inverse-FFT (IFFT), i.e. to 
convert frequency-domain symbol 
{Xk} back into the time-domain 

sample {xn}, by changing the sign of the exponent and adding a normalization factor of 1/N before 
the sum, as given by the formula at the bottom of the slide. The similarity between the two formulas 
also means that the same hardware can be programmed to perform either FFT or IFFT. 
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The FFT is based on a divide-and-
conquer approach, where the 
original problem (a sequence of 
length N) is decomposed into 
several sub-problems (i.e. sub-
sequences of shorter durations), 
such that the total cost of the sub-
problems plus the cost of mapping 
is less than the cost of the original 
problem.  Let’s begin with the 
original DFT, as described by the 
formula for Xk on this slide.  Here 
Xk is a frequency sample of X(z) at 
z = WN

k, where {xn} and {Xk} are 
N-periodic sequences.   

 

 

 

 

 

The DFT Algorithm

 Converts time-domain samples into frequency-domain samples

8.5

k = 0, …, N 1

complex number

 Implementation options
– Direct-sum evaluation: O(N2) operations
– FFT algorithm: O(N·logN) operations

 Inverse DFT: frequency-to-time conversion
– DFT with opposite sign in the exponent
– A 1/N factor

21

0

N j nk
N

k n
n

X x e

21

0

1 N j nk
N

k n
n

x X e
N

k = 0, …, N 1

The Divide-and-Conquer Approach

 Map the original problem into several sub-problems in such a 
way that the following inequality holds:

8.6

Cost(sub-problems) + Cost(mapping) < Cost(original problem)

 DFT:

– Xk = evaluation of X(z) at z = WN
k

– {xn} and {Xk} are periodic sequences

 So, how shall we divide the problem?

1

0

N
nk

k n N
n

X x W
1

0

( )
N

n
n

n

X z x zk = 0, …, N 1
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Slide 8.7 

The DFT computation is organized 
by firstly partitioning the samples 
into sub-sets, taking the DFT of 
these subsets and finally 
reconstructing the DFT from the 
intermediate results. The first step 
is to define the subsets.  Suppose 
that we have a partitioning It (t = 0, 
1, …, r −1) which defines G 
subsets with It elements in their 
respective subsets.  The original 
sequence can then be written as 
given by the first formula on this 
slide.  In the second step, we 
normalize the powers of z in each 

subset It, as shown by the second formula.  Finally, we replace z by wN
k for compact notation. 

 

 

Slide 8.8 

Using the notation from the 
previous slide, we can express a 
sequence of N samples as a 
composition of two sub-sequences 
N1 and N2 such that N = N1 N2.  
The original sequence is divided 
into N2  sequences In1 = {n2 N1 + 
n1} with n2=0, 1, …, N2, as given 
by the formula for Xk, (8.1).
Note that ,  as  in 
(8.2).  Substituting (8.2) into
(8.1), we obtain an expression 
for Xk that consists of N1 DFTs of 
length N2.  Coefficients  are 

called “twiddle factors.” 

 

 

 

 

 

 

The Divide and Conquer Approach (Cont.)

 Procedure:
– Consider sub-sets of the initial sequence
– Take the DFT of these sub-sequences
– Reconstruct the DFT from the intermediate results

8.7

 #1: Define: It, t = 0, …, r – 1 partition of {0, …, N – 1} that defines G 
different subsets of the input sequence

 #2: Normalize the powers of z w.r.t. x0t in each subset It

– Replace z by wN
k in the inner sum

1 1

0 0

( )
t

N r
i i

i i
i t i I

X z x z x z

0

0

1

0

( ) t

t

r
i i

i i
t t

X z z x z

Cooley-Tukey Mapping

 Consider decimated versions of the initial sequence, N = N1·N2

8.8

n1 = 0, …, N1 – 1;   n2 = 0, …, N2 – 1n1
I = {n2·N1 + n1}

 Equivalent description:

(8.1)

(8.2)

 Substitute (2) into (1)

DFT of length N2

1 2
1 2 1

2 1 1

1 2
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0 0
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n k n N k
k N n N n N
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Slide 8.9 

The result from the previous slide 
can be re-written by introducing 

 as a short notation for the k  

samples Xk can be expressed as 
shown on the slide. Given that the 
partitioning of the sequence N = 
N1∙N2,  can be taken modulo 
N2.  This implies that all of the Xk 
for k being congruent modulo N2 
are from the same group of N1 
outputs of .  This 
representation is also known as 
Cooley-Tukey mapping.  
Equivalently, Xk can be described 

by the formula on the bottom of the slide, by taking N2 DFTs of length N1 and applying them to 
.  The Cooley-Tukey mapping allows for practical implementation of the DFT. 

 

 

Slide 8.10 

The Cooley-Tukey FFT can be 
graphically illustrated as shown on 
this slide for N =15 samples [1]. 
The computation is divided into 
length-3 (N1=3) and length-5 (N2 
=5) DFTs.  The first stage (inner 
sum) computes three 5-point 
DFTs, the second stage performs 
multiplication by the twiddle 
factors, and the third stage (outer 
sum) computes five 3-point DFTs 
to combine the partial results.  Note 
that the ordering of the output 
samples (indices) is different from 
the ordering of the input samples, 

so re-ordering is needed to match the corresponding samples. 

 

 

 

 

Cooley-Tukey Mapping (Cont.)

 Y can be taken modulo N2

8.9

n1,k

Define: Y = kth output of n1
th length-N2 DFTn1,k

 Equivalent description:

k = k1N2 + k2
k1 = 0, …, N1 – 1
k2 = 0, …, N2 – 1

All the Xk for k being congruent 
modulo N2 are from the same 
group of N1 outputs of Yn1,k

Y = Y since k can be taken modulo N2n1,k n1,k2

From N2 DFTs of length N1 applied to Y’n1,k2Y’n1,k2

1
1

1

1

1

,
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N
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k n k N
n

X Y W
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Cooley-Tukey Mapping, Example: N1 = 5, N2 = 3
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x0 DFT-5

DFT-5

DFT-5

DFT-3
DFT-3

DFT-3
DFT-3

DFT-3

1-D mapped 
to 2-D

1

N1 = 3 DFTs of 
length N2 = 5

2 Twiddle-factor 
multiply

3 N2 = 5 DFTs of 
length N1 = 3

4

x4

x9

x14

x13

x12
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x10

x0

x1
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x3
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[1] P. Duhamel and M. Vetterli, "Fast Fourier Transforms - A Tutorial Review and a State-of-the-art," 
Elsevier Signal Processing, vol. 4, no. 19, pp. 259-299, Apr. 1990.

[1]

th
output of the n1

th DFT.  Frequency 
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Slide 8.11 

This slide shows the 1D to 2D 
mapping procedure for the cases of 
N1=3, N2=5 and N1 =5, N2=3. 
The samples are organized 
sequentially into N1 columns and 
N2 rows, column by column.  As 
shown on the slide, N1 N2 =3 5 
and N1 N2=5 3 are not the same, 
and one cannot be obtained from 
the other by simple matrix 
transposition. 

 

 

 

 

Slide 8.12 

For the special case of N1=2, N2 
=2 N 1 divides the input sequence 
into the sequences of even and odd 
samples. This partitioning is called 
“decimation in time” (DIT).  The 
two sequences are given by the 
equations on this slide. Samples Xk2 
and Xk2+N/2 are obtained by radix-2 
DFTs on the outputs of N/2-long 
DFTs.  Weighting by twiddle 
factors (highlighted by the dashed 
boxes) is needed for the Xk2 
sequence. 

 

 

 

 

 

 

 

 

 

N1 = 3, N2 = 5 versus N1 = 5, N2 = 3

8.11

x12x9x6x3x0
x13x10x7x4x1
x14x11x8x5x2

x10x5x0
x11x6x1
x12x7x2
x13x8x3
x14x9x4

 N1 = 3, N2 = 5  N1 = 5, N2 = 3

x4x3x2x1x0 x8x7x6x5 x12x11x10x9 x14x13

 Original 1-D sequence

1-D to 2-D mapping

 1D-2D mapping can’t be obtained by simple matrix transposition

2 2 2 2

2 2 2

2 2

/2 1 /2 1

/2 2 /2 2 1 /2
0 0

· ·
N N

n k n k
N k n N N n N

n n

X x W W x W

2 2 2 2 2

2 2 2

2 2

/2 1 /2 1

2 /2 2 1 /2
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· ·
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k n N N n N
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Radix-2 Decimation in Time (DIT)

 N1 = 2, N2 = 2N 1 divides the input sequence into the sequence of 
even- and odd-numbered samples (“decimation in time” (DIT))

8.12

 Xk2 and Xk2+N/2 obtained by 2-pt DFTs on the outputs of length 
N/2 DFTs of the even- and odd-numbered sequences, one of 
which is weighted by twiddle factors
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Slide 8.13 

The previously described 
decimation-in-time approach is 
graphically illustrated on the left for 
N=8. It consists of 2 DFT-4 
blocks, followed by twiddle-factor 
multiplies and then N/2=four 
DFT-2 blocks at the output.  The 
top DFT-4 block takes only even 
samples {x2i} while the bottom 
block takes only odd samples 
{x2i+1}.  By reversing the order of 
the DFTs (i.e., moving the 2-point 
DFTs to the first stage and the 
N/2-point DFTs to the third stage), 
we get decimation in frequency 

(DIF), as shown on the right.  The output samples of the top DFT-4 block are even-ordered 
frequency samples, while the outputs of the bottom DFT-4 blocks are odd-ordered frequency 
samples, hence the name “decimation in frequency.”  Samples must be arranged, as shown on the 
slide, to ensure proper decimation in time/frequency. 

 

 

Slide 8.14 

For compact representation, signal-
flow-graph (SFG) notation is 
adopted. Weighed edges represent 
multiplication while vertices 
represent addition.  A delay by k 
samples is annotated by a z k along 
the edge.  This simple notation 
allows for quick modeling and 
comparison of various FFT 
architectures. 

 

 

 

 

 

 

 

 

Decimation in Time and Decimation in Frequency

8.13
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DFT-2

DFT-2
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 Reverse the role of N1, N2 (duality between DIT and DIF)

N1 = 2 DFTs of 
length N2 = 4

Twiddle-
factor 
multiply

N2 = 4 DFTs 
of length 
N1 = 2

N2 = 4 DFTs of 
length N1 = 2

Twiddle-
factor 
multiply

N1 = 2 DFTs 
of length 
N2 = 4

Decimation in Time (DIT) Decimation in Frequency (DIF)

Signal-Flow Graph (SFG) Notation

 In generalizing this formulation, it is most convenient to adopt a 
graphic approach
 Signal-flow-graph notation describes the three basic DSP 

operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n] + y[n]

x[n]
a

a·x[n]

x[n] x[n  k]
z k

8.14



152  Chapter 8 
 

Slide 8.15 

Using the SFG notation, a radix-2 
butterfly can be represented as 
shown in this slide.  The 
expressions for decimation in time 
and frequency can be further 
simplified by taking the common 
expression B W and by rewriting 
A W–B W as (A–B) W.  This 
reduces the number of multipliers 
from 2 to 1.  As a result of 
expression sharing, both the DIT 
and the DIF operations can be 
computed with just 1 complex 
multiplier and 2 complex adders. 

 

 

 

 

 

 

 

Radix-2 Butterfly

 It does not make sense to 
compute B·W twice, Z = B·W

8.15

Decimation in Time (DIT) Decimation in Frequency (DIF)
X = A + B·W
Y = A – B·W

A

B

X

YW

X = A + B
Y = (A – B)·W

A

B

X

YW

Z = B·W
X = A + Z
Y = A – Z

1 complex mult
2 complex adds

X = A + B
Y = (A – B)·W

1 complex mult
2 complex adds

Abbreviation: complex mult = c-mult

Radix-4 DIT Butterfly

 Multiply by “j”  swap Re/Im, possibly a negation

8.16

A

B

C

D

V

W

X

YWd

V = A + B∙Wb + C∙Wc + D∙Wd

W = A – j∙B∙Wb – C∙Wc + j∙D∙Wd

X = A – B∙Wb + C∙Wc – D∙Wd

Y = A + j∙B∙Wb – C∙Wc – j∙D∙Wd

V = A + B’ + C’ + D’

W = A – j∙B’ – C’ + j∙D’

X = A – B’ + C’ – D’

Y = A + j∙B’ – C’ – j∙D’

B’ = B∙Wb

C’ = C∙Wc

D’ = D∙Wd

3 c-mults

3 c-mults

12 c-adds

1 radix-4 BF is equivalent to 4 radix-2 BFs

3 c-mults 4 c-mults

12 c-adds 8 c-adds

Reduces to 8 c-adds with 
intermediate values:

A + C’

A – C’

B’ + D’

j∙B’ – j∙D’

 

Slide 8.16 

Similarly, the radix-4 butterfly can 
be represented using a SFG, as 
shown in this slide.  The radix-4 
butterfly requires 3 complex-
multiply and 12 complex-add 
operations.  Taking into account the 
intermediate values (A + C’, A − C’, 
B’ + D’, and j∙B’ − j∙D’), the number 
of add operations can be reduced 
from 12 to 8.  In terms of numerical 
complexity, one radix-4 operation is 
roughly equivalent to 4 radix-2 
operations.  The numbers of atomic 
add and multiply operations can be 
used for quick comparison of 

different FFT architectures, as shown on the slide. 
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Slide 8.17 

Radix-4 is numerically simpler than 
radix-2 since it requires the same 
number of additions but only needs 
75% the number of multipliers.  
Higher radices (>4) are also 
possible, but the use of higher 
radices alone or mixed with lower 
radices has been largely unexplored. 
Radix 2 and 4 are most commonly 
in FFT implementations.  The 
computational complexity of an 
FFT can be quickly estimated from 
the number of multipliers, since 
multipliers are much larger than 
adders, which is O(N log2N).  

These estimates can be further refined by also accounting for the number of adders. 

 

 

Slide 8.18 

Considering the number of multiply 
and add operations, we can quickly 
estimate the numerical complexity 
of an FFT block for varying 
numbers of points.  The table 
compares FFTs with 256, 512, and 
4,096 points for radices of 2, 4, 8, 
and 16.  We can see that the 
number of real multipliers 
monotonically decreases with 
increasing radix while the number 
of adders has a minimum as a 
function of radix.  The number of 
multipliers and adders are of the 
same order of magnitude, so we can 

quickly approximate the hardware cost by the number of multipliers.  Also of note is that the 
number of points N dictates the possible radix factorizations.  For example, N=512 can be realized 
with radix 2 and radix 8.  Mixed-radix implementations are also possible and offer more degrees of 
freedom in the implementation as compared to single-radix designs.  Mixed-radix realizations will be 
discussed in Part IV of the book. 

 

 

 

Comparison of Radix-2 and Radix-4

 Radix-4 has about the same number of adds and 75% the number 
of multiplies compared to radix-2

 Higher radices
– Possible, but rarely used (complicated control)
– Additional frequency gains diminish for r > 4

 Computational complexity:
– Number of mults = reasonable 1st estimate of algorithmic 

complexity
M = logr(N)  Nmults = O(M·N)

– Add Nadds for more accurate estimate

 1 complex mult = 4 real mults + 2 real adds
8.17

FFT Complexity

8.18

N FFT Radix # Re mults # Re adds
256 2 4096 6,144
256 4 3072 5,632
256 16 2,560 5,696
512 2 9,216 13,824
512 8 6,144 13,824

4096 2 98,304 147,456
4096 4 73,728 135,168
4096 8 65,536 135,168
4096 16 61,440 136,704

Decreases 
monotonically 

with radix 
increase

Decreases, 
reaches min, 

increases

For M = logr(N)
Nmult = O(M·N)
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Slide 8.19 

Further simplifications are possible 
by observing regularity in the values 
of the twiddle factors. This slide 
illustrates twiddle factors for N =8. 
We can see that w8

0, w8
2, w8

4, and w8
6 

reduce to trivial multiplications by 
±1 and ±j, which can be 
implemented with simple sign 
inversion and/or swapping of real 
and imaginary components.  Using 
these observations leads to a 
simplified implementation and 
reduced hardware area. 

 

 

 

Slide 8.20 

The SFG diagram of an 8-point 
FFT is illustrated here. With a 
radix-2 implementation, an N-point 
FFT requires log2(N) stages. Each 
stage has N/2 butterflies. The 
overall complexity of the FFT is 
N/2·log2(N) butterfly operators. 
The input sequence has to be 
ordered as shown to produce the 
ordered (0, 1, …, N –1) output 
sequence. 

 

 

 

 

 

 

 

 

 

 

Further Simplifications

8.19
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X0

W
n = 1, k = 1 in this example

 Example: N = 8

W8
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W8
6

W8
7

 Considerably simpler
– Sign inversion
– Swap Re/Im

(or both)
Re

Im

2 nkj
NW e

The Complete 8-Point Decimation-in-Time FFT

8.20

x0

x4

x2

x6

x1

x5

x3

x7

X0

X1

X2

X3

X4

X5

X6

X7



Time-Frequency Analysis: FFT and Wavelets  155 
 

Slide 8.21 

This slide shows the radix-2 
organization of the FFT algorithm. 
Each branch is divided into two 
equal radix-2 partitions. Due to the 
power-of-2 factorization, an N-
point FFT requires log2(N) butterfly 
stages. The total numerical 
complexity for an N-point FFT is 
N∙log2(N). As discussed previously, 
radix-2 is a simple implementation 
approach, but may not be the least 
complex. Multiple realizations have 
to be considered for large N to 
minimize hardware area.  

 

 

 

Slide 8.22 

Higher radices reduce the number 
of operations as shown in the table 
on this slide. The radix-r design has 
a complexity of N·logr(N). Higher 
radices also come with a larger 
granularity of the butterfly 
operation, making them suitable 
only for N=2r. To overcome the 
granularity issue, implementations 
with mixed radices are possible. 
This is also known as the split-radix 
FFT (SRFFT). The SRFFT has the 
lowest numerical complexity (see 
table), but it is the most complex to 
design due to a variety of building 

blocks. While radix-2 may not give a lower operation count, its structure is very simple. The 
modularity of the radix-2 architecture makes it attractive for hardware realization. For this reason, 
radix-2 and radix-4 realizations are the most common in practice. In Part IV, we will discuss an 
optimized SRFFT implementation with radices ranging from 2 to 16 to be used in a multi-band 
radio DSP front end. 

 

 

 

FFT Algorithm

N2 complex multiplications and additions

N 2/4 complex multiplications 
and additions

N 2/4 complex multiplications 
and additions

N 2/16 complex multiplications 
and additions

N 2/16 complex multiplications 
and additions

N
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Higher Radix FFT Algorithms

Radix-2 is the most symmetric structure and best suited for folding

Radix 2 Radix 4

N·log2(N) complexity N·log4(N) complexity

FFT 
size  

Real Multiplications Real Additions
Radix Radix

N 2 4 8 srfft 2 4 8 srfft
64 264 208 204 196 1032 976 972 964
128 712 516 2504 2308
256 1800 1392 1284 5896 5488 5380
512 4360 3204 3076 13566 12420 12292

8.22
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Slide 8.23 

This slide shows the direct 
realization of a 512-point FFT 
architecture targeting a 2.5GS/s 
throughput. The design consists of 
4360 multipliers and 13566 adders 
that are organized in nine stages. This 
direct-mapped design will occupy 
several square millemeter of silicon 

kind of design.  This simple design 
took about 8hr to synthesize 
using standard chip design tools, 
because of difficulty in meeting the 

timing. The top-level retiming operation on the design did not converge after 2.5 days!  

The FFT is a good example of an algorithm where high sample rate can be traded off for area 
reduction. The FFT takes in N samples of discrete data and produces N output samples in each 
iteration. Suppose, the FFT hardware functions at clock rate of fclk, then the effective throughput 
becomes N· fclk samples/second. For N =512 and f clk =100MHz, we would have an output sample 
rate of 51.2Gs/s which is larger than required for most applications. A common approach is to 
exploit the modular nature of the architecture and re-use hardware units like the radix-2 butterfly. A 
single iteration of the algorithm is folded and executed in T clock cycles instead of a single cycle. 
The number of butterfly units would reduce by a factor of T, and will be re-used to perform distinct 
operations in the SFG in each of these T cycles. The effective sample rate now becomes N·fclk/T. 
More details on folding will be discussed in Part III of the book.  

To estimate power and performance for an FFT it is best to explore hierarchy. We will next 
discuss hierarchical estimation of power and performance of the underlying butterfly units. 

 

 

 

 

 

 

 

 

 

 

 

512-pt FFT: Synthesis-Time Bottleneck

 Direct-mapped architecture took about 8 hours to synthesize, 
retiming was unfinished after 2.5 days
 It is difficult to explore the design space if synthesis is done for 

every implementation

43
60

 R
ea

l M
ul

tip
lic

at
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ns 13566 Real Additions

8.23

are making it practically infeasible. 
The logic synthesis process itself will 
be extremely time intensive for this 
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Slide 8.24 

Exploiting design hierarchy is 
essential for efficient hardware 
mapping and architectural 
optimization. Each stage of the FFT 
can be treated as a combination of 
radix-2 modules. An 8-point FFT 
module is shown in the slide to 
illustrate this concept. The radix-2 
blocks are highlighted in each of the 
three stages. The butterfly stages 
have different twiddle factors and 
wiring complexity. Modeling area, 
power, and performance of these 
butterfly blocks aids in estimation 
of the FFT hardware. 

 

 

Slide 8.25 

Each radix-2 butterfly unit consists 
of 4 real multipliers and 6 real 
adders. The area of the butterfly 
block is modeled by adding up the 
areas of the individual components. 
A better/smaller design can be 
made if multipliers are implemented 
with carry-save adders (CSAs). 
These implementation parameters 
are included in the top-level model 
of the radix-2 block in order to 
evaluate multiple architectural 
realizations. The interconnect area 
can be also included in these block-
level estimates. This concept can be 

hierarchically extended. 

 

 

 

 

 

 

Exploiting Hierarchy
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 Each stage can be treated as a combination of butterfly-2 
structures, with varying twiddle factors
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Slide 8.26 

In addition to the baseline radix-2-
butterfly block, we need to estimate 
hardware parameters for twiddle 
factors. The twiddle factors are 
typically stored in memory and read 
out when required as inputs for the 
butterfly units. Their storage 
contributes substantially to the area 
of the whole design and should be 
optimized as far as possible. In a 
512-point FFT, there are 256 
twiddle factors, but there are 
regularities that can be exploited. 
First, the twiddle factors are 
symmetric around index 128, so we 

need to consider only 128 factors. Second, among these 128 factors, there is significant regularity in 
the number of non-zero bits in the sine and cosine terms, as shown on the plots. The histograms 
indicate that 5 non-zero bits occur with the highest frequency. These observations can be used to 
develop analytical models for the twiddle-factor area estimation. 

 

 

Slide 8.27 

Twiddle factor area estimation can 
be performed by calculating the 
cost of each non-zero bit. Logic 
synthesis is performed and the area 
estimates are used to develop 
analytical models for all possible 
coefficient values.  Results from 
this modeling approach are shown 
on this slide for the sine term with 
non-zero sine bits ranging from 1 
to 4 and non-zero cosine bits 
varying from 1 to 4 (the sub-plots).  
The results show a 5% error 
between the synthesis and analytical 
models. 

 

 

 

 

Twiddle-Factor Area Estimation

 Non-zero bits range from 0-8 for the sine and cosine term
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Area Estimates from Synthesis

1 2 3 4 5

4000

6000

8000

10000

12000

14000

Number of non-zero bits in the sine term

A
re

a

 

 

Estimated Area
Synthesized Area

1 2 3 4 5
6000

7000

8000

9000

10000

11000

12000

13000

Number of non-zero bits in the sine term

A
re

a

 

 

Estimated Area
Synthesized Area

0 1 2 3

2000

4000

6000

8000

10000

Number of non-zero bits in the sine term

A
re

a

 

 

Estimated Area
Synthesized Area

2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3
x 104

Number of non-zero bits in the sine term

A
re

a

 

 

Estimated Area
Synthesized Area

cosine nz bits = 1 cosine nz bits = 2

cosine nz bits = 3 cosine nz bits = 4
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Slide 8.28 

The butterfly structure is also 
analyzed for timing since the 
butterfly performance defines the 
performance of the FFT. The 
critical path in each stage is equal to 
the delay of the most complex 
butterfly computation in that stage 
(twiddle factors and wiring 
included). There could be variations 
in delay across stages, which would 
necessitate retiming. For an 8-point 
design in a 90nm CMOS 
technology, the critical-path delay 
varies between 1.6ns and 2ns per 
stage. Retiming or pipelining can 

then be performed to balance the path delay to improve performance and/or to reduce power 
through voltage scaling. 

 

 

Slide 8.29 

Finally, we can create a compact 
analytical model for energy 
consumption. Energy estimation is 
limited by accurate estimation of 
activity factors on the switching 
nodes in the design. The activity 
factor can be estimated by switch-
level simulations in MATLAB or by 
gate-level simulations in the 
synthesis environment, both of 
which are very time consuming. 
Instead, we can derive analytical 
expressions for energy in each 
butterfly as a function of input 
switching activity and the number 

of non-zero bits in the twiddle factor. One such computation is highlighted in the slide for the 
second-stage butterfly, which takes p2(1) and p2(3) as inputs. This approach is propagated through 
the entire FFT to compute the transition probabilities of the intermediate nodes. With node 
switching probabilities, area (capacitance), and timing information, we can estimate the top-level 
power/energy of the datapath elements. 

 

 

FFT Timing Estimation

 Critical path in each stage equal to delay of most complex butterfly
 For 3 stages delay varied between 1.6 ns to 2 ns per stage (90-nm CMOS)
 Addition of pipeline registers between stages reduces the delay
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 Challenge: Difficult to estimate hierarchically. Carrying out switch level simulations in 
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 Solution: Derive analytical expressions for energy in each butterfly as a function of 
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Slide 8.30 

The Fourier transform is a tool that 
is widely used and well known to 
electrical engineers. However, it is 
often overlooked that the Fourier 
transform only gives us information 
about the spectral content of the 
signal while sacrificing time-domain 
information. The Fourier transform 
of a signal provides information 
about which frequencies are present 
in the signal, but it can never tell us 
which frequencies are present in the 
signal at which times. Thus, the 
Fourier transform cannot give an 
accurate representation of a signal 

whose spectral content changes with time.  These signals are also known as non-stationary signals. 
There are many examples of non-stationary signals, such as neural action potentials and seismic 
signals. These signals have time-varying spectra. In order to accurately represent these signals, a 
method to analyze time-varying spectral content is needed. The wavelet transform that we will 
discuss in the remaining portion of this chapter is one such tool for time-frequency analysis. 

 

Slide 8.31 

Let us look at an example that 
illustrates how the Fourier 
transform cannot accurately 
represent time-varying spectral 
content. We consider two signals 
x1(t) and x2(t) described as follows: 

x1(t) = 2∙sin(2 ∙50t) for 0 < t ≤ 6 
and x1(t) = 2∙sin(2 ∙120t) for 6 < t 
≤ 12 

Thus, in each of  these individual 
periods the signal is a monotone.  

x2(t) = sin(2 ∙50t) + sin(2 ∙120t) 
In this signal both tones of  50Hz 

and 120Hz are present at all times.   

The plots in this slide show the power spectral density (PSD) of  x1 and x2. As seen from the 
plots, both signals have identical PSDs although they are completely different signals. Thus, the 
Fourier transform is not a good way to represent signal x1(t), since we cannot express the change of  
frequency with time seen in x1(t). 

 

Shortcomings of the Fourier Transform (FT)

 FT gives information about the spectral content of the signal but 
loses all time information
– FT assumes all spectral components are present at all times
– Time-domain representation does not provide information 

about spectral content of the signal

 Non-stationary signals whose spectral content changes in time 
cannot be supported by the Fourier-domain representation
– Non-stationary signals are abundant in nature 
– Examples: Neural action potentials, seismic signals, etc.

 In order to have an accurate representation of these signals, 
a time-frequency representation is required

 In this section, we review the wavelet transform and analyze VLSI 
implementations of the discrete wavelet transform 

8.30

Ambiguous Signal Representation with FT

8.31

 The power spectral density (PSD) is similar, illustrating the 
inability of the FT to handle non-stationary spectral content

0 < t  6s 
6s < t  12s 

2·sin(2 ·50t) 
2·sin(2 ·120t) 

x1(t) =

x2(t) = sin(2 ·50t) + sin(2 ·120t)

Not all spectral
components 
exist at all times

X1( f ) X2( f )
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Slide 8.32 

A possible solution to the previous 
limitation is to apply windowing 
functions to divide up the time 
scale into multiple segments and 
perform FFT analysis on each of 
the segments. This concept is 
known as the short-time Fourier 
transform (STFT). It was the 
subject of considerable research for 
about 30 years, from the 1940s to 
the 1970s, where researchers 
focused on finding suitable 
windowing functions for a variety 
of applications. Let’s illustrate this 
with an example. 

 

 

Slide 8.33 

The STFT executes FFTs on time-
partitions of  a signal x(t). The time 
partitioning is implemented by 
multiplying the signal with different 
time-shifted versions of  a window 
function ω(t– ), where  is the time 
shift. In the example from Slide 
8.31, we can use a window that is 6 
seconds wide. When the window is 
at =0, the STFT would be a 
monotone at 50Hz. When the 
window is at =6, the STFT would 
be a monotone at 120Hz. 

 

 

 

 

 

 

 

 

Support for Non-Stationary Signals

 A work-around: modify FT to allow analysis of non-stationary 
signals by slicing in time – Short-time Fourier transform (STFT)

– Segment in time by applying windowing functions and analyze 
each segment separately

– Many approaches (between late 1940s and early 1970s) 
differing in the choice of windowing functions

8.32

Short-Time Fourier Transform (STFT)

 Time-frequency representation

8.33

w(t): windowing function

: translation parameter

 Multiply signal by a window and then take a FT of the result 
(segment into stationary short-enough pieces)
– S( , f ) is STFT of x(t) at frequency f and translation 

 Translate the window to get spectral content of signal at 
different times
– w(t  ) does time-segmentation of x(t)

* 2( , ) ( ) ( ) j ftS f x t w t e dt

* 2( ) ( , ) ( ) j ft

f
x t S f w t e d df
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Slide 8.34 

The problem with the approach 
described on the previous slide is 
that, since it uses the same 
windowing function, it assumes 
uniform resolution for all 
frequencies. There exists a 
fundamental tradeoff  between the 
frequency and the time resolution. 
When a signal has high-frequency 
content for a short time span, a 
narrow window is needed for time 
resolution, but this results in wider 
frequency bands and, hence, poor 
frequency resolution. On the other 
hand, if  the signal has low-

frequency content of  longer time span, a wider window is needed, but this results in narrow 
frequency bands and, hence, poor time resolution. This time-frequency resolution tradeoff  is a 
demonstration of  Heisenberg’s uncertainty principle. The continuous wavelet transform, which we 
shall now describe, provides a way to avoid the problem of  fixed resolution posed by the STFT. 
 

 

Slide 8.35 

This slide mathematically illustrates 
the continuous wavelet transform 
(CWT). The wavelet function Ψ* 
plays a dual role of  the window and 
basis functions. Parameter b is the 
translation parameter (providing 
windowing) and parameter a is the 
scaling parameter (providing multi-
resolution). The wavelet coefficients 
are evaluated as the inner products 
of  the signal with the scaled and 
translated versions of  Ψ*, which is 
referred to as the mother wavelet. 
Shifted and translated versions of  
the mother wavelet form the basis 

functions for the wavelet transform. For a complete theoretical representation of  a signal, we need 
infinitely many values of  a and b, which is not practically feasible. For practical realization, a and b 
are varied in finite steps based on a priori knowledge of  the signal in a way that provides adequate 
resolution. The basis functions implement multi-resolution partitioning of  the time and frequency 
scales as shown on the plot on the right. The practical case of  simple binary partitioning is shown in 
the plot. 

 

Heisenberg's Uncertainty Principle

 The problem with previous approach is uniform resolution for all 
frequencies (same window for x(t))

 There is a tradeoff between the resolution in time and frequency
– High-frequency components for a short time span require a 

narrow window for time resolution, but this results in wider 
frequency bands (cost: poor frequency resolution)

– Low-frequency components of longer time span require a wider 
window for frequency resolution, but this results in wider time 
bands (cost: poor time resolution)

 This is an example of Heisenberg's uncertainty principle
– FT is an extreme case where all time domain information is lost 

to get precise frequency information
– STFT offers fixed time/frequency resolution, which needs to be 

chosen keeping the above tradeoff in mind
8.34

*1
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t b
W a b x t dt

aa

Continuous Wavelet Transform

 Addresses the resolution problem of STFT by evaluating the 
transform for scaled versions of the window function 
– Varying time and frequency resolutions are varied by using 

windows of different lengths
– The transform is defined by the following equation

– a > 0, b: scale and translation parameters

 Design problem: find the range of a and b
– Ideally, infinitely many values of a and b would be required to 

fully characterize the signal
– Can limit the range based on a priori knowledge of the signal

Mother wavelet
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Slide 8.36 

This slide gives a simplified 
illustration of  the time-frequency 
scales used in Fourier and wavelet 
analyses [2]. The Fourier transform 
assumes the presence of  all 
frequency components (basis 
functions) at all times, as shown on 
the left. The wavelet transform 
removes this restriction to allow for 
the presence of  only a subset of  
the frequency components at any 
given time. Wavelet partitioning 
thus allows for better time-
frequency representation of  non-
stationary signals. 

The plot on this slide illustrates the difference between the wavelet transform and the STFT. The 
STFT has a fixed resolution in the time and the frequency domain as shown in the plot on the left. 
The wavelet transforms overcomes this limitation by assigning higher time resolution for higher 
frequency signals. This concept is demonstrated in the plot on the right. 

 

 

Slide 8.37 

While the CWT provides multiple 
time-frequency resolutions, it does 
not generally provide concise signal 
representation. This is because the 
inner product with the wavelet at 
different scales carries some 
redundancy. In other words, basis 
functions are non-orthogonal. In 
order to remove this redundancy we 
need to construct a set of  
orthogonal basis functions. Several 
wavelets have been derived that 
meet this requirement. The Morlet 
wavelet shown on this slide is an 
example of  such a wavelet. It is a 

constant subtracted from a plane-wave and multiplied by a Gaussian window. The wavelet provides 
an orthonormal basis, thereby allowing for efficient signal representations. In some sense, 
application-specific wavelets serve as matched filters that seek significant features of  the signal. The 
wavelet functions need to be discretized for implementation in a digital chip. 

 

Fourier vs. Wavelet Transform

Fourier basis functions Wavelet basis functions
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[2] A. Graps, "An Introduction to Wavelets," IEEE Computational Science and Engineering, pp. 50-61, 
Summer 1995.

[2]

Orthonormal Wavelet Basis

8.37

Morlet Wavelet
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 The Morlet wavelet is an 
example of an orthonormal
wavelet

 Wavelet representation, in general, has redundant data 
representation

 We would like to find a mother wavelet that when translated and 
scaled leads to orthonormal basis functions

 Several orthonormal wavelets have been developed 
– Morlet, Meyer, Haar, etc.
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Slide 8.38 

A discrete-wavelet series can be 
obtained by discretizing parameters 
a and b in the mother wavelet. The 
scaling parameter is quantized as a 
=2 j and the translation parameter is 
quantized as b =k∙2 j. Since the 
parameters are varied in a dyadic 
(powers-of-two) series, the discrete 
wavelet series is also referred to as 
the dyadic discrete wavelet series. 

Discretization of  the mother 
wavelet is necessary, but not 
sufficient for digital 
implementation. The input is still a 
continuous-time signal and it also 

needs to be discretized. Further, the quantization of  a and b reduces the infinite set of  continuous 
values of  a and b to an infinite set of  discrete values. This means that we still have to evaluate the 
inner products for an infinite set of  values. In order to arrive at a digital implementation of  the 
wavelet transform, we seek an implementation that efficiently limits the numbers of  scales required 
for the wavelet transform. As such, the transform needs to be modified to support discrete-time 
implementation. 

 

 

Slide 8.39 

In practice, each wavelet function 
can be seen as a band-pass filter of 
progressively narrower bandwidth 
and lower center frequencies. Thus 
the wavelet transform can be 
implemented with constant Q filter 
banks. In the example shown on 
the slide, bandwidth of 1 is twice 
the bandwidth of 2, etc. The 
standard wavelet series ( 1, 2, 3, 

4, etc.) nicely covers all but very 
low frequencies; taken to the limit, 
an infinitely large n is needed to 
represent DC. To overcome this 
issue, a cork function  is used to 

augment wavelet spectra at low frequencies. 

 

 

Discrete Wavelet Series

 We need discrete-domain transforms for digital implementation
 Discretize the translation and scale parameters (a, b)
– Example: Daubechies (a = 2j, b = 2jk)

 Can this be implemented on 
digital a circuit?
– Input signal is not yet discretized
– Number of scaling and translation parameters are still infinite

 Key to efficient digital implementations
– Need to limit the number of scales used in the transform
– Allow support for discrete-time signals 
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Towards Practical Implementations

 How to limit the number of scales for analysis?

 Each wavelet is a like a constant – Q filter

 Scaling function
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Slide 8.40 

Mallat’s wavelet is one of the most 
attractive wavelets for digital 
implementation, because it 
describes the wavelet transform in 
terms of digital filtering and 
sampling. The filtering is done 
iteratively using low-pass (h) and 
high-pass (g) components, whose 
sampling ratios are powers of 2. 
The equations define high-pass and 
low-pass filtering operations. A 
cascade of HP/LP filters leads to 
simple and modular digital 
implementations. Due to the ease 
of implementation, this is one of 

the most popular forms of the discrete wavelet transform. 

 

Slide 8.41 

The concept described on the 
previous slide is illustrated here in 
more detail [3]. The filter bank for 
the wavelet transform is shown on 
the right. The original signal, which 
has a bandwidth of  (0, π) (digital 

through two half-band filters.  The 
high-pass filter has a transfer 
function denoted by G(z) and 
impulse response g(n). The low-pass 
filter has a transfer function 
denoted by H(z) and an impulse 
response denoted by h(n). The 
output of  G(z) has a bandwidth 

from (π/2, π), while the output from H(z) occupies (0, π/2). The down-sampled output of  the first-
stage HPF is the first level of  wavelet coefficients.  The down-sampled LPF output is applied to the 
next stage, which splits the signal content into frequency bands (0, π/4) and (π/4, π/2).  At each 
stage, the HPF output calculates the DWT coefficients for that level/stage.  

This architecture is derived from the basics of  quadrature-mirror filter theory. In his seminal 
paper on the implementation of  wavelets, Mallat showed that the wavelet transform of  a band-
limited signal can be implemented using a bank of  quadrature-mirror filters.  

 

 

Mallat’s Multi-Resolution Analysis

 Describes wavelet transform in terms of digital filtering and 
sampling operations
– Iterative use of low-pass and high-pass filters, 

subsequent down-sampling by 2x

8.40
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 Leads to an easier implementation where wavelets are 
abstracted away!

The popular form of DWT
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Mallat’s Discrete Wavelet Transform

 Mallat showed that a sub-
band coding structure can 
implement the wavelet 
transform

 The resultant filter structure 
is the familiar Quadrature
Mirror Filter (QMF)

 Filter coefficients are decided 
based on the wavelet being 
used
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[3] S. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 7, July 1989. 
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Slide 8.42 

Let us illustrate the design of the 
filter bank with the Haar wavelet 
filter. It can be implemented using 
the filter bank discussed in the 
previous slide. The filters for the 
Haar wavelet are simple 2-tap FIR 
filters given by g(n)=1/sqrt(2)*[1 
−1] and h(n)=1/sqrt(2)* [1 1]. 
The Haar wavelet is sometimes 
used for spike detection of neural 
signals.  

 

 

 

 

 

Slide 8.43 

This figure shows one stage of the 
Haar wavelet filter. Several stages 
are cascaded to form a Haar 
wavelet filter. The depth is decided 
based on the application. Since the 
stage shown above is replicated 
many times, any savings in 
power/area of a single stage will 
linearly affect the total filter 
power/area. Figure (a) shows the 
direct-mapped implementation of 
the wavelet filter, which consists of 
4 multipliers, 2 adders, 2 delays and 
2 down-samplers. We can exploit 
the symmetric nature of the 

coefficients in the Haar wavelet filter to convert the implementation in (a) to the one in (b), which 
uses only 1 multiplier. The number of adders, delays and down-samplers remains the same. This 
simplification in multiplication has a considerable effect on the area since the area of a multiply is 
much greater than that of an adder or register. We can also look into further possibilities for area 
reduction in adders and down-samplers. 

 

 

 

Haar Wavelet

8.42

 One of the simplest and most popular wavelets 

 It can be implemented as a 
filter bank shown on the 
previous slide

 g(n) and h(n) are 2-tap FIR 
filters with 
g(n) = [0.70701 0.7071]
h(n) = [0.70701 0.7071]

 Let us look into the design of the filter in more detail

Haar Wavelet: Direct-Mapped Implementation

8.43

(a) (b)

 We can exploit the symmetry in the coefficients to share a single 
multiplier for a stage
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 Part (a) shows direct-mapped implementation of a single stage of 
the Haar wavelet filter
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It is often desirable to interleave the filter architecture to support multiple streams.  The down-
sampler in (a) can be modified as shown in (b) to support multiple data streams. The counter is 
replicated in order to allow for the selection of  odd/even samples on each stream and to allow for 
non-continuous data for both streams. 

 

Slide 8.45 

The down-sampling operation in 
the DWT implies that half  of  the 
outputs are discarded. Since half  of  
the outputs are discarded eventually 
we can avoid half  the computations 
altogether. The “polyphase” 
implementation of  the DWT filter 
bank indeed allows us to do this.  In 
the polyphase implementation, the 
input data stream is split into odd 
and even streams upfront. The filter 
is modified such that only the 
outputs that need to be retained are 
computed. The mathematical 
formulation for a polyphase 

implementation is described as: 

H(z) = He(z2) + z 1Ho(z2), 

G(z) = Ge(z2) + z 1Go(z2). 

Polyphase Filters for DWT

The wavelet filter computes outputs for each sample, half of 
which are discarded by the down-sampler

Polyphase implementation

– Splits input to odd and even streams

– Output combined so as to generate only the output which 
would be needed after down-sampling

Split low-pass and high-pass functions as

Efficient computation strategy: reduces switching power by 50%

8.45

H(z) = He(z2) + z 1Ho(z2)

G(z) = Ge(z2) + z 1Go(z2)

Down-Sampler Implementation

8.44

(a) (b)
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 Down-sampler implementation

– Allows for selection of odd/even samples by controlling enable 
(en) signal of the 1-bit counter

 Interleaved down-sampler implementation

– Allows odd / even sample selection with different data arrival 
time for each channel

Select

Slide 8.44 

Let’s now consider the down-
sampler implementation for single 
and multiple data streams. Figure (a) 
shows the single-stream architecture. 
The multiplexer selects between the 
current (select = 0) and the previous 
(select = 1) sample of  the filter 
output. A one-bit counter toggles 
the select line each clock cycle, thus 
giving a down-sampled version of  
the input stream at the output. The 
down-sampler thus requires a 
register (N flip-flops for an N-bit 
word), a 1-bit counter (implemented 
as a flip-flop) and a multiplexer 

(~3N AND gates). Thus, the down-sampler has the approximate complexity of  a delay element (N 
flip-flops). This implementation of  the down-sampler allows us to control the sequence of  bits that 
are sent to the output, even when the data is discontinuous. A “data valid” signal can be used to 
trigger the enable of  the counter with a delay to change between odd/even bit streams.  
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The filters H(z) and G(z) are decomposed into filters for the odd and even streams. The 
polyphase implementation decreases the switching power by 50%. 

 

Slide 8.46 

Let us now examine the polyphase 
implementation of  the Haar 
wavelet. Consider the section of  the 
Haar wavelet filter highlighted by 
the red box in this figure. While the 
adder and the delay toggle every 
clock cycle, the down-sampler at 
the output of  the adder renders 
half  of  the switching energy 
wasted, as it discards half  of  the 
outputs. The polyphase 
implementation allows us to work 
around the issue of  surplus energy 
consumption. 

 

 

 

Slide 8.47 

This slide shows the value of  x (n) 
= x(n)/sqrt(2) at each clock cycle. 
The output of  the adder is x (n) + 
x (n −1) while the down-sampler 
only retains x (2n +1)+x (2n ) fo r
n = 0, 1 ,  2, … Thus half the 
outputs (marked in red) in the table 
are discarded. In the polyphase 
implementation, the input is split 
into odd and even streams as 
shown in the second table. The 
adder then operates on a divide-by-
2 clock and only computes the 
outputs that would eventually be 
retained in the first table. Thus 

there are no redundant computations, giving us an efficient implementation. 

 

 

 

Polyphase Implementation of Haar Wavelet

 Consider the highlighted section of the Haar DWT filter

8.46

x(n)

2

z-1

Level 1
DWT Coeffs.

2

z-1

1
2

x’(n)

 Due to down-sampling half of the computations are unnecessary

 Need for a realization that computes only the outputs that would 
be needed after down-sampling

Haar Wavelet: Sequence of Operations for h(n) 

 Consider the computation for h(n) in the Haar wavelet filter

 Computations in red are redundant
 Polyphase implementations

– Split input into odd / even streams
– No redundant computations performed 

8.47

x'(n) x'(1) x'(2) x'(3) x'(4) x'(5)
x'(n 1) x'(0) x'(1) x'(2) x'(3) x'(4)

x'(n) + x'(n 1) x'(1) + x'(0) x'(2) + x'(1) x'(1) + x'(0) x'(2) + x'(1) x'(5) + x'(4)
2 x'(1) + x'(0) x'(3) + x'(2) x'(5) + x'(4)

x'(2n+1) x'(1) x'(3) x'(5)
x'(2n) x'(0) x'(2) x'(4)

x'(2n) + x'(2n+1) x'(1) + x'(0) x'(3) + x'(2) x'(5) + x'(4)
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Slide 8.48 

The discrete wavelet transform 
(DWT) has several applications.  It 
is useful in neural spike sorting, in 
detection and feature-extraction 
algorithms.  DWT also provides a 
very efficient way of  image 
compression. The DWT 
coefficients need far fewer bits than 
the original image while retaining 
most of  the information necessary 
for good reconstruction of  the 
image. The 2-D DWT is the 
backbone of  the JPEG 2000 image 
compression standard. It is also 
widely used by the FBI in the 

compression of  fingerprint images. As opposed to the Fourier transform, the DWT allows us to 
choose a basis best suitable for a given application. For instance while Haar wavelet is best suitable 
for neural-spike feature extraction, the cubic-spline wavelet is most suitable for neural-spike 
detection. 

 

 

Slide 8.49 

Fast Fourier transform (FFT) is a 
well-known technique for frequency 
analysis of  stationary signals. FFT is 
a standard building block in radio 
receivers and many other 
applications. FFT is an economical 
implementation of  discrete Fourier 
transform (DFT). FFT based on 
the use of  shorter sub-sequences to 
realize DFT. FFT has a compact 
hardware realization, but does not 
work for non-stationary signals. 
Wavelet is a technique used for 
analysis of  stationary signals. 
Wavelets are based on orhonormal 

basis functions that provide varying time and frequency resolution. They can be implemented as a 
series of  decimation filters and are widely used in fingerprint recognition, image compression, neural 
spike sorting and other applications. Having analyzed basic DSP algorithms, next four chapters will 
focus on modeling and optimization of  DSP architectures. 

 

Applications of DWT

 Spike Sorting
– Useful in detection and feature extraction

 FBI fingerprints
– Efficient compression of finger prints without loosing out on 

information needed to distinguish between finger prints

 Image compression
– 2D wavelet transform provide efficient representation of 

images

 Generality of the WT lets us take a pick for the wavelet used
– Since a large number of wavelets exist, we can pick the right 

wavelet useful for the application

8.48

Summary

 FFT is a technique for frequency analysis of stationary signals
– It is a key building block in radio systems and many other apps
– FFT is an economical implementation of DFT that leverages 

shorter sub-sequences to implement DFT on N discrete samples
– Key building block of an FFT is butterfly operator, which can be 

realized with 2N radix (2 and 4 being the most common)
– FFT does not work well with non-stationary signals

 Wavelet is a technique for time-frequency analysis of non-
stationary signals
– Multi-resolution in time and frequency is used based on 

orthonormal wavelet basis functions
– Wavelets can be implemented as a series of decimation filters
– Used in applications such as fingerprint recognition, image 

compression, neural spike sorting, etc.
8.49
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Architecture Modeling and Optimized Implementation 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Slide 9.2 

DSP algorithms are defined by 
iterations of a set of operations, 
which repeat in real time to 
continuously generate the algorithm 
output [1]. More complex 
algorithms contain multiple 
independent inputs and multiple 
outputs. An iteration can be 
graphically represented using block 
diagram (BD), signal-flow graph 
(SFG), data-flow graph (DFG) or 
dependence graph (DG). These 
representations capture the signal-
flow properties and operations of 
the algorithm. The slide shows an 

example of an iteration for a 3-tap FIR filter. The inputs are x(n) and delayed versions of x(n). Each 
iteration executes 2 additions and 3 multiplications (a, b, c are operands) to compute a single output 
y(n). In the rest of the chapter we look at some of these graphical representations and their 
construction in Simulink. 

 

 

 

 

Iteration 

 Iterative nature of DSP algorithms
– Executes a set of operations in a defined sequence 
– One round of these operations constitutes an iteration
– Algorithm output computed from result of these operations

 Graphical representations of iterations [1]

– Block diagram (BD)
– Signal-flow graph (SFG)
– Data-flow graph (DFG)
– Dependence graph (DG)

 Example: 3-tap filter iteration
– y(n) = a·x(n) + b·x(n 1) + c·x(n 2),      n = {0, 1, …, }
– Iteration: 3 multipliers, 2 adders, 1 output y(n)

9.2

[1] K.K. Parhi, VLSI Digital Signal Processing 
Systems: Design and Implementation, John 
Wiley & Sons Inc., 1999. 
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Slide 9.1 

This chapter discusses various 
representations of DSP algorithms. 
We study how equations describing 
the algorithm functionality are 
translated into compact graphical 
models. These models enable 
efficient implementation of the 
algorithm in hardware while also 
enabling architectural 
transformations through matrix 
manipulations.  Common examples 
of graphical representations are 
flow graphs and block diagrams. An 
example of block diagrams using 
Simulink models will be shown at 

the end of the chapter.  
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Slide 9.3 

The slide shows the block diagram 
for the 3-tap filter discussed 
previously. The block diagram 
explicitly shows all computations 
and delay elements in the algorithm. 
This diagram is similar to an actual 
hardware implementation of the 
filter. Such block diagram 
representations are also used in 
Simulink to model DSP algorithms 
as will be shown later in the 
chapter. We next look at the more 
symbolic signal-flow graph. 

 

 

 

Slide 9.4 

Signal-flow graphs primarily 
indicate the direction of signal 
flows in the algorithm. Signal-flow 
graphs are useful in describing 
filtering operations, which are 
mainly composed of additions and 
constant multiplications. Other 
graphical methods such as block 
diagrams and data-flow graphs 
better describe DSP algorithms 
with non-linear operations. The 
nodes in the graph represent signal 
sources, sinks and computations. 
When several inputs merge at a 
node, they indicate an add 

operation. A node without an input is a signal source, while one without an output branch is a sink. 
Nodes with a single input and multiple outputs are branch nodes, which distribute the incoming 
signal to multiple nodes. Constant multiplication and delay elements are treated as linear transforms, 
which are shown directly on the edges. An example of an SFG for a 3-tap FIR is shown.  

 

 

 

 

 

Block Diagram Representation 

9.3

mult add delay/reg

y(n) = a·x(n) + b·x(n 1) + c·x(n 2),      n = {0, 1, …, }

x(n)

a b c

y(n)

 Block diagram of 3-tap FIR filter

+ z 1

z 1 z 1

++

Signal-Flow Graph Representation 

9.4

constant multiplication (a)
or register (z 1) on edges

edge

j k

 Network of nodes and edges
– Edges are signal flows or paths with non-negative # of regs

● Linear transforms, multiplications or registers shown on edges  
– Nodes represent computations, sources, sinks

● Adds (> 1 input), sources (no input), sinks (no output)

a / z 1

3-tap FIR filter signal-flow graph 
z 1 z 1

a b c

y(n)

x(n)

source node: x(n)
sink node: y(n)
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Slide 9.6 

This slide compares three 
representations of a first-order IIR 
filter. The main difference between 
block diagrams and flow graphs lies 
in the compact nature of the latter 
owing to the use of symbolic 
notation for gain and delay 
elements. The DFG differs from 
the SFG. The DFG does not 
include explicit source, sink or 
branch nodes, and depicts multiply 
operations through dedicated 
nodes. The DFG can optionally 
show the normalized computation 
time of each node in brackets. We 

use the DFG notation extensively in Chap. 11 to illustrate the automation of architectural 
transformations. A key reason for this choice is that the DFG connectivity information can be 
abstracted away in matrices (Slides 9 and 10), which are amenable to transformations. The DFG will 
be discussed at length in the rest of the chapter. 

 

 

9.5

 Transposed SFG functionally equivalent
– Reverse direction of signal flow edges  
– Exchange input and output nodes
– Commonly used to reduce critical path in design

z 1 z 1

a b c

y(n)

x(n)

Transposition of a SFG

z 1 z 1

a b c
x(n)

y(n)

Original SFG

Transposed SFG

tcrit = 2tadd + tmult

tcrit = tadd + tmult

Slide 9.5 

SFGs are amenable to transposition 
simply by reversing the direction of 
the signal flow on the branches. An 
example of transposition is shown 
in the slide for the 3-tap FIR filter. 
The transposed SFG replaces the 
branch nodes with additions and 
vice versa while maintaining the 
algorithm functionality. The input 
source nodes are exchanged with 
the output sink nodes, while the 
direction of signal flow on all the 
branches is reversed. The 
transposed SFG in the slide is 
equivalent in functionality to the 

original SFG.  The main advantage of such a transposition in FIRs is a near constant critical path 
independent of the number of filter taps (ignoring the input loading), while the original design has a 
critical path that grows linearly with the number of taps.  

Different Representations

9.6

z−1a

y(n)x(n)

SFG

x(n) y(n)

a
BD

A

B

(1)

(2)

x(n) y(n)

DFG

 Block Diagram (BD)

– Close to hardware

– Computations, delays shown 
through blocks

 Signal-flow graph (SFG)

– Multiplications, delays 
shown on edges

– Source, sink, add are nodes

 Data-flow graph (DFG)

– Computations on nodes A, B

– Delays shown on edges

– Computation time in 
brackets next to the nodes

D

+

z−1

+
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Slide 9.8 

This slide summarizes the formal 
model of the DFGs. Vectors V, E 
and w are one-dimensional lists of 
the vertices, edges and edge-weights 
respectively. The logic delay (not to 
be confused with register delay) is 
stored in the vector d where d(vi) is 
the logic delay of node vi. The 
operations in the graph are 
associated with timing delays, which 
have to be taken in as input during 
architecture optimization in order 
to guarantee that the final design 
meets timing constraints. The logic 
delay can either be in absolute units 

(nanoseconds, picoseconds, etc.), or normalized to some reference like a clock period. The latter 
normalization is useful during time multiplexing, when operations are executed on pipelined 
hardware units.  It is important to note that the edges express the precedence relation of the DSP 
function. They define the sequence in which the operations must be executed to keep the 
functionality unchanged. This edge constraint can either be an inter-iteration constraint, where 
w(ei) = 0, or an intra-iteration constraint, where w(ei) > 0. For example, the edge e3  on the graph has a  
delay on it indicating inter-iteration constraint. This means that the output of node v3 is taken as 
input to node v4 after one iteration of the algorithm.  

 

 

Data-Flow Graphs

 Graphical representation of signal flow in an algorithm

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3 Z-1 D

Nodes (vi)  operations
(+/ /×/÷)

Registers  Delay (D)

Node-to-node 
communication,

edges (ei)

Iterative input

Iterative output

Registered edge,
edge-weight = # of regs

Edges define  
precedence constraints

b/w operations
9.7

+

z 1

Formal Definition of DFGs 

A directed DFG is denoted as G = <V,E,d,w> 

• V: Set of vertices (nodes) of G. The vertices 
represent operations. 

• d: Vector of logic delay of vertices. d(v) is the 
logic delay of vertex v.

• E: Set of directed edges of G. A directed edge e 
from vertex u to vertex v is denoted as e:u  v. 

•w(e) : Number of sequential delays (registers) 
on the edge e, also referred to as the weight of 
the edge.

• p:u  v: Path starting from vertex u, ending in 
vertex v.

• D: Symbol for registers on an edge.  
e1: Intra-iteration edge
e3 : Inter-iteration edge

w(e1) = 0, w(e3) = 1

9.8

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1
D

+

 

Slide 9.7 

To begin, let’s look again at data-
flow-graph models, and explain the 
terminology that will be used 
throughout this chapter. In a DFG, 
the operations will be referred to as 

nodes and denoted as vi, i  {1, 2, 3, 

…}; the edges ei, i  {1, 2, 3, …}, 
indicate the signal flow in the 
graph. The signal flow can be 
between the nodes or flow from/to 
the input/output signals. For 
iterative DSP functions, certain 
edges on the flow graph can have 
registers on them. These registers 
are referred to as delays and are 

denoted by D. The number of registers on any edge is referred to as the weight of the edge w(ei). 
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Slide 9.9 

The figures in the slide show 
example DFGs for the direct and 
transposed form of the 3-tap FIR 
filter discussed earlier in the 
chapter. Nodes associated with 
names and computation times 
represent the operations in the filter 
equation. The registers are 
represented by delay elements D 
annotated next to their respective 
edges. We will see more examples 
of DSP data-flow graphs and their 
manipulations in Chap. 11, when 
we discuss architectural 
transformations.   

 

 

 

 

 

 

Example: DFGs for a 3-tap FIR Filter

9.9

Direct form

Transposed form

x(n)

v1

y(n)

v2 v3
(2) (2) (2)

v4 (1) (1)v5

D D

x(n)

v1

y(n)

v2 v3
(2) (2) (2)

v4 (1) (1)v5

D D

++

++

Matrix Representation 

 DFG matrix A, dimension |V|×|E|

– aij = 1, if edge ej starts from node vi

– aij = −1, if edge ej ends in node vi

– aij = 0, if edge ej neither starts, nor 
ends in node vi

w(e1) = 0
w(e2) = 0
w(e3) = 1



1 0 0

0 1 0

1 1 1

0 0 1



















Matrix A for graph G Data-flow graph G

9.10

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
University of California, Los Angeles, June 2008.
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There are several ways to implement 
the data-flow-graph model using 
data structures. Structures like arrays 
or linked lists make it easy to 
implement and automate the 
execution of the architectural 
transformation algorithms. We 
discuss a simple array/matrix based 
representation [2]. The DFG matrix 
A is of dimension |V|x|E|, where 
the operator |·| is the number of 
elements in the vector. The column 
ai of the matrix defines the edge ei of 
the graph. For edge ei: vk → vj, the 
element aki = 1 (source node) and 

element aji = −1 (destination node).  All other entries in the column ai are set to 0. For example, the 
edge e3: v3 → v4 is represented by column a3 = [0 0 1 −1]T in the matrix A.  
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Slide 9.11 

The other three vectors of interest 
are the weight vector w, the logic 
delay vector d and the pipeline 
vector du.  The weight and logic 
delay vectors remain the same as 
described in the DFG model. 
Though closely related, the pipeline 
vector du is not the same as the 
logic-delay vector d. This vector 
can be assigned values only after 
the operations have been mapped 
to hardware units. For example, if a 
multiply operation vi is to be 
executed on a hardware unit which 
has two pipeline stages, then all 

edges ei with source node vi will have du(ei)=2. In other words, we characterize the delay of the 
operations not in terms of their logic delay, but in terms of their pipeline stages or register delay. 
The value of du changes depending on the clock period, since for a shorter clock period the same 
operation will have to be mapped onto a hardware unit with an increased number of pipeline stages. 
For example, in the graph G the add and multiply operations have logic delays of 200 and 100 units, 
respectively, which makes the vector d =[200 200 100 200]T. The add and multiply operations are 
mapped onto hardware units with one and two pipeline stages, making the value of du=2 for edges 
e1 and e2 and du = 1 for e3. 

To provide a user-friendly approach, an automated flow can be used to extract these matrices 
and vectors from a Simulink block diagram. We look at construction of Simulink block diagrams in 
the next slides.  

 

Simulink DFG Modeling

 Drag-and-drop Simulink flow

 Allows easy modeling

 Predefined libraries contain 
DSP macros
– Xilinx XSG
– Synplify DSP

 Simulink goes a step beyond 
modeling macros
– Functional simulation of 

complex systems possible
– On-the-fly RTL generation 

through Synplify DSP

9.12

Synplify DSP block library

Matrix Representation 

 Weight vector w

– dimension |E |×|1|

– wj = w(ej), weight of edge ej

 Pipeline vector du

– dimension |E|×|1|

– duj = pipeline depth of source 
node v of edge ej

0

0

1

















Vector w Data-flow graph G

0

0

1

















Vector du
9.11

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

Slide 9.12 

Simulink allows for easy 
construction and verification of 
block diagrams using a drag-and-
drop push-button flow. The 
Simulink libraries have several 
predefined macros like FFT, signal 
sources, and math operations etc., 
commonly used in creating DSP 
systems. Commercially available 
add-ons like Xilinx System 
Generator (XSG) and Synplify DSP 

used to setup a cycle-accurate, 
finite-wordlength DSP system. A 
snapshot of the Synplify DSP 

library is shown on the right side of the slide. A big advantage of having predefined macros available 

(now Synphony HLS) can also be 
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is the ease with which complex systems can be modeled and verified. An example of this will be 
shown in the next slide. On-the-fly RTL generation for the block diagrams is also made simple with 
the push-button XSG or Synplify DSP tools.  

 

Slide 9.13 

the boundaries between the full-
precision Simulink blocks and the 
finite-wordlength Synplify DSP 
blocks. The input ports quantize 
the full-precision input data while 
the output port converts the finite-
wordlength data back to integer or 
double format. The Simulink 
blockset has provisions for AWGN 

noise sources, random number generators, etc., as well as discrete eye-diagram plotters required for 
simulating the model.  The low-pass filter, which limits the transmitted signal bandwidth, is 
implemented using a raised-cosine FIR block in Synplify DSP.  

 

Slide 9.14 

To summarize, this chapter 
describes the graphical 
representations for iterative DSP 
algorithms. Examples of block 
diagrams and signal-flow graphs 
were shown. The data-flow graphs 
are discussed in some length, since 
they are the preferred 
representation used in Chap. 11. 
The matrix abstraction of DFGs 
was briefly mentioned and will be 
discussed again later. An example 
of system modeling and simulation 
in Simulink was introduced near the 
end of the chapter for 

completeness. More complex system modeling using Simulink will also be addressed later. 

 

 

DFG Example

9.13

 QAM modulation and demodulation
 Combination of Simulink and Synplify DSP blocks

Summary

 Graphical representations of DSP algorithms
– Block diagrams
– Signal-flow graphs
– Data-flow graphs

 Matrix abstraction of data-flow graph properties
– Useful for modeling architectural transformations

 Simulink DSP modeling
– Construction of block diagrams in Simulink
– Functional simulation, RTL generation
– Data-flow property extraction

9.14

output ports in the model define 

This figure shows an example of a 
quadrature amplitude modulation 
(QAM) design.  The model uses 
full-precision Simulink blocks as 
sources and sinks. The input and 
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This chapter discusses wordlength 
optimization. Emphasis is placed 
on automated floating-to-fixed 
point conversion. Reduction in the 
number of bits without significant 
degradation in algorithm 
performance is an important step in 
hardware implementation of DSP 
algorithms. Manual tuning of bits is 
often performed by designers. Such 
approach is time-consuming and 
results in sub-optimal results. This 
chapter discusses an automated 
optimization approach. 

 

 

Slide 10.2 

Mathematical computations are 
generally computed by humans in 
decimal radix due to its simplicity. 
For the example shown here, if b= 
5.6 and =3.1416, we can 
compute a with relative ease. 
Nevertheless, most of us would 
prefer not to compute using binary 
numbers, where b= 
1’b101.1001100110 and = 
1’b11.0010010001 (a prefix of 1’b is 
used here to distinguish binary 
from decimal numbers). With this 
abstraction, many algorithms are 
developed without too much 

consideration for the binary representation in actual hardware, where something as simple as 0.3+ 
0.6 can never be computed with full accuracy. As a result, the designer may often find the actual 
hardware performance to be different from expected, or that implementations with sufficient 
precision incur high hardware costs [1]. The hardware cost of interest depends on the application, 
but it is generally a combination of performance, energy, or area for most VLSI and DSP designs.  
In this chapter, we discuss some methods of optimizing the number of bits (wordlength) used in 
every logic block to avoid excessive hardware cost while meeting the precision requirement. This is 
the basis of wordlength optimization. 

 

 

Number Systems: Algebraic

High level abstraction
Infinite precision
Often easier to understand
Good for theory/algorithm development
Hard to implement

Algebraic Number
e.g. a = + b

10.2
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Slide 10.3 

Let us first look into how numbers 
are represented by computers. A 
common binary representation is 
floating point, where a binary 

fractional bits, and exponent bits. 
The sign bit of 0 or 1 represents a 
positive or negative number, 
respectively. The exponents have an 
associated pre-determined bias for 
offset adjustment. In the example 
here, a bias of 3 is chosen, which 
means the exponent bits of 1 b000 
to 1 b111 (0 to 7) represent actual 
exponent of −3 to 4. The fractional 

bits always start with an MSB of 2−1, and the fraction is multiplied by 2Exponent−Bias for the actual 
magnitude of the number. 

It is apparent here that a floating-point representation is very versatile, and that the full precision 
of the fractional bits can often be utilized by adjusting the exponent. However, in the case of 
additions and subtractions, the exponents of the operands must be the same. All the operands are 
shifted so that their exponents match the largest exponent. This causes precision loss in the 
fractional bits (e.g. 1’b100101×2−2 needs to shift to 1’b001001×2 0 if it is being added to a number 
with an exponent of 0). 

This representation is commonly used in CPUs due to its wide input range, as general-purpose 
computers cannot make any assumptions about the dynamic range of its input data. While versatile, 
floating point is very expensive to implement in hardware and most modern CPU designs require 
dedicated floating-point processors. 

 

Slide 10.4 

In most hardware designs, a high-
precision floating-point 
implementation is often a luxury. 
Hardware requirements such as area 
and power consumption, and 
operating frequency demand more 
economical representation of the 
signal. A lower-cost (and higher 
hardware performance) alternative 
to floating-point arithmetic is fixed 
point, where the binary point is 
“fixed” for each datapath. The bit-
field is divided into a sign bit, WInt 
integer bits, and WFr fractional bits. 

Number Systems: Floating Point

A short floating-point number 
0 1 1 0 0 0 11 0 1

Frac ExpSign

=

Bias=3

10.3

Value = ( 1)Sign × Fraction × 2(Exponent – Bias)

IEEE 754 standard Sign Exponent Fraction Bias
Single precision [31:0] 1 [31] 8 [30:23] 23 [22:0] 127

Double precision [63:0] 1 [63] 11 [62:52] 52 [51:00] 1023

Widely used in CPUs
Floating precision
Good for algorithm 
study and validation

= ( 1)0 × (1×2 1 + 1×2 2 + 0×2 3 + 0×2 4 + 1×2 5 + 0×2 6)

× 2                                 = 3.125(1×22 + 0×21 + 1×20  3)

Number Systems: Fixed Point

Economical implementation
WInt and WFr suitable for predictable range
o-mode (saturation, wrap-around)
q-mode (rounding, truncation)
Economic for implementation 
Useful built-in MATLAB functions: e.g. fix, 
round, ceil, floor, dec2bin,bin2dec,etc.

2’s complement 

0 0 1 1 0 1 00 0 1

WInt WFrSign

=

Unsigned magnitude

0 1 1 0 1 00 0 1

WInt WFr

= 0

Overflow-mode Quant.-mode Overflow-mode Quant.-mode

In MATLAB: 
dec2bin(round(pi*2^6),10)
bin2dec(above)*2^-6

10.4

= 0×23 + 0×22 + 1×21 + 0×2 1 + 0×2 2

+ 1×2 3 + 0×2 4 + 0×2 5 + 1×2 6

= 3.140625

 Simulink SynDSP and SysGen

number is divided into a sign bit, 



Wordlength Optimization  183 
 

The maximum precision is 2 FrWFrWF , and the dynamic range is limited to 2 IntW . While these limitations 
may seem unreasonable for a general-purpose computer (unless very large wordlengths are used), it 

requirements are well-defined.  

Information regarding the binary point of each fixed-point number is stored separately. For 
manual conversions between decimal and binary, make sure the decimal point is taken into account: 
a scaling factor of 26 is needed in this example, since the binary point (WFr) is 6 bits. Simulink blocks 
such as Synplify DSP and Xilinx System Generator perform the binary-point alignment 
automatically for a given binary point. 

In the Simulink environment, the designer can also specify overflow and quantization schemes 
when a chosen numerical representation has insufficient precision to express a value. It should be 
noted, however, that selecting saturation and rounding modes increase hardware usage. 

 

Slide 10.5 

Most algorithms are built assuming 
infinite (or sufficient) precision, 
either from a floating-point or a 
long-wordlength fixed-point 
system. From a design perspective, 
to efficiently convert a floating-
point design to a fixed-point design 
requires careful allocation of 
wordlengths. Excessive wordlength 
leads to slower performance, larger 
area and higher power, while 
insufficient wordlength introduces 
large quantization errors, and can 
heavily degrade the precision of the 
system or even cause system failure 

(such as divide-by-0 due to insufficient WFr in the denominator). 

Floating-point to fixed-point conversion is an important task, and a series of questions rises from 
this process: How many fractional bits are required to meet my precision requirement? Is it cost-
effective to perform rounding to gain the extra LSB of precision, or is it better to add fractional bits 
in the datapath and use truncation? How to determine the dynamic range throughout the system to 
allocate sufficient integer bits? Is it cost-effective to perform saturation and potentially use fewer 
integer bits, or should I determine the maximum-possible integer bits to avoid adding the saturation 
logic? Answering these questions for each design requires numerous iterations, and meeting the 
quantization requirements while minimizing wordlengths throughout the system becomes a tedious 
task, imposing a large penalty on both man-hour and time-to-market, as each iteration is a change in 
the system-level, and system-level specifications ought to be frozen months before chip fabrication. 
A systematic tool has therefore been developed to automate this conversion process, and is 
discussed in this chapter. 

 

Motivation for Floating-to-Fixed Point Conversion

10.5

Floating-pt 
algorithm

Quantization

Fixed-pt 
algorithm

OK?
No

Yes

> 
1 

m
on

th

Idea

Hardware 
mapping

OK?
No

Yes

Algorithms designed in 
algebraic arithmetic,

verified in floating-point
or very large fixed-point 

arithmetic

a = + b

VLSI Implementation in 
fixed-point arithmetic 

S 0 1 1 0 1 00 0 1

WInt WFrSign

Overflow-mode Quant.-mode

=

Time 
consuming
Error 
prone

is acceptable for many dedicated-application designs where the input-range and precision 
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Slide 10.6 

In the recent 15 years or so, much 
attention was given to addressing 
the wordlength optimization 
problem. Before the investigation 
of analytical approaches, we will 
review representative approaches 
from earlier efforts. 

One past technique for 
determining both WInt and WFr is 
Fixed-point pRogrammIng DesiGn 
Environment (FRIDGE) [2]. To 
find WInt, the user is required to 
provide a set of test vectors that 
resemble worst-case operating 
conditions (i.e. cases that cause 

maximum wordlengths), or provide enough practical test vectors so the maximum wordlengths can 
be estimated with sufficient confidence. For each logic block, WInt is determined by placing a range-
detector at its output to record its maximum value. Since each internal node is only driven by one 
logic block, WInt of every internal node can be determined by only one simulation of the test 
vector(s). One drawback of this conservative approach is that occasional overflows are not allowed. 
However, since overflows tend to have a much greater effect on quantization error than truncation, 
attempting to save 1 MSB by allowing overflow may not be a less conservative method. The user 
can still manually reduce the optimized wordlength by 1 to observe the effect of overflow through 
simulations. 

 

 

 

 

 

 

Optimization Techniques: FRIDGE

10.6

Unjustified input WFr
Overly conservative

+ Conservative but good
for avoiding overflow

Pre-assigned WFr at all inputs

Deterministic
propagation 

WFr in all internal nodes

Set of test vectors for inputs

Range-detection
through simulation

WInt in all internal nodes

WInt WFr

[2] H. Keding et al., "FRIDGE: A Fixed-point Design and Simulation Environment," in Proc. Design, 
Automation and Test in Europe, Feb. 1998, pp. 429–435. 

[2]

FRIDGE optimizes WFr using deterministic propagation. The user specifies WFr at every input 
node, and then every internal node is assigned a WFr large enough to avoid any further quantization 
error. As examples, WFr for an adder is the maximum of its inputs’ WFr’s and WFr of a multiplier is 
the sum of its inputs’ WFr’s. This wordlength propagation approach is also overly conservative and 
has numerous drawbacks: First, the input WFr is chosen by the user. Because this is unverified by the 
optimization tool, choosing different WFr at the input can lead to sub-optimal results. In addition, 
not all WFr can be determined through propagation, so some logic blocks (e.g., a feedback multiplier) 
require user interaction. Due to the limitations of the FRIDGE technique, it is only recommended 
for WInt optimization. Methods of WFr optimization will be discussed next. 
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Slide 10.7 

Another approach for WFr 
optimization is through iterative 
bit-true simulations by Sung et al. [3, 
4]. The fixed-point system can be 
modeled using software (e.g., C or 
SystemC) or Simulink (SynDSP, 
XSG) with the WFr for every node 
described as a variable. With each 
simulation, the quantization error 
of the system (e.g., bit-error rate, 
signal-to-noise ratio, mean-squared 
error) is evaluated along with the 
hardware costs (e.g., area, power, 
delay), which is computed as a 
function of wordlengths. Since the 

relationship between wordlength and quantization is not characterized for the target system, 
wordlengths for each iteration are determined in an ad-hoc fashion, and numerous iterations are 
often needed to determine the wordlength-critical blocks [5]. Even after these blocks are located, 
more iterations are required to determine their suitable wordlength vaiables. 

 

 

 

 

 

 

 

 

Optimization Techniques: Robust Ad Hoc

10.7

bit-true 
sim.

[3] W. Sung and K.-I. Kum, "Simulation-based Word-length Optimization Method for Fixed-point 
Digital Signal Processing Systems," IEEE Trans. Sig. Proc., vol. 43, no. 12, pp. 3087-3090, 
Dec. 1995. 

[4] S. Kim, K.-I. Kum, and W. Sung, "Fixed-Point Optimization Utility for C and C++ Based on Digital 
Signal Processing Programs," IEEE Trans. Circuits and Systems-II, vol. 45, no. 11, pp. 1455-1464, 
Nov. 1998. 

[5] M. Cantin, Y. Savaria, and P. Lavoie, "A Comparison of Automatic Word Length Optimization 
Procedures," in Proc. Int. Symp. Circuits and Systems, vol. 2, May 2002, pp. 612-615. 

Fix-point system as 
black-box

Logic block WLs

System 
specifications

Hardware cost

Ad hoc search [3] or procedural [4]

– Long bit-true simulation, large number of iterations [5]

– Impractical for large systems

It is apparent that this kind of iterative search is impractical for large systems. However, two 
important concepts are introduced here. First is the concept of bit-true simulations. Although 
algorithms are generally developed in software, it is not difficult to construct the same functions in 
fixed-point, such MATLAB/Simulink blocks. The benefit of Simulink is the allowance of bit-true 
and cycle-true simulations to model actual hardware behavior using functional blocks, and third-
party blocksets such as Xilinx System Generator and Synopsys Synphony HLS. These tools allow 
direct mapping into hardware-description language (HDL), which eliminates the error-prone process 
of manually converting software language into HDL. Another important optimization concept is 
“cost efficiency”, where the goal of each iteration is to minimize the hardware cost (as a function of 
wordlengths) while meeting the quantization error requirements. To achieve a wordlength-optimal 
design, it is necessary to locate the logic blocks that provide the largest hardware-cost reduction with 
the least increase in quantization error. The formulation for wordlength optimization is founded on 
this concept, but a non-iterative approach is required to achieve acceptable results within a 
reasonable timeframe.  



186  Chapter 10 
 

Slide 10.8 

The details of the theory behind the 
optimization approach are given 
extensively in [1]. Here we 
summarize key results used in 
practice. The framework of the 
wordlength optimization problem is 
formulated as follows: a hardware 
cost function is created as a 
function of every wordlength 
(actually every group of wordlengths; 
more on this later). This function is 
to be minimized subject to all 
quantization error specifications. 
These specifications may be defined 
for more than one output, in which 

case all j requirements need to be met. Since the optimization focuses on wordlength reduction, a 
design that meets the quantization-error requirements is required to start the optimization. Since a 
spec-meeting design is not guaranteed from users, a large number is chosen to initialize WFr of every 
block in order to make the system practically full-precision. This leads to a feasibility requirement 
where a design with wordlength N must meet the quantization error specification, else a more 
relaxed specification or a larger N is required. As with most optimization programs, tolerance a is 
required for the stopping criteria. A larger a decreases optimization time, but in wordlength 
optimization, simulation time far outweighs the actual optimization time. Since WInt and the use of 
overflow mode are chosen in one simulation, this optimization is only required to determine 
quantization modes and WFr.  

 

Slide 10.9 

To avoid iterative simulations, it is 
necessary to model the quantization 
noise of interest (generally at the 
output) as a function of 
wordlengths. Based on the original 
perturbation theory [6], we observe 
that such MSE follows an elegant 
formula for the fixed-point 
datatypes. In essence, the theory 
linearizes a smooth non-linear time-

Problem Formulation: Optimization

10.8

From now on, concentrate on WFr

Minimize hardware cost:
f(WInt,1, WFr,1; WInt,2, WFr,2; …; o-q-modes)

Subject to quantization-error specifications:
Sj (WInt,1, WFr,1; WInt,2, WFr,2; …; o-q-modes) < spec, j

Feasibility:
N Z+ , s.t. Sj (N, N; …; any mode) < spec, j

Stopping criteria:
f < (1 + a) fopt where a > 0.

[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley, 
2004.

[1]

Perturbation Theory On MSE

Output MSE Specs:

10.9
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[6] C. Shi and R.W. Brodersen, "A Perturbation Theory on Statistical Quantization Effects in Fixed-
point DSP with Non-stationary Input," in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, 
May 2004, pp. 373-376.

[6]

varying system. The result states 
that the MSE error, as defined here, 
can be modeled as a function of all 
the fractional wordlengths, all the 
quantization modes, and all the 
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constant coefficients to be quantized in the system. The non-negative nature of MSE implies that B 
is positive semi-definite and C is non-negative. Both B and C depend on the system architecture and 
input statistics, but they can be estimated numerically. 

While a large design could originally contain hundreds or thousands independent wordlengths to 
be optimized at the beginning, we will see that the design complexity can be drastically reduced by 
employing grouping of related blocks to have the same wordlength. In practice, after reducing the 
number of independent wordlengths, a complex system may only have a few or few tens of 
independent wordlengths. The new matrix B and vector C are directly related to the original B and C 
by combining the corresponding terms. In the FFC problem, we often are only interested in 
estimating the new B and C that has considerably less number of entries to estimate, which reduces 
the number of simulations required. 

Many details, including the reason for adopting a MSE-based specification with justifications for 
assuming non-correlation based on the perturbation theory, are included in [1]. 

 

 

Slide 10.10 

Once the B and C are estimated, 
the MSE can be predicted at 
different combinations of practical 
wordlengths and quantization 
modes. This predicted MSE should 
match closely to the actual MSE as 
long as the underlying assumptions 
used in perturbation theory still 
apply reasonably. The actual MSE is 
estimated by simulating the system 
with the corresponding fixed-point 
datatypes. This slide demonstrates 
the validity of the non-correlation 
assumption. Shown here is an 
adaptive filter design and an SVD 

design where simulations are used to fit the coefficients B and C, which in turn are used to directly 
obtain the “computed” MSE. The actual MSE in the x-axis is from simulation of the corresponding 
fixed-point data-types. By varying the fixed-point data-types we see that the computed MSE from 
the once estimated B and C fits well with the actual MSE across the broad range of MSEs. A more 
accurate calculations can be achieved by including correlation, which requires B and C to both be 
positive-semi-definite matrices. This increases both simulation requirements and computation 
complexity, and it is usually unnecessary. 

 

 

 

 

Actual vs. Computed MSE

10.10

11-tap LMS Adaptive Filter SVD U-Sigma

• More simulations required
• Usually not necessary
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Slide 10.11 

Having an accurate MSE model is 
not sufficient for wordlength 
optimization. Recapping from Slide 
10.8, the optimization goal is to 
minimize the hardware cost (as a 
function of wordlength) while 
meeting the criteria for MSE. 
Therefore hardware cost is 
evaluated just as frequently as MSE 
cost, and needs to be modeled 
accurately. When the design target 
is an FPGA, hardware cost 
generally refers to area, but for 
ASIC designs it is generally power 
or performance that defines the 

hardware cost. 

Traditionally, the only method for area estimation is design mapping or synthesis, but such 
method is very time consuming. The Simulink design needs to be first compiled and converted to a 
Verilog or VHDL netlist, then the logic is synthesized as look-up-tables (LUTs) and cores for 
FPGA, or standard-cells for ASIC. The design is then mapped and checked for routability within the 
area constraint. Area information and hardware usage can then be extracted from the mapped 
design. This approach is very accurate, for it only estimates the area after the design is routed, but 
the entire process can take minutes to hours, and needs to be re-executed with even the slightest 
change in the design. These drawbacks limit the utility of design mapping in our optimization, where 
fast and flexible estimation is the key – each resource estimation step cannot consume more than a 
fraction of a second. 

 

Slide 10.12 

To avoid repetitive design mapping 
to estimate area, a model-based 
resource estimation is developed to 
provide area estimations based on 
cost functions. Each cost function 
returns an estimated area based on 
its functionality and design 
parameters such as input and 
output wordlengths, overflow and 
quantization modes, and the 
number of inputs. These design 
parameters are automatically 
extracted from Simulink. The total 
area is determined by iteratively 
accumulating the individual area 

FPGA Hardware Resource Estimation

Design Mapping

Fast and flexible resource estimation is important for FFC!
Tool needs to be orders of magnitude faster 

10.11

Accurate

X Sometimes unnecessarily accurate

X Slow (minutes to hours)

X Excessive exposure to low-end tools 

X No direct way to estimate subsystem

X Hard to realize for incomplete design

Designs In SysGen/SynDSP

Simulink Compiler

Netlister

Synthesis Tool

VHDL/Core Generation

Mapper

Map Report with Area Info

Model-based Resource Estimation

10.12

Total area accumulated from individual area 
functions (register_area, accum_area, etc…)

Individual MATLAB function created for each type of logic
MATLAB function estimates each logic-block area based on 
design parameters (input/output WL, o, q, # of inputs, etc…)
Area accumulates for each logic block

[*] by C. Shi and Xilinx Inc. (© Xilinx)

Xilinx area functions are proprietary, but ASIC area functions can 
be constructed through synthesis characterizations

[*]
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functions. This dramatically speeds up the area-estimation process, as only simple calculations are 
required per logic block. 

Although the exact area function of each XSG logic block is proprietary to Xilinx, the end-user 
may create similar area functions for ASIC designs by characterizing synthesis results, as shown on 
the next slide. 

 

Slide 10.13 

For FPGA applications, area is the 
primary concern, but for ASIC 
applications, the cost function can 
also be changed to model energy or 
circuit performance. Due to the 
core usage and LUT structures on 
the FPGA, the logic area on FPGA 
may differ significantly from ASIC, 
where no cores are used and all 
logic blocks are synthesized in 
standard-cell gates. This means an 
area-optimal design for the FGPA 
flow is not necessarily area-optimal 
for the ASIC flow. 

ASIC area functions also depend 
on design parameters such as wordlengths and quantization modes, but they are dependent on 
circuit performance as well. For example, the area of a carry-ripple adder is roughly linear to its 
wordlength, but the area of a carry-look-ahead adder tends to be on the order of O(N∙logN). 
Therefore, it is recommended that three data points be gathered for each design parameter: a high-
performance (HP) mode that requires maximum performance, a low-power (LP) mode that requires 
minimum area, and a medium performance (MP) mode where the performance criteria is roughly 
1/3 to 1/2 between HP and LP. The area functions for each performance mode can be fitted into a 
multidimensional function of its design parameters by using a least-squares curve-fit in MATLAB. 
Some parameters impact the area more than others. For the adder example, the longer input 
wordlength and output wordlength have the largest impact on area. They are roughly linearly 
proportional to the area. For the multiplier, the two input wordlengths have the largest impact on 
area, and the relationship is roughly quadratic. Rounding can increase area by as much as 30%. For 
many users, ASIC power is more important than area, therefore the area function can be used to 
model energy-per-operation instead of area. 

Alternatively, the user may create area, energy, or delay cost-functions based on standard-cell 
documentations to avoid extracting synthesis data for each process technology. From the area or 
power information of each standard-cell, some estimation can be modeled. For example, an N-bit 
accumulator can be modeled as the sum of N full-adder cells and N registers, a N-bit, M-input mux 
can be modeled as N M 2-input muxes, and a N-bit by M-bit multiplier can be modeled as N M 
full-adder cells. The gate sizes can be chosen based on performance requirements. Low-power 
designs are generally synthesized with gate sizes of 2× (relative to a unit-size gate) or smaller, while 
high-performance designs typically require gate sizes of 4× or higher. Using these approximations, 
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ASIC area can be modeled very efficiently. Although the estimation accuracy is not as good as the 
fitting from the synthesis data, it is often sufficient for wordlength optimization purposes. 

 

Slide 10.14 

The hardware-cost function can be 
modeled as a quadratic function of 
WFr, assuming all other design 
parameters are fixed. Such 
assumption is reasonable given that 
WInt and overflow-modes are 
determined prior to WFr 
optimization. Coefficient matrices 
H1 and H2 and vector h3 are fitted 
from the area estimations. From the 
plot on the left, it is apparent that a 
quadratic-fit provides sufficient 
accuracy, while a linear-fit is subpar. 
Linear fitting is only recommended 
when the quadratic estimation takes 

too long to complete. Since the area and energy for most ASIC blocks can also be modeled as 
quadratic functions of wordlengths, the quadratic hardware-cost function f(W) also fits nicely for 
ASIC designs, as shown in the plot on the right. 

With adequate models for both MSE cost and hardware cost, we can now proceed with 
automated wordlength optimization. The remainder of the chapter will cover both the optimization 
flow and usage details of the wordlength optimization tool. 

 

Slide 10.15 

Each design imported for 
wordlength optimization is 
processed with a fixed 
methodology. An outline of the 
wordlength optimization flow is 
shown here. Some key steps such as 
integer wordlength analysis, 
hardware cost analysis, and MSE 
analysis were already introduced in 
previous slides. Each step will be 
discussed individually in the 
following slides. The tool is publicly 
available for download [7]. 
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If all design parameters (latency, o, q, etc.) and all WInt’s are 
fixed, then the FPGA area is roughly quadratic to WFr
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Wordlength Optimization Flow
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Simulink Design in 
XSG or SynDSP

Initial Setup (10.16)
WL Analysis & 

Range Detection (10.18)

Optimal WInt

WL Connectivity & WL 
Grouping (10.19-20)

Create cost-function 
for FPGA (10.12)

MSE-specification 
Analysis (10.22)

HW Models for ASIC 
Estimation (10.13)

Data-fit to Create HW 
Cost Function (10.21)

Create Cost-function 
for ASIC (10.12)

Data-fit to Create MSE 
Cost Function (10.22)

Wordlength Optimization

Optimization Refinement (10.23) Optimal WFr

HW-acceleration / 
Parallel Sim.

Under Development

[7] See the book website 
for tool download.
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Slide 10.16 

Before proceeding to the 
optimization, an initial setup is 
required. A setup block needs to be 
added from the optimization 
library, and the user should open 
the setup block to specify 
parameters. The area target of the 
design (FPGA, or ASIC of HP, 
MP, or LP) should be defined. 
Some designs have an initialization 
phase during start-up that should 
not be used for MSE 
characterization, so the user may 
then specify the sample range of 
outputs to consider: if the design 

has 1,000 samples per second, and the simulation runs for 10 seconds, then the range [2,000, 1,0000] 
specifies the timeframe between 2 and 10 seconds for MSE characterization. If left at [0, 0], the 
characterization starts at 25% of the simulation time. The optimization rules apply to wordlength 
grouping and are introduced in Slide 10.20. Default rules of [1.1 3.1 4 8.1] is a good set. 

The user needs to specify the wordlength range to use for MSE characterization. For example, [8, 
40] specifies a WFr of 40 to be “full-precision”, and each MSE iteration will “minimize” one WFr to 8 
to determine its impact on total MSE. Depending on the application, a “full-precision” WFr of 40 is 
generally sufficient, though smaller values improve simulation time. A “minimum” WFr of 4 to 8 is 
generally sufficient, but designs without high sensitivity to noise can even use minimum WFr of 0. If 
multiple simulations are required to fully characterize the design, the user needs to specify the input 
vector for each simulation in the parameter box. 

The final important step is the placement of specification markers. The tool characterizes MSE 
only at the location where Spec Marker is placed, therefore it is generally useful to place markers at 
all outputs, and at some important intermediate signals as well. The user should open each Spec 
Marker to ensure that a unique number is given for each marker, else an optimization error may 
occur. 

 

 

 

 

 

 

 

 

 

Initial Setup

10.16

Insert a FFC setup block from the library – see notes
Insert a “Spec Marker” for every output requiring MSE analysis
– Generally every output needs one
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where the wordlength parameter is 
set to “Automatic”, it is necessary to 
back-trace to the block-source to 
determine the wordlength needed 
for the block. For example, a 
register should have the same 
wordlength as its input, while a 2-

input adder would require a wordlength of max(WInt,input)+1. Sometimes it may be necessary to trace 
back several blocks to find a block with a specified wordlength. An illustration of the back-trace 
process is shown on the left inset: the wordlength of the mux is set to “Automatic”, so the tool back-
traces to the register, then to the multiplier to gather the wordlength. In cases where back-tracing 
reaches the input of a submodule, a hierarchical back-trace is required. In the right inset, the 
wordlength from input port “In1” is determined by the mux from the previous logic block. 

In the current tool, overflow/saturation and rounding/truncation options are chosen by the user, 
and are not yet a part of the optimization flow, and the tool chooses overflow and truncation by 
default. 
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During wordlength analysis, a 
“Range Detector” is inserted at each 
active node automatically. Passive 
nodes such as subsystem input and 
output ports, along with constant 
numbers and non-datapath signals 
(e.g. mux selectors, enable/valid 
signals) are not assigned a range-
detector. 

Based on the FRIDGE 
algorithm in Slide 10.6, the 
wordlength analyzer determines WInt 
based on a single iteration of the 
provided test-vector(s). Therefore, it 
is important that the user provides 
input test vectors that cover the 

entire input range. Failure to provide adequate information can result in the removal of bits. 

Wordlength Reader

10.17

Captures the WL information of each block
– If user specifies WL, store the value
– If no specified WL, back-trace the source block until a specified 

WL is found
If source is the input-port of a block, find source of its parent

Wordlength Analyzer

10.18

Determines the integer WL of every block
– Inserts a “Range Detector” at every active/non-constant node
– Each detector stores signal range and other statistical info
– Runs 1 simulation, unless specified multiple test vectors

Xilinx SynDSP
Range Detectors
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The wordlength reader gathers WInt 
and WFr, along with 
overflow/saturation and 
rounding/truncation information 
from every block. The simplest case 
is when the wordlength of the block 
is specified by the user. Its 
information can be obtained from 
the block parameters. In cases 



Wordlength Optimization  193 
 

its maximum value, whichever is greater. If the calculated WInt is greater than the original WInt, then 
the original WInt is used. Signed outputs have WInt of at least 1, and WInt of constants are determined 
based on their values.  

Due to the optimization scheme, the wordlength analyzer does not correct overflow errors that 
occur in the original design. As a result, the user must ensure that the design behaves as expected 
before using this tool. 

 

 

Slide 10.19 

With WInt determined by the 
wordlength analyzer, the remaining 
effort aims to optimize WFr in the 
shortest time possible. Since the 
number of iterations for optimizing 
WFr is proportional to the number 
of wordlengths, reducing the 
number of wordlengths is attractive 
for speeding up the optimization. 
The first step is to determine the 
wordlength-passive blocks, which 
are blocks that do not have physical 
area, such as input and output ports 
of submodules in the design, and 
can be viewed as wordlength feed-

throughs. 

These connectivity optimizations essentially flatten the design so every wordlength only defines 
an actual hardware block. As a result, the number of wordlengths is reduced. Further reduction is 
obtained by wordlength grouping. 

 

 

 

 

 

 

 

 

 

 

Wordlength Connectivity

Connected

10.19

Connect wordlength information through WL-passive blocks
– Back-trace until a WL-active block is reached
– Essentially “flattens” the design hierarchy
– First step toward reducing # of independent WLs

Connected

The range-detector block gathers information such as the mean, variance, and the maximum value 
at each node. The number of integer bits is determined by the 4th standard-deviation of the value, or 
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The purpose of the wordlength 
grouping function is to locate 
wordlength dependencies between 
blocks and group the related blocks 
together under one wordlength 
variable. Deterministic wordlength 
grouping includes blocks whose 
wordlength is fixed, such as mux-
select, enable, reset, address, 
comparator and constant signals. 
These wordlengths are marked as 
fixed, as shaded in yellow. Some 
blocks such as shift registers, up- 
and down-samplers do not result in 
a change in wordlength. The 

wordlengths of these blocks can be grouped with their drivers, as shaded in gray. 

Another method of grouping wordlengths is by using a set of heuristic wordlength rules. 
Grouping these inputs into the same wordlength can further reduce simulation time, though at a 
small cost of design optimality. For example, in the case of a multiplexer, allowing each data input of 
a mux to have its own wordlength group may result in a slightly more optimal design, but it can 
generally be assumed that all data inputs to a multiplexer have the same wordlength. The same case 
applies to adders and subtractors. Grouping these inputs into the same wordlength can further reduce 
simulation complexity, albeit at a small cost to design optimality. These heuristic wordlength 
groupings are defined as eight general types of “rules” for the optimization tool, with each rule type 
subdivided to more specific rules. Currently there are rules 1 through 8.1. These rules are defined in 
the tool’s documentation [9], and can be selectively enabled in the initialization block. 

 

Slide 10.21 

To accurately estimate the hardware 
cost of the current design, it is 
necessary to first build a cost 
function based on all existing blocks 
in the design. This function-builder 
tool will build a cost function that 
returns the total area as the sum of 
the areas from each block. The area-
estimation function discussed on 
Slide 10.12 is used here. The 
resource-estimation tool examines 
every block in the design and first 
obtains its input and output 
wordlength information, which 
could be fixed numbers or 

wordlength variables. Each block is then assigned a resource-estimation function to estimate its area. 

Resource-Estimation Function, Analyze HW Cost

10.21

Slide
10.12,
10.14

Creates a function call for each block

HW cost is analyzed as a function of WL
– One or two WL group is toggled with other groups fixed

Quadratic iterations for small # of WLs
Linear iterations for large # of WLs

Wordlength Grouping

10.20

Deterministic
– Fixed WL (mux select, enable, reset, address, constant, etc)
– Same WL as driver (register, shift reg, up/down-sampler, etc)

Heuristic (WL rules)
– Multi-input blocks have the same input WL (adder, mux, etc)
– Tradeoff between design optimality and simulation complexity

Fixed

Heuristic
Deterministic
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As shown in the slide, each type of block has its own resource-estimation function, which returns the 
hardware cost of that block based on its input and output wordlength information, along with 
properties such as number of inputs, latency, and others. 

The constructed resource estimation function is then evaluated iteratively by the hardware-cost 
analyzer. Since each wordlength group defines different logic blocks, they each contribute differently 
towards the total area. It is therefore necessary to iterate through different wordlength combinations 
to determine the sensitivity of total hardware cost to each wordlength group. Quadratic number of 
iterations is usually recommended for a more accurate curve-fitting of the cost function (Slide 10.14). 
In each iteration only two wordlength variables are changed while the other variables remain constant 
(usually fixed at minimum or maximum wordlength). However, if there are too many wordlength 
groups (e.g. more than 100), a less accurate linear fit will be used to save time. In this instance only 
one variable will be changed per iteration. There are continuous research interests to extend the 
hardware cost function to include power estimation and speed requirement. Currently these are not 
fully supported in our FFC tool, but can be implemented without structural change to the 
optimization flow. 

 

Slide 10.22 

The MSE-specification analysis is 
described in Slides 10.9 and 10.10. 
While the full B matrix and C 
vector are needed to be estimated 
to fully solve the FFC problem, this 
would imply an order of O(N2) 
number of simulations for each test 
vector, which sometimes could still 
be too slow to do. However, it is 
often possible to drastically reduce 
the number of simulations needed 
by exploring design-specific 
simplifications. One such example 
is if we are only interested in 
rounding mode along the datapath. 

Ignoring the quantization of constant coefficients for now, the resulting problem is only related to 
the C vector, thus only O(N) simulations are needed for each test vector. For smaller designs and 
short test vectors, the analysis is completed within minutes, but larger designs may take hours or 
even days to complete this process, though no intermediate user interaction is required. Fortunately, 
all simulations are independent of each other, thus many runs can be performed in parallel. Parallel-
simulation support is currently being implemented. FPGA-based acceleration is a much faster 
approach, but requires mapping the full-precision design to an FPGA first, and masking off some of 
the fractional bits to 0 to imitate a shorter-wordlength design. The masking process must be 
performed by programming registers to avoid reforming synthesis with each change in wordlength. 

After MSE-analysis, both MSE and hardware cost functions are available. The user is then 
prompted to enter an MSE requirement for every Spec Marker in the design. It is advised to have a 
more stringent MSE for control signals and important datapaths. The details of choosing MSE 

Analyze Specifications, Analyze Optimization

10.22

Computes MSE’s sensitivity to each WL group
– First simulate with all WL at maximum precision
– WL of each group is reduced individually 

Once MSE function and HW cost function are computed, user 
may enter the MSE requirement
– Specify 1 MSE for each Spec Marker

Optimization algorithm summary
1) Find the minimum WFr for a given group (others high)
2) Based on all the minimum WFr’s, increase all WL to meet spec
3) Temporarily decrease each WFr separately by one bit, only 

keep the one with greatest HW reduction and still meet spec
4) Repeat 3) until WFr cannot be reduced anymore

Slide 10.9, 10.10



 

requirements are in [2]. A good general starting point is 10−6 for datapath and 10−10 for control 
signals. 

The MSE requirements are first examined for feasibility in the “floating point” system, where 
every wordlength variable is set to its maximum value. Once the requirements are considered 
feasible, the wordlength tool employs the following algorithm for wordlength reduction: 

While keeping all other wordlengths at the maximum value, each wordlength group is reduced 
individually to find the minimum-possible wordlength while still meeting the MSE requirements. 
Each wordlength group is then assigned its minimum-possible wordlength which is likely to be an 
infeasible solution that does not meet the MSE requirements. In order to find a feasible solution all 
wordlengths are increased uniformly. Finally, the wordlength for each group is reduced temporarily, 
and the group that results in the largest hardware reduction while meeting the MSE requirements is 
chosen. This step is then iterated until no further hardware reduction is feasible, and the 
wordlength-optimal solution is created. There are likely other more efficient algorithms to explore 
the simple objective function and constraint function, but since we now have the analytical format 
of the optimization problem, any reasonable optimization procedure will yield the near-optimal 
point. 
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The MSE requirement may require 
a few refinements before arriving at 
a satisfactory design, but one key 
advantage of this wordlength 
optimization tool is its ability to 
rapidly refine designs without 
restarting the characterization and 
simulation process, because both 
the hardware and MSE cost are 
modeled as simple functions. In 
fact, it is now practical to easily 
explore the tradeoff between 
hardware cost and MSE 
performance. 

Furthermore, given an 
optimized design for the specified MSE requirement, the user is then given the opportunity to 
simulate and examine the design for suitability. If unsatisfied with the result, a new MSE 
requirement can be entered, and a design optimized for the new MSE is created immediately. This 
step is still important as the final verification stage of the design to ensure full compliance with all 
original system specifications. 

A simple 1/sqrt() design is shown as an example. Note that both WInt and WFr are reduced, and a 
large saving of FPGA slices is achieved through wordlength reduction. 

 

 

Optimization Refinement and Result

The result is then examined by user for suitability
– Re-optimize if necessary, only takes seconds

(16,12)

(12,9)

(16,11)(16,11)

(14,9)

(24,16)
(24,16)

(24,16)
(16,11)

(8,4)

(13,8)
(11, 6)

(10,6)
(11,7)

(10,7)

(13,11)

(8,7) (8,7)Legend:
red = WL optimal 409 slices
black = fixed WL 877 slices

10.23

Example: 1/sqrt() on an FPGA

About 50% area reduction
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Slide 10.24 

Since the ASIC area estimation is 
characterized for adders, multipliers, 
and registers, a pipelined 6-tap FIR 
filter is used as a design example [8]. 
The design is optimized for an MSE 
of 10−6, and area savings from the 
optimized design is more than 60 % 
compared to all-16-bit design. The 
entire optimization flow for this 
FIR design is under 1 minute. For 
more complex non-linear systems 
characterization may take overnight, 
but no intermediate user interaction 
is required.  

 

 

 

 

 

 

 

 

ASIC Example: FIR Filter

Original Design Area = 48916 m2

Optimized for MSE = 10 6 Area = 18356 m2

10.24
[8] C.C. Wang, Design and Optimization of Low-power Logic, M.S. Thesis, UCLA, 2009. (Appendix A)

[8]

Example: Jitter Compensation Filter
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[9] Z. Towfic, S.-K. Ting, A. Sayed, "Sampling Clock Jitter Estimation and Compensation in ADC 
Circuits," in Proc. IEEE Int. Symp. Circuits and Systems, June 2010, pp. 829-832. 

Slide 10.25 

The design of a state-of-the art jitter 
compensation unit using high-
frequency training signal injection 
[9] is shown. Its main blocks include 
high-pass and low-pass filters, 
multipliers, and derivative 
computations. The designer spent 
many iterations in finding a suitable 
wordlength, but is still unable to 
reach a final SNR of 30 dB, as 
shown in lower left. This design 
consumes ~14k LUTs on a Virtex-5 
FPGA. Using the wordlength 
optimization tool, we finalized on a 
MSE of 4.5×10–9 after a few simple 

refinements. Shown in lower right, the optimized design is able to achieve a final SNR greater than 30 
dB while consuming only 9.6k LUTs, resulting in a 32% savings in area and superior performance.  
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The final detailed example is a high-
performance reconfigurable digital 
front end for cellular phones. Due 
to the GHz-range operational 
frequency required by the 
transceiver, a high-precision design 
simply cannot meet the 
performance requirement. The 
authors had to explore the possible 
architectural transformations and 
wordlength optimization to make 
the performance feasible. Since 
high-performance designs often 
synthesize to parallel logic 
architectures (e.g. carry look-ahead 

adder), the wordlength-optimized design results in 40% savings in area. 

We now explore the tradeoff between MSE and hardware cost, which in this design directly 
translates to power, area, and timing feasibility. Since this design has two outputs (sine and cosine 
channels), the MSE at each output can be adjusted independently. The adjacent-channel-power-ratio 

of the wordlength-optimal design is shown in upper-right. Further wordlength reduction from 
higher MSE (7×10−3) violates ACPR requirement (lower-right). 
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Wordlength optimization is an 
important step in algorithm 
verification. Reduction in the 
number of bits can have 
considerable effect on the chip 
power and area and it is the first 
step in algorithm implementation. 
Manual simulation-based tuning is 
time consuming and infeasible for 
large systems, which necessitates 
automated approach. Wordlength 
reduction can be formulated as 
optimization problem where 
hardware cost (typically area or 
power) is minimized subject to MSE 

error due to quantization. Integer bits are determined based on the dynamic range of input data by 
doing node profiling to determine the signal range at each node. Fractional bits can be automatically 
determined by using perturbation-based approach. The approach is based on comparison of outputs 

Tradeoff: MSE vs. Hardware-Cost

10.26
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Summary

Wordlength minimization is important in the implementation of 
fixed-point systems in order to reduce area and power
– Integer wordlength can be simply found by using range 

detection, based on input data
– Fractional wordlengths require more elaborate perturbation 

theory to minimize hardware cost subject to MSE error due to 
quantization

Design-specific information can be used
– Wordlength grouping (e.g. in multiplexers)
– Hierarchical optimization (with fixed input/output WLs)
– WL optimizer for recursive systems takes longer due to the 

time require for algorithm convergence
FPGA/ASIC hardware resource estimation results are used to 
minimize WLs for FPGA/ASIC implementations

10.27
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(ACPR) requirement of 46 dB must be met, which leads to a minimum MSE of 6×10−3. The ACPR 
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from “floating-point-like” (the number of bits is sufficiently large that the model can be treated as 
floating point) and fixed-point designs. The difference due to quantization is subject to user-defined 
MSE specification. The perturbation-based approach makes use of wordlength groupings and design 
hierarchy to simplify optimization process. Cost functions for FPGA and ASIC hardware targets are 
evaluated to support both hardware flows. After determining wordlengths, the next step is 
architectural optimization.  

We encourage readers to download the tool from the book website and try it on their designs. 
Due to constant updates in Xilinx and Synopsys blockset, some version-compatibility issues may 
occur, though we aim to provide updates with every major blockset release (support for Synopsys 
Synphony blockset is recently added). It is open-source, so feel free to modify it and make 
suggestions, but please do not use it for commercial purposes without our permission. 
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Automation of the architectural 
transformations introduced in 
Chap. 3 is discussed here.  The 
reader will gain insight into how 
data-flow graphs are mathematically 
modeled as matrices and how 
transformations such as retiming, 
pipelining, parallelism and time-
multiplexing are implemented at 
this level of abstraction. Reasonable 
understanding of algorithms used 
for automation can prove to be 
very useful, especially for designers 
working with large designs where 
manual optimization can become 

tedious. Although a detailed discussion on algorithm complexity is beyond the scope of this book, 
some of the main metrics are optimality (in a sense of algorithmic accuracy) and time-complexity of 
the algorithms. In general, a tradeoff exists between the two and this will be discussed in the 
following slides.  
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We will use DFG model to 
implement architectural techniques. 
Architecture transformations are 
used when the original DFG fails to 
meet the system specifications or 
optimization target. For example, a 
recursive DFG may not be able to 
meet the target timing constraints 
of the design. In such a scenario, 
the objective is to structurally alter 
the DFG to bring it closer to the 
desired specifications without 
altering the functionality. The 
techniques discussed in this chapter 
will include retiming, pipelining, 

parallelism and time multiplexing. Benefits of these transformations in the energy-area-delay space 
have been discussed in Chap. 3. Certain transformations like pipelining and parallelism may alter 
the datapath by inserting additional latency, in which case designer should set upper bounds on the 
additional latency.  

 

 

DFG Realizations

Data-flow graphs can be realized with several architectures
– Flow-graph transformations
– Change structure of graph without changing functionality
– Observe transformations in energy-area-delay space

DFG Transformations
– Retiming
– Pipelining
– Time-multiplexing/folding
– Parallelism

Choice of the architecture 
– Dictated by system specifications

11.2
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Slide 11.3 

Retiming, introduced by Leiserson 
and Saxe in [1], has become one of 
the most powerful techniques to 
obtain higher speed or lower power 
architectures without trading off 
significant area. They showed that it 
was possible to move registers 
across a circuit without changing 
the input-output relationship of a 
DFG. They developed algorithms, 
which could guide the movement 
of registers in a manner as to 
shorten the critical path of the 
graph. One key benefit of the 
technique is in its ability to obtain 

an optimal solution with algorithms that have polynomial-time complexity. As a result, most logic 
synthesis tools and a few high-level synthesis tools have adopted this technique [2].  

 

 

Slide 11.4 

If output y(n) of a node is 
delayed by k units to obtain 
y(n−k), then y(n−k) can also be 
obtained by delaying the inputs by 
k units.   
y(n − k) = x1(n) + x2(n) = z(n) = 
x1(n  k) + x2(n  k) (11.1) 

If all inputs to a node are delayed 
by at least k units, then the node 
output y(n) can be obtained by 
removing k delays from all the 

inputs and delaying the output by k units.  

                  y(n) = x1(n  k) + x2(n – k  2) = g(n  k) where g(n) = x1(n) + x2(n  2)     (11.2) 

This concept is illustrated in the figures where the green arrows represent the retiming moves. 
Instead of delaying w(n) to obtain w(n−1), the retimed flow-graph delays the inputs a·y(n 1) and 
b·y(n 3) by one unit to compute v(n)=w(n 1).  

 

 

Retiming

Register movement in the flow graph without functional change 

w(n) = a·y(n  1) + b·y(n  3)
y(n)  = x(n) + w(n  1)
y(n)  = x(n) + a·y(n  2) + b·y(n  4)

x(n)

y(n)

D

3D

D

w(n  1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D*Retiming 
moves

RetimedOriginal

×

+

×

+

×

+

×

+

v(n) = a·y(n  2) + b·y(n  4)
y(n)  = x(n) + v(n)
y(n)  = x(n) + a·y(n  2) + b·y(n  4)
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Retiming

Registers in a flow graph can be moved across edges

Movement should not alter DFG functionality

Benefits 
– Higher speed
– Lower power through VDD scaling
– Not very significant area increase
– Efficient automation using polynomial-time CAD algorithms [2]

11.3
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Retiming moves come from two 
basic results for iterative DSP 
algorithms:
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Slide 11.5 

The biggest benefit of register 
movement in a flow graph is the 
possible reduction in the critical 
path. The maximum operating 
frequency is constrained by the 
worst-case delay between two 
registers. However, the original 
flow graph may have an 
asymmetrical distribution of logic 
between registers. By optimally 
placing registers in the DFG, it is 
possible to balance the logic depth 
between the registers to shorten the 
critical path, thus maximizing the 
throughput of the design. Of 

course, a balanced logic depth may not be possible to obtain in all cases due to the structure of the 
DFG itself and the restriction on the valid retiming moves. An example of a reduction in the critical-
path delay is shown on the slide, where the critical path is highlighted in red. The numbers in 
brackets next to the nodes are the logic delays of the operations. In the original graph the critical 
path spans two operations (an add and a multiply). After retiming, shown in the retimed graph, the 
critical path is restricted to only one multiply operation.  

 

Slide 11.6 

A natural extension to maximizing 
throughput lies in minimizing 
power by exploiting the   additional 
combinational slack in the design. 
This slack can be leveraged for 
power reduction through voltage 
scaling. The reduction in power is 
quadratic with a decrease in voltage; 
even a small combinational slack 
can result in significant power 
reduction. Retiming at a higher level 
of abstraction (DFG level) can also 
lead to less aggressive gate sizing at 
the logic synthesis level. In other 
words, the slack achieved through 

retiming makes it easier to achieve the timing constraints using smaller gates. Having smaller gates 
results in less switching capacitance, which is beneficial from both a power and area perspective.  

 

 

Retiming for Higher Throughput

Register movement can shorten the critical path of the circuit
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Retiming for Lower Power
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Exploit additional combinational slack for voltage scaling

Timing slack = 0 Timing slack = 1
Desired throughput: 1/3
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Cut-sets can be used to retime a 
graph manually. The graph must be 
divided into two completely 
disconnected halves through a cut. 
To check whether a cut is valid, 
remove all of the edges lying on the 
cut from the graph, and check if the 
resulting two graphs G1 and G2 are 
disjointed. A valid retiming step is 
to remove K (K>0) delays from 
each edge that connects G1 to G2, 
then add K delays to each edge that 
connects from G2 to G1 or vice 
versa. The retiming move is valid 
only if none of the edges have 

negative delays after the move is complete. Hence, there is an upper limit on the value of K which is 
set by the minimum weight of the edges connecting the two sets.  

In this example, a cut through the graph splits the DFG into disjointed halves G1 and G2. Since 
the two edges e3 and e4 from G1 to G2 have 0 delays on them, retiming can only remove delays from 
edges going from G2 to G1 and add delays on the edges in the opposite direction. The maximum 
value of K is restricted to 1 because the edge e1 has only 1 delay on it. The retimed DFG is shown in 
figure (b).  

 

Slide 11.8 

Now that we have looked at how to 
manually retime a graph, we discuss 
how retiming is automated using 
the model proposed in [2]. The 
model assigns a retiming weight r(vi) 
to every node vi in the DFG. After 
any retiming move, an edge e: v1  
v2 may either gain or lose delays. 
This gain or loss is computed by 
taking the difference between the 
retiming weights of its destination 
and source nodes, in this case r(v2) 
−r(v1). If this difference is positive, 
then retiming adds delays to the 
edge and if negative then delays are 

removed from the edge. The number of delays added or subtracted is equal to abs(r(v2)−r(v1)). The 
new edge-weight wr (e) is given by w(e) +r(v2)−r(v1), where w(e) is the edge-weight in the original 
graph.  

 

Retiming Cut-sets

Manual retiming approach
– Make cut-sets which divide the DFG in two disconnected halves
– Add K delays to each edge from G1 to G2

– Remove K delays from each edge from G2 to G1
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Mathematical Modeling

Assign retiming weight r(v) to every node in the DFG
Define edge-weight w(e) = number of registers on the edge
Retiming changes w(e) into wr(e), the retimed weight

x(n)

y(n)

D

3D

D

a b4

1

3
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e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3) w(e1) = 1
w(e2) = 1
w(e3) = 3
w(e4) = 0
w(e5) = 0

wr (e) = w(e) + r (v) – r (u)

Retiming equation

11.8

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
University of California, Los Angeles, 2008.

[2]
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It can be shown that the properties 
of the retiming equation hold for 
paths in the same way as for the 
edges. For example, let p: v1  v4 be 
a path through edges e1(v1  v2), 
e2(v2  v3) and e3(v3  v4). The total 
number of delays on the path p 
after retiming will be given by the 
sum of the retimed edge weights e1, 
e2 and e3.  
wr(p) = wr(e1) + wr(e2) + wr(e3) 
wr(p) = w(e1) + r(v2) − r(v1) + w(e2) + 
r(v3) − r(v2) + w(e3) + r(v4) − r(v3) 
wr(p) = w(p) + r(v4) – r(v1) 

Effectively, the number of delays on the path after retiming is given by the original path weight plus 
the difference between the retiming weights of the destination and source nodes of the path. Hence, 
we see that the retiming equation holds for path weights as well.   
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The retiming equation relates the 
retiming weights of the nodes to 
the number of delays lost or gained 
by a path or edge. Therefore, the 
retiming weights can capture 
register movements across the 
flow-graph. A more important 
question is ascertaining whether the 
register movement is valid. In other 
words, given a set of values for the 
retiming weights, how do we know 
that the retiming moves they 
represent are valid and do not 
violate the DFG functionality? The 
main constraint is imposed by the 

non-negativity requirement of the retimed edge-weights. This would imply a feasibility constraint of 
the form w(e)+ r(v2)−r(v1)≥0 for every edge. Also, the retimed edge weights would have to be 
integers, which impose integer constraints on the edge weights.   

 

 

 

Path Retiming

Number of registers inserted in a path p: v1 v2 after retiming
– Given by r(v1)  r(v2)
– If r(v1)  r(v2) > 0, registers inserted in the path
– If r(v1)  r(v2) < 0, registers removed from the path
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wr(p) = w(p) + r(4)  r(1) = 4  1 (one register removed from path p)

r(1) = 1r(2) = 1

r(4) = 0

r(3) = 0

Path p:1 4 Path p:1 4
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Mathematical Modeling

Feasible retiming solution for r(vi) must ensure
– Non-negative edge weights wr(e)
– Integer values of r(v) and wr(e)
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y(n)

D

3D

D

a b4

1
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e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3) wr(e1) = w(e1) + r(2) – r(1)  0
wr(e2) = w(e2) + r(3) – r(2)  0
wr(e3) = w(e3) + r(4) – r(2)  0
wr(e4) = w(e4) + r(1) – r(3)  0
wr(e5) = w(e5) + r(1) – r(4)  0

Feasibility constraints

Integer solutions to feasibility 
constraints constitute a 

retiming solution 

11.10
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We now describe the problem 
formulation for retiming a design so 
that the critical path is less than or 
equal to a user-specified period T. 
The formulation should be such 
that it is possible to identify all 
paths with logic delay >T. These 
paths are critical and must have at 
least one register added to them. 
The maximum logic delay between 
all pairs of nodes (u, v) is called 
Ld(u, v). If no path exists between 
two nodes, then the value of 
Ld(u, v) is set to −1. In the same 
way, W(u, v) captures the minimum 

number of registers over all paths between the nodes (u, v), W(u, v) is set to zero, if no path exists 
between two nodes.  Since we are dealing with directed DFGs, the value of Ld(u, v) is not necessarily 
equal to the value of Ld(v, u), so both these values must be computed separately. The same holds for 
W(u, v) and W(v, u).  

 

Slide 11.12 

This slide shows the algorithm 
proposed by Leiserson and Saxe in 
[1].  The algorithm scans the value 
of Ld(u, v) between all pairs of 
nodes in the graph. For nodes with 
Ld(u, v)>T, an inequality of the 
form in (11.3) is defined, 
W(u, v) + r(v) – r(u) ≥ 1.   (11.3) 

W(u, v) + r(v) – r(u) ≥ 0.   (11.4) 

A solution to the two sets of 
inequality constraints will generate a retiming solution for r(vi) which ensures the non-negativity of 
the edge weights and that the critical paths in the DFG have at least one register. The inequalities 
can be solved using polynomial-time algorithms like Bellman-Ford and Floyd-Warshall described in 
[2]. The overall time-complexity of this approach is bounded by O(|V|3) in the worst case. 
Iteratively repeating this algorithm and setting smaller values of T each time can solve the critical-
path minimization problem. The algorithm fails to find a solution if T is set to a value smaller than 
the minimum possible critical path for the graph.  

 

Retiming with Timing Constraints

Find retiming solution which guarantees critical path in DFG  T
– Paths with logic delay > T must have at least one register

Define
– W(u,v): minimum number of registers over all paths b/w 

nodes u and v, min {w(p) | p : u  v}
– If no path exists between the vertices, then W(u,v) = 0 
– Ld(u,v): maximum logic delay over all paths b/w nodes u and v
– If no path exists between vertices u and v then Ld(u,v) = 1

Constraints
– Non-negative weights for all edges, Wr(vi , vj)  0, i,j
– Look for nodes (u,v) with Ld(u,v) > T
– Define in-equality constraint Wr(u,v)  1 for such nodes

11.11

Leiserson-Saxe Algorithm

Algorithm for feasible retiming solution with timing constraints

Use Bellman-Ford algorithm to solve the inequalities Ik [2]

A lg orithm {r(vi ), flag} Re time(G,d,T)
k 1
for u 1 to |V |

for v 1 to |V | do
if Ld(u,v) T then
DefineinequalityIk :W (u,v)  r(v)  r(u) 1

else if Ld(u,v) 1 then
DefineinequalityIk :W (u,v)  r(v)  r(u) 0

endif
k k 1

endfor
endfor

11.12

[1] C. Leiserson and J. 
Saxe, "Optimizing 
synchronous circuitry 
using retiming," 
Algorithmica,
vol. 2, no. 3, 
pp. 211-216, 1991. 

[2] R. Nanda, DSP 
Architecture 
Optimization in 
MATLAB/Simulink
Environment, M.S. 
Thesis, University of 
California, Los 
Angeles, 2008.

[1]

For nodes with −1 < Ld(u, v) ≤ T, 
an equality of the form shown 
below is defined, 
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This slide shows an example run of 
the retiming algorithm.  The timing 
constraint dictates that the 
maximum logic depth between 
registers should be less than or 
equal to 2 time units. The logic 
delay of nodes 1 and 2 are 1, while 
that of nodes 3 and 4 are 2. The 
first step is to compute the values 
of Ld(u, v) and W(u, v) for all pairs 
of nodes in the graph. From the 
graph, it is clear that the only non-
critical path is the one with edge e1. 
All other paths and edges have logic 
delay greater than 2. Hence the 

value of Ld(u, v) is greater than 2 for all pairs of nodes except node-pair (1, 2). Accordingly, the 
inequalities are formulated to ensure the feasibility and timing constraints.  

 

Slide 11.14 

We now take a look at pipelining 
which can be treated as a special 
case of retiming. Retiming re-
positions the registers in a flow-
graph in order to reduce the critical 
path. However, to strictly maintain 
functional equivalence with the 
original graph, no additional latency 
can be inserted in the paths from 
the input to the output. Our 
previous discussion did not look at 
such a constraint. Additional 
inequalities will need to be 
generated to constrain the retiming 
weights so that no additional 

latency is inserted. In certain situations the system can tolerate additional latency. For such cases, we 
can add extra registers in paths from the input to the output and use them to further reduce the 
critical path.  This extension to retiming is called pipelining.  

Pipelining

Special case of retiming
– Small functional change with additional I/O latency
– Insert K delays at cut-sets, all cut-set edges uni-directional
– Exploits additional latency to minimize critical path

y(n)

x(n)

× × × ×

++ +

DDDD

a b c d

DDD

Pipelining cut-set

K = 1
I/O latency = 1 inserted

tcritical,new = tmult tcritical,old = tadd + tmult

11.14

G1

G2

Retiming with Timing Constraints

Algorithm for feasible retiming solution with timing constraints
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2 (1)(1)

(2) (2)
e2

e3

e4 e5

e1

W(1,2) + r(2) – r(1)  0, W(1,2) = 1
W(2,1) + r(1) – r(2)  1, W(2,1) = 1
W(4,2) + r(2) – r(4)  1, W(4,2) = 1
W(2,4) + r(4) – r(2)  1, W(2,4) = 3
W(4,1) + r(1) – r(4)  1, W(4,1) = 0
W(1,4) + r(4) – r(1)  1, W(1,4) = 4
W(3,1) + r(1) – r(3)  1, W(3,1) = 0
W(1,3) + r(3) – r(1)  1, W(1,3) = 2
W(4,3) + r(3) – r(4)  1, W(4,3) = 2
W(3,4) + r(4) – r(3)  1, W(3,4) = 4
W(2,3) + r(3) – r(2)  1, W(2,3) = 1
W(3,2) + r(2) – r(3)  1, W(3,2) = 1

Feasibility + Timing constraints
T = 2 time units

Integer solutions to these constraints constitute a retiming solution 
11.13

A simple example of a pipelining cut-set is shown for a transposed FIR filter. The cut divides the 
graph into two groups G1 and G2. If K additional delays are added on the edges from G1 to G2, then 
K delays will have to be removed from edges going from G2 to G1. The interesting thing to note here 
is that no edges exist in the direction from G2 to G1. This graph is completely feed-forward in the 
direction from G1 to G2. Hence, there is no upper bound on the value of K. This special 
unconstrained cut-set is called a pipelining cut-set. With each added delay on the edges from G1 to 
G2 we add extra latency to output y(n). The upper bound on the value of K comes from the 
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To model the pipelining algorithm, 
we first take a look at how the 
additional I/O latency insertion can 
be captured. We showed earlier that 
the retiming equation holds for 
paths in the DFG. That is, any 
additional registers inserted in a 
path p can be computed by the 
difference between r(v) and r(u), 
where v and u are the destination 
and source nodes of the path. So 
the additional I/O latency inserted 
in a DFG can be computed by 
identifying all the paths from the 
input to the output, then 

computing the difference in the retiming weights of the corresponding output and input nodes. For 
example, the DFG in the slide has 4 input nodes 1, 2, 3 and 4. All four nodes have a path to the 
single output node 7. The I/O latency inserted in each of these I/O paths can be restricted to 0 if a 
new set of retiming constraints is formulated:  

r(7) − r(1) ≤ 0            (11.5) 

r(7) − r(2) ≤ 0            (11.6) 

r(7) − r(3) ≤ 0            (11.7) 

r(7) − r(4) ≤ 0            (11.8) 

On the other hand, if the system allows up to K units of additional latency, then the RHS of 
(11.5), (11.6), (11.7), and (11.8) can be replaced with K. The feasibility and timing constraints for 

K > 0 for the latency 
=1 in the slide).   

 

 

 

 

 

 

 

Modeling Pipelining

Same model as retiming with timing constraints
Additional constraints to limit the added I/O latency
– Latency inserted b/w input node v1 and output node v2 is 

given by difference between retiming weights, r(v2) r(v1) 

y(n)

x(n)

× × × ×

++ +
DDD

a b c d

e1 e2 e3 e4

e5 e6

(2) (2) (2) (2)

(1) (1) (1)

Wr(1,5) = W(1,5) + r(5) – r(1)  1  
Wr(1,6) = W(1,6) + r(6) – r(1)  1   

Wr(4,7) = W(4,7) + r(7) – r(4)  1

Feasibility + Timing constraints

r(7) – r(4)  1   
r(7) – r(3)  1   
r(7) – r(2)  1   
r(7) – r(1)  1   

tcritical,desired = 2 time units
Max additional I/0 latency = 1 

. . .

*Numbers in brackets are 
combinational delay of the nodes

11.15

pipelining remain the same as that of retiming. The only difference is that 
constraints (K

maximum input-to-output (I/O) latency that can be tolerated by the FIR filter. The value of K is set 
to 1 in the slide. The additional registers inserted reduce the critical path from tadd + tmult to tmult.  
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In the previous discussion it was 
shown that purely feed-forward 
sections of the flow graph make 
pipelining cut-sets possible. This 
raises an interesting question about 
recursive flow graphs when such 
cuts are not possible. Recursive 
flow graphs contain loops, which 
limit the maximum achievable 
critical path in the graph. It can be 
shown that no additional registers 
can be inserted in loops in a graph. 

path starting and ending at the same 
node. For example, a path p going 

through nodes v1  v2  v3  v1 constitutes a loop. The number of registers inserted on this path 
after retiming is given by r(v1)− r(v1)=0. This concept is further illustrated in the slide, where it is 
shown that if extra registers are inserted in a loop, the functionality would be altered. Therefore, in a 
recursive loop, the best retiming can do is position the existing registers to balance the logic depth 
between the registers. Fundamentally, the loops represent throughput bottlenecks in the design.  

 

Slide 11.17 

Now that we have seen how loops 
affect the minimum critical path 
achievable in a design, it is useful to 
know in advance what this 
minimum value can be. This aids in 
setting of the parameter T in the 
retiming algorithm. The term 
iteration bound was defined to 
compute the maximum throughput 
achievable in a DFG. This is a 
theoretical value achieved only if all 
of the registers in a loop can be 
positioned to balance the logic 
depth between them. The iteration 
bound will be determined by the 

slowest loop in the DFG, given by (11.9). 
Iteration bound = maxall loops{combinational delay of loop/number of register in loop}          (11.9) 

The example in the slide shows a DFG with two loops, L1 and L2. L1 has 4 units of logic delay (logic 
delay of nodes 1, 2 and 4) and 4 registers in it. This makes the maximum speed of the loop equal to 
1 unit time if all logic can be balanced between the available registers. However, L2 is slower owing 
to the smaller number of registers in it. This sets the iteration bound to 2 time units.  

Recursive-Loop Bottlenecks

Pipelining loops not possible
– Number of registers in the loops must remain fixed
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y1(n)  = b·w1(n)
w(n) = a·(y1(n  1) + x(n))
y1(n)  = b·a·y1(n  1) + b·a·x(n)

Changing the number of delays in a loop alters functionality 

y1(n)   y2(n)

y2(n)  = b·w (n)
w(n) = a·(y2(n  2) + x(n  1))
y2(n)  = b·a·y2(n  2) + b·a·x(n  1)

11.16

Iteration Bound = Max{Loop Bound}

Loops limit the maximum achievable throughput
– Achieved when registers in a loop balance the logic delay

Loop L1: 1  2  4
Loop L2: 2  3  1

Iteration bound = 2 time units
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a b4
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Loop bound L1 =      = 14
4

Loop bound L2 =      = 24
2

11.17

all loops

1 Combinational delay of loop
max

Number of registers in loopmaxf





 
 

Loop bound

Consider a loop L of a DFG to be a 
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The maximum throughput set by 
the iteration bound is difficult to 
obtain unless the granularity of the 
DFG is very fine. At a granularity 
level of operations (like adders and 
multipliers), registers can be placed 
only on edges between the 
operations. Hence, a second 
limitation on the critical path will be 
imposed by the maximum logic-
block delay among all operations. A 
more optimized approach is to 
allow registers to cut through the 
logic within the operations. In 
effect, we are reducing the 

granularity level of the graph from logic blocks to logic gates such as AND, OR, NOT, etc. In this 
scenario the registers have much more freedom to balance the logic between them. This approach is 
known as fine-graine pipelining, and is commonly used in logic synthesis tools where retiming is 
done after the gate-level netlist has been synthesized. The slide shows an example to illustrate the 
advantage of fine-grain pipelining. This fine level of granularity comes at the expense of tool 
complexity, since the number of logic cells in a design far outnumbers the number of logic blocks. 
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We now take a look at the next 
architectural technique, which 
targets either higher throughput or 
lower power architectures. Like 
retiming, parallelism is aimed at 
speeding up a design to gain 
combinational slack and then using 
this slack to either increase the 
throughput or lower the supply 
voltage. Parallelism, however, is 
much more effective than retiming. 
It creates several instances of the 
original graph to take multiple 
inputs and deliver multiple outputs 
in parallel. The tradeoff is an 

increase in area in order to accommodate multiple instances of the design. For iterative DSP 
algorithms, parallelism can be implemented through the unfolding transformation. Given a DFG 
with input x(n) and output y(n), the parallel DFG computes the values of y(Pm), y(Pm +1), y(Pm +2), 
…, y(Pm +P −1) given the inputs x(Pm), x(Pm +1), x(Pm +2), …, x(Pm +P 1), where P is the 
required degree of parallelism. The parallel outputs are recombined using a selection multiplexer. 

Fine-Grain Pipelining

Achieving the iteration bound 
– Requires finer level of granularity of operations

Gate-level granularity can be achieved during logic synthesis

tcritical = tmult

tcritical = tmult /2 + tadd
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D
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D

D

c

×+

+

x(n)
D
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D

D

c

+

+

11.18

Parallelism

Unfolding of the operations in a flow-graph
– Parallelizes the flow-graph
– Higher speed, lower power via VDD scaling
– Larger area

Describes multiple iterations of the DFG signal flow
– Symbolize the multiple number of iterations by P
– Unfolded DFG constructed from the following P equations

– DFG takes the inputs x(Pm), x(Pm + 1), …, x(Pm + P  1)
– Outputs are y(Pm), y(Pm + 1), …, y(Pm + P  1)

yi = y(Pm + i), i {0, 1, …, P – 1}

11.19

[2] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons 
Inc., 1999. 

[2]
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The unfolded DFG has P copies of 
the nodes and edges in the original 
DFG. Every node u in the DFG 
will have P copies u0, u1,…, uP−1 in 
the unfolded DFG. If input x(n) is 
utilized by node u in the original 
DFG, then the node uj takes in the 
input x(Pm + j) in the unfolded 
graph. Similarly, if the output y(n) is 
tapped from the node u in the 
original DFG, then outputs 
y(Pm + j) are tapped from nodes uj, 
where j takes values from 

{0, 1, 2, …, P − 1}. 
Interconnecting edges without 
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Now that we have looked at the 
mechanics of unfolding, a 
discussion on its limitations is also 
of significance. As discussed earlier, 
the maximum throughput attained 
by a flow graph is limited by its 
iteration bound. It is interesting to 
note that the exact same limit holds 
true for unfolded graphs as well. In 
fact, it can be shown that unfolding 
cannot change the iteration bound 
of a DFG at all. This stems from 
the fact that even after unfolding 
the graph, the logic depth in the 
loops increases by P times while the 

number of registers in them remains constant. Therefore, the throughput per iteration is still limited 
by the value of the iteration bound. This concept is illustrated in the slide for the second-order IIR 
filter example discussed previously. 

 

 

Unfolding

To construct P unfolded DFG
– Draw P copies of all the nodes in the original DFG
– The P input nodes take in values x(Pm), …, x(Pm + P  1)
– Connect the nodes based on precedence constraints of DFG
– Each delay in unfolded DFG is P-slow
– Tap outputs x(Pm), …, x(Pm + P  1) from the P output nodes

x(n)

y(n)

D
a

y(2m)
y(2m + 1)

D* = 2D

Original Unfolded with P = 2

u u1v

u2

v1

v2 a

ax(2m)

x(2m + 1)y(2m) = a·y(2m  1) + x(2m)
y(2m + 1) = a·y(2m) + x(2m + 1)

11.20

Unfolding for Constant Throughput

Unfolding recursive flow-graphs
– Maximum attainable throughput limited by iteration bound
– Unfolding does not help if iteration bound already achieved

x(n) a

y(n)

D
×+

y(2m)
y(2m + 1)

D* = 2D

a

ax(2m)

x(2m + 1)

+

+

×

×

y(n) = x(n) + a·y(n  1)

y(2m) = x(2m) + a·y(2m  1)

y(2m + 1) = x(2m + 1) + a·y(2m)

tcritical = tadd + tmult

tcritical = 2·tadd + 2·tmult
tcritical/iter = tcritical /2

Throughput remains the same

11.21

the unfolded graph. For interconnecting edges between u and v with D registers on it, there will be P 
corresponding edges between uj and vk where k = (i + D) modulo P. Each of these edges has (i + D) 
modulo-P registers on them. An example of a 2-unfolded DFG is shown in the figure for a second-
order IIR filter.  

registers (intra-iteration edges) between nodes u and j will map to P edges between uj and vj in 
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Slide 11.22 

For feed-forward structures where 
pipeline registers can be inserted, 
there is no iteration bound as a 
throughput bottleneck. In this case, 
unfolding combined with pipelining 
can be used to increase the 
throughput significantly (P times in 
some cases).  This is illustrated for 
the 2-unfolded FIR filters in the 
slide. The additional pipeline 
registers in the unfolded DFG are 
retimed (dashed green lines indicate 
retiming moves) to reduce the 
critical path. The tradeoff for this 
transformation lies in the additional 

area and I/O latency. The throughput increase by P can be used to improve the energy efficiency by 
an order of magnitude, as will be shown later in the chapter.  

 

 

Slide 11.23 

The final transformation discussed 
in this chapter will be scheduling. 
The data-flow graph can be treated 
as a sequence of operations, which 
have to be executed in a specified 
order to maintain correct 
functionality. In previous 
transformations, a single iteration 
of the DFG was executed per clock 
cycle. In the case of unfolding, P 
iterations are executed every clock 
cycle; the clock period can be 
slowed by a factor of P to maintain 
original throughput. We have seen 
how area can be traded-off for 

higher speed with unfolding. The opposite approach is to exploit the slack available in designs, 
which can operate faster than required. In this case, the iteration period Titer of the DFG 
(1/throughput) is divided into several smaller clock cycles. The operations of the DFG are spread 
across these clock cycles while adhering to their original sequence of execution. The benefit is that 
the same level of operations executing in mutually exclusive clock cycles can share a single hardware 
resource. This leads to an area reduction since a single unit can now support multiple operations. 

 

 

Unfolding FIR Systems for Higher Throughput

Throughput can be increased with effective pipelining

y(n)

x(n)

d c b a

++ +
DDD

y(2m  1)

x(2m + 1)

d c b a

++ +
D

y(2m  2)

d c b a

++ +
DD

x(2m)

y(n) = a·x(n) + b·x(n  1) 
+ c·x(n  2) + d·x(n  3) 

y(2m  2) = a·x(2m  2) + b·x(2m  3)
+ c·x(2m  4) + d·x(2m  5) 

y(2m  1) = a·x(2m  1) + b·x(2m  1)
+ c·x(2m  3) + d·x(2m  4) 

tcritical = tadd + tmult

tcritical = tadd + tmult

tcritical/iter = tcritical /2

Throughput 
doubles!!

D

D

*

* Register 
retiming moves

11.22

Introduction to Scheduling

Dictionary definition
– The coordination of multiple related tasks into a time sequence
– To solve the problem of satisfying time and resource 

constraints between a number of tasks

Data-flow-graph scheduling
– Data-flow-graph iteration 

Execute all operations in a sequence 
Sequence defined by the signal flow in the graph

– One iteration has a finite time of execution Titer

– Constraints on Titer given by throughput requirement
– If required Titer is long 

Titer can be split into several smaller clock cycles
Operations can be executed in these cycles 
Operations executing in different cycles can share hardware

11.23
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Slide 11.24 

An example of scheduling is 
illustrated in this slide. The same 
DFG is implemented in two ways. 
On the left, each operation has a 
dedicated hardware unit for 
execution, and all operations 
execute simultaneously in a single 
cycle. A total of 3 multipliers and 1 
adder will be required for this 
implementation. On the right, the 
iteration period Titer is split into 
three clock cycles, with v1 and v2 
executing in the first cycle, while v3 
and v4 execute in the second and 
third cycle, respectively. Note that 

both cases maintain the same sequence of operations. Due to the mutually exclusive time of 
execution, v2 and v4 can share a multiplier unit. This brings the hardware count to 2 multipliers and 1 
adder, which is one multiplier less compared to the DFG on the left. The number of clock cycles 
per iteration period will be referred to as N throughout the chapter. It is easy to see that larger value 
of N allows more operations to execute in different cycles, which leads to more area reduction. The 
logic depth of the hardware resources will determine minimum clock period and consequently the 
limit on the value of N.  

 

Slide 11.25 

We can formally define the 
scheduling problem as follows:  

 For a given iteration period, 
set the value of clock period and N 
= Titer/clock period. 

 Assign a cycle for execution 
p(vi), to each operation in the flow 
graph. The sequence of execution 
should maintain the DFG 
functionality. 

 Assign a hardware unit Hi 
for executing the operation in its 
respective clock cycle. One 
hardware unit cannot execute more 

than one operation in the same cycle.  
 The assignment should ensure that the operations are executed in N cycles, and the objective 

must be to reduce the area of the hardware units required. 

The entire process can be visualized as a table with N rows representing N clock cycles. Each 
column of the table represents a hardware unit. If operation v executes in cycle j using hardware Hi, 

Area-Throughput Tradeoff

Scheduling provides a means to tradeoff throughput for area
– If Titer = Tclk all operations required dedicated hardware units 
– If Titer = N·Tclk , N > 1, operations can share hardware units

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer = Tclk

Tclk

No hw 
sharing

3 multipliers and 1 adder 2 multipliers and 1 adder

×

+

×

×

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

11.24

Schedule Assignment

Available: hardware units H and N clock cycles for execution
– For each operation, schedule table records 

Assignment of hardware unit for execution, H(vi)
Assignment of time of execution, p(vi) 

Tclk

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

Schedule Add 1 Mult 1 Mult 2
Cycle 1 x v1 v2

Cycle 2 v3 x x
Cycle 3 x x v4

Schedule Table

H(v1) = Multiplier 1
H(v2) = Multiplier 2  
H(v3) = Adder 1         
H(v4) = Multiplier 1 

p(v1) = 1
p(v2) = 1  
p(v3) = 2         
p(v4) = 3 

11.25
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then the jth element of the ith v. An example of such an assignment is shown in the 
slide for N =3. An “x” entry in a column represents that the resource is free in that cycle.  

 

Slide 11.26 

This slide re-iterates the problem 
statement and defines an objective 
function of the scheduling phase. 
The area function is a weighted sum 
of the number of available 
hardware units. The weights depend 
on the relative area of the resource 
units. This scheduling problem is 
NP-hard in general. This means 
that finding the optimum schedule 
assignment, which minimizes area 
while satisfying the timing and 
precedence constraints, could take 
an infinitely long time in the worst 
case. Procedures like integer linear 

programming (ILP) have demonstrated that such an optimum can be reached regardless, with no 
bounds on CPU runtime. We will take a brief look at ILP modeling later. For now, we focus on 
simple heuristics for generating schedules, which although not fully optimal, are commonly used. 

 

Slide 11.27 

One such heuristic is known as “As 
Soon As Possible scheduling”, also 
referred to as ASAP scheduling [4]. 
As its name suggests, this algorithm 
executes the operations of the DFG 
as soon as its operands are available 
and a free execution resource can 
be found. The user must initially 
specify the available hardware units. 
The practice is to start with a very 
small number of resources in the 
first pass of the algorithm and then 
increase this number if a schedule 
cannot be found. The algorithm 
looks for a “ready” node u in the 

list of unscheduled nodes. A “ready” operation is defined as a node whose operands are immediately 
available for use. Input nodes are always “ready” since incoming data is assumed to be available at all 
times. All other operations are ready only when their preceding operations have been completed. 
Next, the scheduler looks for the first possible clock cycle Smin where the node u can execute. If a 
hardware unit H i is available in any cycle S ≥Smin, then the operation is scheduled in unit Hi at cycle 

Problem Statement

Given a data-flow graph G, Titer and Tclk

– Find a schedule assignment H(vi), p(vi) which:
Executes all DFG operations in N clock cycles
Sequence of execution should not alter DFG functionality
Minimizes the area A of the hardware resources required for execution

Number of adders: Na
Number of multipliers: Nm

A = 1·Areaadder + 2·Areamultiplier

v1 , v2 , v3 executed 
in N = 3 cycles

Schedule Add 1 Mult 1 Mult 2
Cycle 1 x v1 v2

Cycle 2 v3 x x
Cycle 3 x x v4

min A = Na·Areaadder + Nm·Areamultiplier

11.26

ASAP: As Soon As Possible Scheduling

Schedules the operations top-down from input to output nodes
Available hardware resource units specified by the user    
Operation scheduled in the first available cycle

A lgorithm {H(vi), p(vi)} ASAP (G)

u vi // vi is any "ready" operation, operation is "ready"
// if all its preceding operations have been scheduled

qi V operations immediately preceding u
ei execution of qi ends in this cycle
Smin first available cycle for execution of u max{ei 1}
S first available cycle Smin with

available hardware resource Hi

H(u) Hi

p(u) S

11.27

[4] C. Tseng and D.P. Siewiorek, "Automated synthesis of datapaths in digital systems," IEEE Trans. 
Computer-Aided Design, vol. CAD-5, no. 3, pp. 379-395, July 1986.

[4]

 column equals 
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S. If no such cycle can be found, then scheduling is infeasible and the hardware resource count 
should be increased for the next pass of ASAP execution. This continues until all operations have 
been assigned an execution cycle S and a hardware unit H.  

 

 

Slide 11.28 

An example of ASAP scheduling is 
shown for the graph G in the slide. 
The first “ready” operation is the 
input node v1, which is followed by 
the node v2. The node v1 uses 
multiplier M1 in cycle 1, which 
forces v2 to execute in cycle 2. Once 
v1 and v2 are executed, node v3 is 
“ready” and is assigned to cycle 3 
and adder unit A1 for execution. 
Following this, the operation v4 
becomes ready and is scheduled in 
cycle 4 and assigned to unit M1. If 
N<4, scheduling would become 
infeasible with a single multiplier. 

The scheduler would have to increase the hardware count for a second pass to ensure feasibility.  

 

 

Slide 11.29 

This slide shows the scheduling 
table and the resultant sequence of 
operation execution for the ASAP 
scheduling steps shown in Slide 
11.28.  

 

 

 

 

 

 

 

 

ASAP Example

Assumptions:
– Titer = 4·Tclk , N = 4
– Multiplier pipeline: 1
– Adder pipeline: 1
– Available hardware

1 multiplier M1

1 adder A1

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G

Sched. u q e Smin S p(u) H(u)
Step 1 v1 null 0 1 1 1 M1

Step 2 v2 null 0 1 2 2 M1

Step 3 v3 v1 , v2 1 3 3 3 A1

Step 4 v4 v3 2 4 4 4 M1

ASAP scheduling steps

11.28

ASAP Example

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G x1(n) x2(n)

y(n)

v1

v2

v3

v4

Tclk

Titer

Final ASAP schedule

Schedule M1 A1

Cycle 1 v1 x
Cycle 2 v x
Cycle 3 x v
Cycle 4 v x

Schedule Table
M1

M1

A1

M1

Schedules “ready” operations in the first cycle with available 
resource

11.29

2

3

4
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Slide 11.30 

“As Late As Possible” or ALAP 
scheduling is another popular 
heuristic similar to ASAP, the only 
difference is its definition of a 
“ready” operation. ALAP starts 
scheduling from the output nodes 
and moves along the graph towards 
the input nodes. Operations are 
considered “ready” if all its 
succeeding operations have been 
executed. Although heuristics like 
ASAP and ALAP are simple to 
implement, the quality of the 
generated schedules are very poor 
compared to optimal solutions 

from other formal methods like Integer Linear Programming (ILP). The main reason is that the 
selection of “ready” operations does not take the DFG’s critical path into account. Timing-critical 
operations, if scheduled later, tend to delay the execution of a number of other operations. When 
the execution delays become infeasible, then the scheduler has to add extra resources to be able to 
meet the timing constraints. To overcome this drawback, an algorithm called “list scheduling” was 
proposed in [5]. This scheduler selects the next operation to be scheduled from a list, in which 
operations are ranked in descending order of timing criticality.  

 

Slide 11.31 

The LIST scheduling process is 
illustrated in this slide. The first 
step is to sort the operations based 
on descending their precedence 
height PH. The precedence height of 
a node v is defined as the longest 
combinational path, which starts at 
v. In the figure, the longest path 
from node v3 goes through v3 → v5 
→ v6. The length of the path is 
defined by the sum of the logic 
delays, which is 2tmult +tadd =3  in 
this case, making PH (v3)=3. Once 
all operations have been sorted, the 
procedure is similar to ASAP 

scheduling. The second step is to schedule operations in descending order of PH. The scheduling is 
done in the listed order in the first available cycle with a free hardware resource. The table in the 
slide shows different scheduling orders for ASAP and LIST. Note how LIST scheduling prefers to 
schedule node v3 first, since it is the most timing critical (PH(v3)=3). We will see the effect of this 
ordering on the final result in the next two slides.  

Scheduling Algorithms

More heuristics
– Heuristics vary in their selection of next operation to scheduled
– This selection strongly determines the quality of the schedule

– ALAP: As Late As Possible scheduling
Similar to ASAP except operations scheduled from output to input 
Operation “ready” if all its succeeding operations scheduled

– ASAP, ALAP do not give preference to timing-critical operations
Can result in timing violations for fixed set of resources  
More resource/area required to meet the Titer timing constraint

– List scheduling
Selects the next operation to be scheduled from a list 
The list orders the operations according to timing criticality

11.30

List Scheduling

Assign precedence height PH(vi) to each operation
– PH(vi) = length of longest combinational path rooted by vi

– Schedule operations in descending order of precedence height
x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6× Possible scheduling sequence
ASAP v1  v2  v3  v4  v5  v6

LIST v3  v2  v5  v1  v4  v6 

PH(v1) = T(v4) = 1
PH(v2) = T(v5) + T(v6) = 3
PH(v3) = T(v5) + T(v6) = 3 
PH(v5) = T(v6) = 2
PH(v4) = 0, PH(v6) = 0 

tadd = 1, tmult = 2

11.31

[5] S. Davidson et. al., "Some experiments in local microcode compaction for horizontal machines," 
IEEE Trans. Computers, vol. C-30, no. 7, pp. 460-477, July 1981. 

[5]
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Slide 11.32 

adder and multiplier units have 
pipeline depth of 1 and 2, 
respectively. The clock period is set 
to the delay of a single adder unit. 
Hardware resources initially 
available are 2 multipliers and 1 
adder. It is clear that scheduling v3 
later forces it to execute in cycle 2, 
which delays the execution of v5 and 
v6. Consequently, we face timing 
violations at the end when trying to 
schedule v6. In such a scenario the 

scheduler will add an extra multiplier to the available resource set and re-start the process.  

 

 

Slide 11.33 

For the same example, the LIST 
scheduler performs better. Node v3 
is scheduled at the start of the 
scheduling process and assigned to 
cycle 1 for execution. Node v1 is 
delayed to execute in cycle 3, but 
this does not cause any timing 
violations. On the other hand, 
scheduling v3 first allows v5 and v6 to 
execute in the third and fourth 
cycle, respectively, making the 
schedule feasible. Notice that M1 is 
active for both operations v1 and v6 
in cycle 4. While v6 uses the first 
pipeline stage of M1, v1 uses the 

second. Other scheduling heuristics include force-directed scheduling, details of which are not 
discussed here.  

 

 

 

 

 

Comparing Scheduling Heuristics: ASAP

x1(n) x2(n)

y1(n)

v1 v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1 Timing

violation

Titer

ASAP schedule infeasible, 
more resources required to 
satisfy timing

Titer = 5·Tclk , N = 5 

Pipeline depth
Multiplier: 2
Adder: 1

Available hardware 
2 mult: M1, M2
1 add: A1

11.32

Comparing Scheduling Heuristics: LIST

LIST scheduling feasible, 
with 1 adder and 2 multipliers
in 5 time steps

Titer = 5·Tclk , N = 5 

Pipeline depth
Multiplier: 2
Adder: 1

Available hardware 
2 mult: M1, M2
1 add: A1

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5
M1

A1

M2

v3
M1

A1

v6
M1

Titer

11.33

This slide shows ASAP scheduling 
example considering pipeline depth 
of the operators for N = 5. The 
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Slide 11.34 

In the previous examples we looked 
at scheduling graphs without any 
memory elements on the edges. 
Edge e: v1  v2 with R delays 
requires an appropriate number of 
registers in the scheduled graph to 
satisfy inter-iteration constraints. 

 
iteration when there are R registers 
on the edge e. This relaxes the 
timing constraints on the execution 
of v2 once operation v1 is completed. 
An example of this scenario is 
shown in the next slide. The 

number of registers to be inserted on the edge in the scheduled graph is given by the folding 
equations to be discussed later in the chapter. 

 

 

Slide 11.35 

In a scheduled graph, a single 
iteration is split into N time steps. 
A registered edge, e: v1  v2, in the 
original flow graph with R delays 
implies a delay of R iterations 
between the execution of v1 and v2. 
In the scheduled graph, this delay 
translates to N·R time steps. The 
slide shows an example of 
scheduling with inter-iteration edge 
constraints. The original DFG on 
the left has one edge (e: v5  v6) 
with a single delay element D on it. 
In the scheduled graph (for N = 4) 
on the right, we see that operations 

v5 and v6 start execution in the third time step. However, the output of v5 must go to the input of v6 
only after N=4 time steps. This is ensured by inserting 4 register delays on this edge in the 
scheduled graph. The exact number of delays to be inserted on the scheduled edges can change; this 
occurs if the nodes were scheduled in different time steps or if the source node is pipelined and 
takes more than one time step to complete execution. The exact equations for the number of delay 
elements are derived in the next section.  

 

Inter-Iteration Edges: Timing Constraints

Edge e : v1  v2 with zero delay forces precedence constraints
– Result of operation v1 is input to operation v2 in an iteration
– Execution of v1 must precede the execution of v2

Edge e : v1  v2 with delays represent relaxed timing constraints
– If R delays present on edge e
– Output of v1 in I th iteration is input to v2 in (I + R)th iteration
– v1 not constrained to execute before v2 in the I th iteration

Delay insertion after scheduling
– Use folding equations to compute the number of 

delays/registers to be inserted on the edges after scheduling

11.34

Inter-Iteration Edges

x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6×
D

Inter-iteration edge
e : v4  v5

v5 is not constrained to 
execute after v4 in an iteration

Insert registers on edge e
for correct operation

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1

Titer

11.35

The output of v1 in the I th iteration 
is the input to v2 in the (I + R)th 
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Slide 11.36 

Folding equations ensure that 
precedence constraints and 
functionality of the original DSP 
algorithm are maintained in the 
scheduled architecture. The 
objective is to ensure that 
operations get executed on the 
hardware units at the correct time 
instance. This mainly requires that 
operands are routed to their 
respective resource units and that a 
correct number of registers are 
inserted on the edges of the 
scheduled graph. An example of a 
folded edge is shown in the slide. 

The original DFG edge shown on the left is mapped to the edge shown on the right in a scheduled 
implementation. Operation v1 is executed on H1, which has two pipeline stages. Operation v2 is 
executed on hardware H2. To ensure correct timing behavior, the register delay f on the scheduled 
graph must be computed correctly so the inter-iteration constraint on the original edge is satisfied. 
The number of registers f is computed using folding equations that are discussed next.   

 

Slide 11.37 

The number of registers f on a 
folded edge depends on three 
parameters: the delay w on the edge 
in the original DFG, the pipeline 
depth d(v) of the source node and 
the relative difference between the 
times of execution of the source 
and destination nodes in the 
scheduled graph. We saw earlier 
that a delayed edge in the original 
flow-graph is equivalent to a delay 
of one iteration which translates to 
N time steps in the scheduled 
graph. Therefore a factor of N·w 
appears in the folding equation for f 

shown at the bottom of the slide. If the source node v1 is scheduled to execute in time step p(v1), 
while v2 executes in time step p(v2), then the difference between the two also contributes to 
additional delay, as shown in the scheduled edge on the right. Hence, we see the term p(v2)−p(v1) in 
the equation. Finally, pipeline registers d(v1) in the hardware unit that executes the source node 
introduce extra registers on the scheduled edge. Hence d(v1) is subtracted from N·w +p(v2)−p(v1) to 
give the final folding equation. In the scheduled edge on the right, we see that the source node v1 
takes two time steps to complete execution and has two pipeline registers (d(v1)= 2). Also, the 

Folding

Maintain precedence constraints and functionality of DFG 
– Route signals to hardware units at the correct time instances 
– Insert the correct number of registers on edges after scheduling

v1 mapped to unit H1
v2 mapped to unit H2

2 pipeline stages in H1
1 pipeline stage in H2

v1 v2
w

Original Edge Scheduled Edge

H1 H2

f
v11 v12 v2

d(v1) = 2 
2 pipeline stages

d(v2) = 1 
1 pipeline stage

Compute value of f which maintains precedence

11.36

Folding Equation

Number of registers on edges after folding depends on
– Original number of delays w, pipeline depth of source node
– Relative time difference between execution of v1 and v2

v1 v2
w

H1 H2

f
v11 v12 v2

M1

A1

p(v1) = 1

p(v2) = 3

d(v1) = 2

N clock cycles per iteration
w delays  N·w delay in schedule

f = N·w – d(v1) + p(v2) – p(v1)

Legend d: delay, p: schedule

11.37
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difference between p(v1) and p(v2) is 2 for this edge, bringing the overall number of registers to N·w 
+2−2 =N·w. Each scheduled edge in the DFG must use this equation to compute the correct 
number of delays on it to ensure that precedence constraints are not violated.  

 

 

Slide 11.38 

This slide shows an example of the 
architecture after an edge in a DFG 
has been scheduled. Nodes v1 and v2 
represent operations of the same 
type which have to be scheduled 
onto the single available resource v 
in N=2 time steps. The edge is 
first retimed to insert a register on it 
(Figure (b)). The retimed edge is 
scheduled such that operation v1 is 
scheduled in the first time step 
(p(v1)=1) while v2 is scheduled in 
the second time step ( p(v2)=2). 
The processing element v is 
pipelined by two stages (d(v1)=d(v2) 

= 2) to satisfy throughput constraints. We get the following folding equation for the delays on edge 
e1. 

f = N·w + p(v2) − p(v1) − d(v1) = 2·1 + 2 – 1 − 2 = 1  

The scheduled edge in Figure (c) shows the routing of the incoming signal x(n) to resource v. The 
multiplexer chooses x(n) as the output in the first cycle when operation v1 is executed. The output of 
v1 is fed back to v after a single register delay on the feedback path to account for the computed 
delay f. The multiplexer chooses the feedback signal as the output in the second cycle when the 
operation v2 is executed. Scheduled architectures have a datapath, consisting of the resource units 
used to execute operations, and a control path, consisting of multiplexers and registers that maintain 
edge constraints. Sometimes the overhead of muxes and delay elements strongly negates the gains 
obtained from resource sharing in time-multiplexed architectures. 

 

 

 

 

 

 

 

 

Scheduling Example

v1 v2e1
y(n)x(n)

2D

v1 v2e1
y(n)x(n)

DD

z 1

z 2v y(n)
x(n)

(a) Original edge

(b) Retimed edge

(c) Retimed edge after scheduling

Edge scheduled using 
folding equations

Folding factor (N) = 2

Pipeline depth
d(v1) = 2
d(v2) = 2

Schedule
p(v1) = 1
p(v2) = 2
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Slide 11.39 

The use of retiming during the 
scheduling process can improve the 
area, throughput, or energy 
efficiency of the resultant 
schedules. As we have seen earlier, 
retiming solutions are generated 
through the Leiserson-Saxe [1] 
algorithm, which in itself is an 
Integer Linear Programming (ILP) 
framework. To incorporate 
retiming within the scheduler, the 
brute-force approach would be to 
resort to an ILP framework for 
scheduling as well, and then 
introduce retiming variables in the 

folding equations. However, the ILP approach to scheduling is known to be NP-complete and can 
take exponential time to converge.  

If retiming is done simultaneously with scheduling, the time complexity worsens further due to 
an increased number of variables in the ILP. To mitigate this issue, we can separate scheduling and 
retiming tasks. The idea is to first use the Bellman-Ford algorithm to solve the folding equations and 
generate the retiming solution. Following this, scheduling can be done using the ILP framework. 
This approach, called “Scheduling with BF retiming” in the next slide, has better convergence 
compared to an integrated ILP model, where scheduling and retiming are done simultaneously. 
Another approach is to pre-process the DFG prior to scheduling to ensure a near-optimal and time-
efficient solution. Following this, scheduling can be performed using heuristics like ASAP, ALAP or 
list scheduling. The latter approach has polynomial complexity and is automated with the 
architecture optimization tool flow discussed in Chap. 12. 

 

Slide 11.40 

The slide presents results of several 
scheduling and retiming 
approaches. We compare traditional 
scheduling, scheduling with 
Bellman-Ford retiming and 
scheduling with pre-processed 
retiming. ILP scheduling with BF 
retiming results in the most area-
efficient schedules. This method, 
however, suffers from poor worst-
case time complexity. The last 
method (scheduling with pre-
processed retiming) is the most 
time-efficient and yields a very-
close-to-optimal solution in all 

Efficient Retiming & Scheduling

Retiming with scheduling
– Additional degree of freedom associated with register 

movement results in less area or higher throughput schedules
Challenge: Retiming with scheduling
– Time complexity increases if retiming done with scheduling

Approach: Low-complexity retiming solution
– Pre-process data flow graph (DFG) prior to scheduling
– Retiming algorithm converges quickly (polynomial time)
– Time-multiplexed DSP designs can achieve faster throughput
– Min-period retiming can result in reduced area as well

Result: Performance improvement
– An order of magnitude reduction in the worst-case time-

complexity
– Near-optimal solutions in most cases

11.39

DSP 
Design N

Scheduling
(current)

Scheduling (ILP) 
with 

BF retiming

Scheduling with 
pre-processed retiming

Area CPU(s) Area CPU(s) Area CPU(s)

Wave 
filter

16 NA NA 8 264 14 0.39

17 13 0.20 7 777 8 0.73

Lattice 
filter

2 NA NA 41 0.26 41 0.20
4 NA NA 23 0.30 23 0.28

8-point 
DCT

3 NA NA 41 0.26 41 0.21
4 NA NA 28 0.40 28 0.39

NA – scheduling infeasible without retiming
Near-optimal solutions at significantly reduced worst-case runtime

Results: Area and Runtime

11.40
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cases, as shown in the table. Up to a 100-times improvement in worst-case runtime is achieved over 
the Bellman-Ford method for an N =17 wave filter. The pre-processing method is completely 
decoupled from the scheduler, which means that we are no longer restricted to using the ILP models 
that have high time complexity. In the pre-processing phase the DFG is first retimed with the 
objective of reducing the hardware requirement in the scheduling phase.  

 

Slide 11.41 

Exploring new methods to model 
architectural transformations, we 
show that a pre-processing phase 
with retiming can assist the 
scheduling process to improve 
throughput, area, and power. The 
proposed pre-processing is 
decoupled from the scheduler, 
which implies that we are no longer 
restricted to using the ILP models 
that have high time complexity. For 
standard benchmark examples (IIR 
and FIR filters), this pre-processing 
scheme can yield area 
improvements of more than 30 %, 

over 2x throughput improvement, and power reduction beyond 50 % using VDD scaling.   (Note: the 
scheduler attempts to minimize area, so power may increase for very low throughput designs, 
because the controller overhead becomes significant for small structures such as these filters.) 

 

Slide 11.42 

In summary, this chapter covered 
algorithms used to automate 
transformations such as pipelining, 
retiming, parallelism, and time 
multiplexing. The Leiserson-Saxe 
algorithm for retiming, unfolding 
for parallelism and various 
scheduling algorithms are 
described. In Chap. 12, we will 
discuss a MATLAB/Simulink based 
design flow for architecture 
optimization. This flow allows 
flexibility in the choice of 
architectural parameters and also 
outputs the optimized architectures 

as Simulink models. 

 

Scheduling Comparison

Scheduling with pre-retiming outperforms scheduling
– Retiming before scheduling enables higher throughput  
– Lower power consumption with VDD scaling for same speed
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Summary

DFG  automation algorithms
– Retiming, pipelining
– Parallelism
– Scheduling

Simulink-based design optimization flow
– Parameterized architectural transformations
– Resultant optimized architecture available in Simulink

Energy, area, performance tradeoffs with
– Architectural optimizations
– Carry-save arithmetic
– Voltage scaling 

11.42
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Having looked at algorithms for 
scheduling and retiming, we will 
now discuss an integrated design 
flow, which leverages these 
automation algorithms to create a 
user-friendly optimization 
framework. The flow is intended to 
address key challenges of ASIC 
design in scaled technologies: 
design complexity and design 
flexibility. Additionally, the design 
challenges are further underscored 
by complex and cumbersome 
verification and debugging 
processes. This chapter will present 

an FPGA-based methodology to manage the complexity of ASIC architecture design and 
verification. 
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Traditional ASIC development is 
partitioned among multiple 
engineering teams, which specialize 
in various aspects from algorithm 
development to circuit 
implementation.  Propagating 
design changes across the 
abstraction layers is very 
challenging because the design has 
to be re-entered multiple times.  
For example, algorithm designers 
typically work with MATLAB or C. 
This description is then refined for 
fixed-point accuracy, mapped to an 
architecture in the RTL format for 

ASIC synthesis, and finally test vectors are adapted to the logic analysis hardware for final 
verification.  The problem is that each translation requires an equivalence check between the 
descriptions, which is the key reason for the increasing cost of ASIC designs.  One small logic error 
could cost months of production delay and a significant financial cost. 

The MATLAB/Simulink environment can conveniently represent all design abstraction layers, 
which allows for algorithm, architecture, and circuit development within a unified description.  
System architects greatly benefit from improved visibility into the basic implementation tradeoffs 
early in the algorithm development.  This way we can not only explore the different limitations of 
mapping algorithms to silicon, but also greatly reduce the cost of verification. 

Simulink-Hardware Flow

Chapter 12

with Rashmi Nanda and Henry Chen
University of California, Los Angeles

ASIC Development

 Multiple design descriptions
– Algorithm (MATLAB or C)
– Fixed point description
– RTL (behavioral, structural)
– Test vectors for logic analysis

 Multiple engineering teams involved

 Unified MATLAB/Simulink description
– Path to hardware emulation / FPGA
– Path to ASIC optimized
– Closed-loop I/O verification

12.2
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Slide 12.3 

In Simulink, we can evaluate the 
impact of technology and 
architecture changes by observing 
simple implementation tradeoffs. 
The Simulink design editor is used 
for the entire design flow: (1) to 
define the system and determine 
the required level of flexibility, (2) to 
verify the system in a single 
environment that has a direct 
implementation path, (3) to obtain 
estimates of the implementation 
costs (area, delay, energy) and (4) to 
optimize the system architecture. 
This involves partitioning the 

system and modeling the implementation imperfections (e.g. analog distortions, A/D accuracy, finite 
wordlength). We can then perform real-time verification of the system description with prototyped 
analog hardware and, finally, automatically generate digital hardware from the system description. 

Here is an example design flow.  We describe the algorithm using floating-point for the initial 
description.  At this point, we are not interested in the implementation; we are just exploring how 
well the algorithm works relative to real environments.  Determining the flexibility requirements is 
another critical issue, because it will drive a large portion of the rest of the design effort.  It could 
make few orders of magnitude difference in energy efficiency, area efficiency, and cost. Next, we 
take an algorithm and model it into an architecture, with constraints and fixed-point wordlengths. 
We decide how complex different pieces of hardware are, how to control them properly, and how to 
integrate different blocks.  After the architectural model, we need an implementation path in order 
to know how well everything works, how much area, how much power is consumed, etc.  There are 
two implementation paths we are going to discuss: one is through programming an FPGA; the other 
through building an ASIC. 

 

 

 

 

 

 

 

 

 

 

 

Simulink Design Framework

Common test vectors,
and hardware description of 

netlist and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Algorithm/flexibility
evaluation

Initial System Description 
(Floating point MATLAB/Simulink) 

Determine Flexibility Requirements

Description with Hardware Constraints 
(Fixed point Simulink, 

FSM Control in Stateflow)

Real-time Emulation
(FPGA Array)

Automated ASIC Generation
(Chip-in-a-day Flow)
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Slide 12.4 

The Simulink chip-design approach 
was introduced in the early 2000s in 
the work by Rhett Davis et al. [1].  
They proposed a 1-to-1 mapping 
between Simulink fixed-point 
blocks and hardware macros.  
Custom tools were developed to 
elaborate Simulink MDL model 

interchange format) description.  
The ASIC backend was fully 
automated within the Simulink-to-
silicon hierarchical tool flow.  A key 
challenge in this work is to verify 
that the Simulink library blocks are 

hardware-equivalent: bit-true and cycle accurate. 
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To address the issue of hardware 
accuracy, Kimmo Kuusilinna and 
others at the Berkeley Wireless 
Research Center (BWRC) extended 
the Simulink-to-silicon framework 
to include hardware emulation of a 
Simulink design on an FGPA [2].  
The emulation is simply done by 
using the Xilinx hardware library 
and toolflow for FPGA mapping.  
A key component of this work was 
another custom tool that translates 
the RTL produced by Simulink into 
a language suitable for commercial 
ASIC backend tools.  The tool also 

invokes post-synthesis logic-level simulation to confirm I/O equivalence between ASIC and FPGA 
descriptions. Architecture feedback about speed, power, and area is propagated to Simulink to 
further refine the architecture.  

Using this methodology, we can close the loop by performing input/output verification of a 
fabricated ASIC, using an FPGA.  Given functional equivalence between the two hardware 
platforms, we use FPGAs to perform real-time at-speed ASIC verification.  Blocks from a custom 
I/O library are incorporated into an automated FPGA flow to enable a user-friendly test interface 
controlled entirely from MATLAB and Simulink.  Effectively, we are building ASIC logic analysis 
functionality on an FPGA.  This framework greatly simplifies the verification and debugging 
processes. 

Simulink Based Chip Design: Direct Mapping

 Result: An architecture that can be implemented rapidly

Mult2

Mac2Mult1 Mac1

S reg X reg Add,
Sub,
Shift

Directly map diagram into hardware since there is a 
one-for-one relationship for each of the blocks
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Simulink Based Optimization and Verification Flow

Simulink

Hw lib

Speed
Power
Area

Custom
tool 1

ASIC
backend

I/O lib

FPGA
backend

Custom
tool 2

RTL

FPGA implements
ASIC logic analysis

 Custom tool 1: design optimization (WL, architecture)
 Custom tool 2: I/O components for logic verification
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Custom tools can be developed for various optimization routines. These include automated 
wordlength optimization to minimize hardware utilization (custom tool 1), and a library of 
components to program electrical interfaces between the FPGA and custom chips (custom tool 2). 
Taken together, the out-of-box and custom tools provide a unified environment for design entry, 
optimized implementation, and functional verification. 
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As discussed in Part II, the energy-
delay of a datapath is used for 
architectural comparisons in the 
energy-area space [3].  The goal is 
to reach an optimal design point.  
For example, parallelism and 
pipelining relax the delay constraint 
to reduce energy at the expense of 
increased area.  Time-multiplexing 
requires faster logic to tradeoff 
reduced area for an increased 
energy.  Interleaving and folding 
introduce simultaneous pipelining 
and up-sampling to stay 
approximately at the same energy-

delay point while reducing the area.  Moving along the voltage scaling curve has to be done in such 
as way as to balance sensitivities to other variables, such as gate sizing.  We can also incorporate 
wordlength optimization and register retiming. These techniques will be used to guide automated 
architecture optimization. 
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The idea behind architecture 
optimization is to provide an 
automated algorithm-to-hardware 
flow. Taking a systematic 
architecture evaluation approach 
illustrated in the previous slide, an 
algorithm block-based model can 
be transformed to RTL in a highly 
automated fashion. There could be 
many feasible architectural 
solutions that meet the 
performance requirements. The 
user can then determine the 
solution that best fits the target 
application. For example, estimates 

for the DSP sub-system can help system designers properly (re)allocate hardware resources to analog 

Energy

DelayArea 0

VDD scalingOptimal
design

intl,
fold

Optimal 
design

DatapathBlock-level

Energy-Area-Delay Optimization

 Energy-Area-Delay space for architecture comparison
– Time-mux, parallelism, pipelining, VDD scaling, sizing…
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[3] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University 
of California, Berkeley, 2006.

[3]

Automating the Design Process

Faster turn-
around time

Drag-drop, 
push-button flow 

 Improve design productivity
– Automate architecture generation 

to obtain multiple architectures 
for a given algorithm

– User determines solution for 
target application

 Convenient-to-use optimization 
framework
– Embedded in MATLAB/Simulink
– Result in synthesizable RTL form
– No extra tool to learn
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and mixed-signal components to minimize energy and area costs of the overall system. An 
automated approach helps explore many possible architectural realizations of the DSP and also 
provides faster turn-around time for the implementation. 
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An optimization flow for 
automating architectural 
transformations is detailed in this 
slide [4]. The flow starts from the 
direct-mapped block diagram 
representation of the algorithm in 
Simulink. This corresponds to the 
Simulink reference architecture in 
the flow chart. RTL for the 
Simulink model (MDL) is generated 
using Synplify DSP or XSG and 
synthesized to obtain energy, area 
and performance estimates. If these 
estimates satisfy the desired 
specifications, no further 

optimization is needed. If the estimates fall short of the desired specs, then the architecture 
optimization parameters are set. These parameters are defined by the degree of time multiplexing 
(N), the degree of parallelism (P) and pipelining (R). The parameter values are set based on 
optimized targets of the design. For example, to trade-off throughput and minimize area, the time 
multiplexing parameter N must be increased. Alternately, if the speed of the design has to be 
increased or the power reduced through voltage scaling then pipelining or parallelism must be 
employed.  Trends for scaling  power and delay with reduced supply voltage and architectural 
parameters (N, P, R) are obtained from the pre-characterized energy-delay sensitivity curves in the 
technology library (Tech. Lib in the flow chart). 

The optimization parameters, along with the Simulink reference model, are now input to the 
architecture optimization phase. This phase uses the DFG automation algorithms discussed earlier 
to optimize the reference models. This optimizer first extracts the DFG matrices from the reference 
model in MATLAB. The matrices are then transformed depending on the optimization parameters. 
The transformed matrices are converted into a new Simulink model which corresponds to the 
optimized architecture in the flow chart. The optimized model can be further synthesized to check 
whether it satisfies the desired specifications. The architectural parameters can be iterated until the 
specifications are met. Switching activities extracted from MATLAB test vectors serve as inputs to 
the synthesis tool for accurate power estimation. Optimization results using this flow for an FIR 
filter are presented in the next slide. 

 

 

 

 

Design Optimization Flow

 Based on reference E-D curve and system specs, fix degree of 
Pipelining (R), Time-multiplexing (N) or Parallelism (P) 

– Generate synthesizable architectures/RTL in Simulink [4]

R
TL

System
specsMATLAB

Test vectors

Simulink
Arch.Opt

activity

(α)

Simulink
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Energy-Tclk (VDD)
Opt.arch

Final.GDS
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Algorithm

Datapath
simulation

Arch.Opt
ParametersN, P, R

Simulink
Ref.Arch

Synthesis

Energy, 
Area, Tclk

RTL

Synthesis

αMDL
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[4] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
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Slide 12.9 

The architecture optimization 
approach is illustrated here. We first 
generate hardware estimates for a 
direct-mapped design to establish a 
reference point. The reference 
design is modeled by a data-flow 
graph (DFG) as described in 
Chap. 9. The DFG can be 
transformed to many possible 
realizations by using architectural 
transformations described in 
Chap. 11. We can estimate energy 
and area of the transformed design 
using analytical models for sub-
blocks, or we can synthesize the 

design using backend tools to obtain more refined estimates. The resulting designs can also serve as 
hierarchical blocks for rapid design exploration of more complex systems. The transformation 
routines described in Chap. 11 can be presented within a graphical user interface (GUI) as will be 
shown later in this chapter. 
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Architecture transformations will 
be demonstrated using the software 
that is publicly available on the 
book website. The software is 
based on LIST scheduling and has a 
GUI for ease of demonstration. It 
supports only data-flow graph 
structures with adders and 

write further extensions for control-
flow graphs. The tool has been 
tested on Matlab 2007b and 
SynDSP 3.6. The authors welcome 
comments, suggestions, and further 
tool extensions. 
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Slide 12.11 

We can formalize the process of 
architecture selection by 
automatically generating all feasible 
solutions within the given area, 
power and performance constraints.  
A system designer only needs to 
create a simple direct-mapped 
architecture using the Simulink 
fixed-point library.  This 
information is used to extract a 
data-flow graph, which is used in 
scheduling and retiming routines.  
The output is a set of synthesis-
ready architecture solutions.  These 
architectures can be mapped onto 

any Simulink hardware library.  This example shows mapping of a second-order digital filter onto 
the Synplify DSP library from Synplicity and resulting architectures with different levels of folding.  
Control logic that facilitates dataflow is also automatically generated.  This way, we can quickly 
explore many architectures and choose the one that best meets our area, power, and performance 
constraints. 
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The entire process of architectural 
transformations using the CAD 
algorithms described in Chap. 11 
has been embedded in a graphical 
user interface (GUI) within the 
MATLAB environment. This was 
done to facilitate architectural 
optimization from direct-mapped 
Simulink models. A snapshot of the 
GUI framework is shown. A drop-
down menu allows the user to 
select the desired Simulink model to 

order IIR filter has been selected, 
and on the right is the 

corresponding Simulink model for it.  

 

 

 

Using GUI for Transformation

12.12

2nd order IIR

 Direct mapped DFG (Simulink/SynDSP model)
 Use GUI to open Simulink model from drop down menu

Tool Demo (Source Code Available)

 GUI based demo of filter structures
– Software tested using MATLAB 2007b and SynDSP 3.6

 The tool works only for the following Simulink models
– SynDSP models
– Single input, single output models
– Models that use adders and multipliers, no control structures

 Usage instructions
– Unzip the the .rar files all into a single directory (e.g. E:\Tool)
– Start MATLAB
– Make E:\Tool your home directory
– The folder E:\Tool\models has all the relevant SynDSP models
– On the command line type: ArchTran_GUI

 Check the readme file in E:\Tool\docs for instructions
 Examples shown in the next few slides

12.11

[5] See the book website for tool download.
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be transformed. In the figure a 2nd-
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Slide 12.13 

Following model selection, the user 
must choose the components and 
macros present in the model. These 
components can be simple datapath 
units like adders and multipliers or 
more complex units like radix-2 
butterfly or CORDIC. The selected 
component names appear on the 
right side of the GUI (indicated by 
the arrows in the slide). If the 
macros or datapath units are to be 
pipelined implementations, then the 
user can set the pipeline depth of 
these components in the dialog box 
adjacent to their names. Once this 

information is entered, the tool is ready to extract the data-flow-graph netlist from the Simulink 
model. Clicking the “extract model” button accomplishes this task.  The GUI displays the number 
of design components of each type (adders and multipliers in this example) present in the reference 
model (“No.(Ref)” field shown in the red box).  
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The slide shows the netlist 
information generated after model 
extraction. The tool generates the 
netlist in the form of the incidence 
matrix A, the weight matrix w, the 
pipeline matrix du and the loop 
bound given by the slowest loop in 
the DFG. The rows of the A matrix 
correspond to the connectivity of 
the nodes in the flow-graph of the 
Simulink model. The nodes vi

 

shown in the figure represent the 
computational elements in the 

4 add and 4 multiply operations, 
each corresponding to a node in the A matrix. The columns of the A matrix represent the dataflow 
edges in the model, as explained in Chap. 10. The weight vector w captures the registers on the 
dataflow edges and has the same number of columns as the matrix A. The pipeline vector du stores 
the number of pipeline stages in each node while loop bound computes the minimum possible delay 
of the slowest loop in the model.  

 

 

Model Extraction Output
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Data-Flow Graph Extraction

12.13

Extract Model

 Select design components (adds, mults etc.), set pipeline depth
 Extract model, outputs hardware and connectivity info

model. The 2nd-order IIR filter has 
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Slide 12.15 

After the netlist extraction phase, 
the data-flow-graph model can be 
transformed to various other 
functionally equivalent architectures 
using the algorithms described in 
Chap. 11. The GUI environment 
supports these transformations via 
a push-button flow. Examples of 

shown next. In this slide we see the 
time-multiplexing option turned on 
with a folding factor of N=2. 
Once the Mux factor (N) is entered 
in the dialog box, the “Generate 

Time-mux arch.” option is enabled. Pushing this button will schedule the DFG in N=2 clock 
cycles in this example. The GUI displays the number of design components in the transformed 
architecture after time-multiplexing (“No.(Trans)” field shown in the red box).  

 

 

Slide 12.16 

This slide shows a snapshot of the 
architecture generated after time-

factor N=2. The Simulink model 
including all control units and 
pipeline registers for the 
transformed architecture is 
generated automatically. The 
control unit consists of the muxes 
which route the input signals to the 
datapath resources and a finite state 
machine based controller, which 
generates the select signals for the 
input multiplexors. The datapath 
units are pipelined by the user-

defined pipeline stages for each component. The tool also extracts the multiplier coefficients from 
the reference DFG and routes them as predefined constants to the multiply units. Since the original 
DFG is folded by a factor of N, the transformed model produces an output every N cycles, 
requiring a down-sample-by-N block at the output.  

 

 

Time Multiplexing from GUI 

12.15

Generate
Time-mux arch.

N = 2

 Set architecture optimization parameter (e.g. N = 2)
 Schedule design  Time-multiplex option (N = 2)

Transformed Simulink Architecture

12.16

Pipelined 
Multiplier

Pipelined 
Adder

Control
Muxes

Controller 
generates 

select 
signals for 

muxes

Multiplier
Coefficients

Down-sample 
by N (=2)
Output 

latched every 
N cycles

 Automatically generated scheduled architecture pops up

these with the 2nd-order IIR filter as 

multiplexing the 2nd-order IIR by a 

the baseline architecture will be 
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Slide 12.17 

The schedule table, which is the 
result of the list-scheduling 
algorithm employed by the tool, is 
output along with the transformed 
architecture. The schedule table 
follows the same format as was 
described in Chap. 11. The 
columns in the table represent 
resource units, while the rows refer 
to the operational clock cycle (N= 
2 cycles in this example). Each row 
lists out the operations scheduled in 
a particular clock cycle, while also 
stating the resource unit executing 
the operation. The extent to which 

the resource units are utilized every cycle gives a rough measure of the quality of the schedule. It is 
desirable that maximum resource units are operational every cycle, since this leads to lower number 
of resource units and consequently less area. The tool uses area estimates from a generic 90nm 
CMOS library to compute the area of the datapath elements, registers and control units in the 
transformed architecture.  

 

 

Slide 12.18 

A flow similar to time-multiplexing 
can be adopted to create parallel 
architectures for the reference 
Simulink model. The snapshot in 
the slide shows the use of the 
“Generate Parallel arch.” button 
after setting of the unfolding factor 
P=2 in the dialog box. The GUI 
displays the number of datapath 
elements in the unfolded 
architecture (“No.(Trans)” field), 
which is double the number in this 
case (P = 2) of those in the 
reference one (“No.(Ref)” field).  

 

 

 

 

Scheduled Model Output

12.17

Schedule Table 

Cycle1 v1 v3 v5 v6 v7 v8
Cycle2 v2 v4 x x x x

 Scheduling generated results
– Transformed architecture in Simulink
– Schedule table with information on operation execution time
– Normalized area report 

Scheduled Model

Adders (Ai) : 900
Multipliers (Mi) : 8000 

Pipeline registers : 3830
Registers : 383

Control muxes : 1950

Area Report

A1 A2 M1 M2 M3 M4

Parallel Designs from GUI

12.18

Generate
Parallel arch.

P = 2

 Set architecture optimization parameter (e.g. P = 2)
 Parallel design  Parallel option (P = 2)
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Slide 12.19 

The parallelized Simulink model is 
automatically generated by the tool, 
an example of it being shown in 

The parallel model has P input 
streams of data arriving at a certain 
clock rate and P output data 
streams going out at the same rate. 
In order to double the data rate, the 
output streams of data can be time-
multiplexed to create a single 
output channel.  

 

 

 

 

Slide 12.20 

Architecture optimization is 
performed through a custom 
graphical interface as shown on this 
slide [6]. In this example, a 16-tap 
FIR filter is selected from a library 
of Simulink models. Parameters, 
such as pipeline depth for adders 
and multipliers, can be specified as 
well as the number of adders and 
multipliers (15 and 16, respectively, 
in this example). Based on the 
extracted DFG model of the 
reference design, and architectural 
parameters N, P, R, a user can 
choose to generate various 

architectural realizations. The parameters N, P, and R are calculated based on system specs and 
hardware estimates for the reference design. 

 

 

 

 

 

 

Transformed Simulink Architecture

12.19

P = 2  parallel
Input streams

P = 2  parallel
Output streams

Parallel
Adder core

Parallel
Multiplier core

 Automatically generated scheduled architecture pops up

Range of Architecture Tuning Parameters

Energy

Tclk
0

VDD*

P, R
P, R

N

VDD
max

VDD
min

N Throughput maxLatency max

VDD
scaling

fixed
VDD

12.20

Pipeline: R
Parallel: P

Time mux: N

[6] R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in MATLAB/Simulink
Environment," in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193. 

[6]

this slide for the 2nd-order IIR filter. 
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Slide 12.21 

The result of the flow from Slide 
12.8 is a design mapped into the 
energy-area-performance space. 
The slide shows energy, area, and 
performance normalized to the 
reference design. There are many 
possible architectural realizations 
due to the varying degrees of 
parallelism, time-multiplexing, 
retiming, and voltage scaling. Each 
point represents a unique 
architecture. Solid vertical planes 
represent energy and performance 
constraints. For example, if energy 
lower than 0.6 and performance 

better than 0.65 are required, there are two valid architectures that meet these constraints. The flow 
does not just give a set of all possibilities; it also provides a quantitative comparison of alternative 
solutions. The designer can then select the one that best meets system specifications. 

 

 

Slide 12.22 

High-level architectural techniques 
such as parallelism, pipelining, time-
multiplexing, and retiming can be 
combined with low-level circuit 
tuning; which includes gate sizing, 
fine-grain pipelining, and dedicated 
IP cores or special arithmetic (such 
as carry save).  The combined 
effects of architecture and circuit 
parameters gives the most optimal 
solution since additional degrees of 
freedom can be explored to further 
improve energy, area, and 
performance metrics.  High-level 
techniques are explored first, 

followed by circuit-level refinements. 

 

 

 

 

Energy-Area-Performance Map
 Each point on the surface is an optimal architecture automatically generated 

in Simulink after modified ILP scheduling and retiming
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 System designer can choose from many feasible (optimal) solutions
 It is not just about functionality, but how good a solution is, and how many 

alternatives exist
12.21

E-A-P Space

RTL, switching activity

Energy-area-performance estimate

Simulink Synthesis

An Optimization Result
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1Time-mux

Retiming

Pipelining
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Carry save
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A typical output of the optimizer in 
the Simulink MDL format is shown 
on this slide.  Starting from a direct-
mapped filter (4 taps shown for 
brevity), we can vary level of time-
multiplexing and parallelism to 
explore various architectures. Logic 
for input and output conditioning is 
automatically created. Each of these 
designs is bit- and cycle-equivalent 
to the reference design.  The 
architectures can be synthesized 
through the backend flow and 
mapped to the energy-area-
performance space previously 

described. 

 

 

Slide 12.24 

This slide shows basic information 
needed for high-level estimates: 
energy-delay tradeoff for pipeline 
logic and latency vs. cycle-time 
tradeoff for a logic block (such as 
adder or multiplier) [7]. The shape 
of the energy-delay line is estimated 
by transistor-level simulations of 
simple digital logic.  Circuit 
parameters need to be balanced at 
target operating voltage, but we 
translate timing constraints to the 
reference voltage dictated by 
standard-cell libraries.  Initial logic 
depth for design blocks is estimated 

from latency - cycle time tradeoff to provide balanced pipelines and ease retiming.  This information 
is used in the architecture selection. 

 

 

 

 

 

D D D

Parallel

Time-multiplex

Reference

Lower Area

Higher Throughput
or Lower Energy

N = 2 multiplier core

N = 2 adder core

input mux

controller
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4-way multiplier core

4-way adder core

input de-mux

output mux
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N = 2
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Architecture Tuning Result: MDL

×
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Pipelining Strategy

Latency

Cycle Time

0

mult

add

Energy

VDD scaling

VDD
ref

TClk @ VDD
opt

Library blocks / macros
synthesized @ VDD

ref
Pipeline logic scaling

FO4 inv simulation

Speed
Power
Area

TClk @ 
VDD

ref

gate sizing

12.24

[7] D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Efficient VLSI Architectures for 
Communication Signal Processing," in Proc. Int. Conf. on Communications, June 2006, vol. 7, 
pp. 3223-3228.

[7]
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The optimization flow described in 
Slide 12.8 was verified on a 16-tap 
FIR filter. Transformations like 
scheduling, retiming and parallelism 
were applied to the filter; integrated 
with supply voltage scaling and 
micro-architectural techniques, like 
the usage of carry-save arithmetic. 
The result was an array of 
optimized architectures, each 
unique in the energy-area-
performance space. Comparison of 
these architectures has been made 
in the graph with contour lines 
connecting architectures, which 

have the same max throughput. Vertical lines in the slide indicate the variation of delay and power 
of the architectures with supply voltage scaling.  

We first look at the effect of carry-save optimization on the reference architecture. The reference 
architecture without carry-save arithmetic (CSA) consumes larger area and is slower compared to the 
design that employs CSA optimization (rightmost green line). To achieve the same reference 
throughput (set at 100MS/s for all architectures during logic synthesis), the architecture without 
CSA must upsize its gates or use complex adder structures like carry-look-ahead; which increases the 
area and switched capacitance leading to an increase in energy consumption as well. The CSA-
optimized architecture (leftmost green line) still performs better in terms of achievable throughput; 
highlighting the effectiveness of CSA. All synthesis estimates are based on a general-purpose 90-nm 
CMOS technology library.  

Following CSA optimization the design is retimed to further improve the throughput (central 
green line). From the graph we can see that retiming improves the achievable throughput from 350 
MS/s to 395MS/s (a 13% increase). This is accompanied by a small area increase (3.5%), which can 
be attributed to extra register insertion during retiming. Pipelining in feed-forward systems also 
results in considerable throughput enhancement. This is illustrated in the leftmost red line of the 
graph. Pipelining is accompanied by an increased area and I/O latency. The results from logic 
synthesis show a 30% throughput improvement from 395MS/s to 516MS/s. The area increases by 
22% due to extra register insertion as shown in the figure. Retiming with pipelining during logic 
synthesis does fine-grain pipelining inside the multipliers to balance logic depth across the design 
(rightmost red line). This step significantly improves the throughput to 623MS/s (20% increase). 

Scheduling the filter results in area reduction by about 20% (N=2) compared to the retimed 
reference architecture and throughput degradation by 40% (leftmost blue line). The area reduction is 
small for the filter, since the number of taps in the design is small and the increased area of registers 
and multiplexers in the control units offsets the decrease in adder and multiplier area. Retiming the 
scheduled architecture results in a 12% improvement in throughput (rightmost blue line) but also a 
5% increase in area due to increased register count. 

 

 

Optimization Results: 16-tap FIR Filter

 Design variables: CSA, fine R (f-R), VDD (0.32 V to 1 V), pipelining
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Slide 12.26 

The unfolding algorithm was 
applied to the 16-tap FIR to 
generate the architectures shown in 
the graph. Parallelism P was varied 
from 2 to 12 to generate an array of 
architectures that exhibit a broad 
range of throughput and energy 
efficiencies. The throughput varies 
from 40MS/s to 3.4GS/s while 
the energy efficiency ranges from 
0.5 GOPS to 5 GOPS. It is possible 
to improve the energy efficiency 
significantly with continued voltage 
scaling if sufficient delay slack is 
available. Scaling of the supply 

voltage has been done in 90-nm technology in the range of 1V to 0.32V. The graph shows a clear 
tradeoff between energy/throughput and area. The final choice of architecture will ultimately 
depend on the throughput constraints, available area and power budget. 

 

 

Slide 12.27 

Another example is an ultra-
wideband (UWB) digital baseband 
filter. The filter takes inputs 
sampled at 1GHz and represents 
80% of power of the direct-mapped 
design. The focus is therefore on 
power minimization in the filter. 
The 1GHz stream is divided into 
five 200MHz input streams to 
meet the speed requirements of the 
digital I/O pads. 

 

 

 

 

 

 

 

 

16-tap FIR: Architecture Parallelism (Unfolding)

 Parallelism improves throughput or energy efficiency
– About 10x range in efficiency from VDD scaling (0.32 V – 1 V)
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Example #2: UWB Digital Baseband

 Starting point: direct-mapped architecture
 Optimization focused on the 64-tap 1GS/s filter

12.27

80% of power
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Transformation of the 64-tap filter 
architecture is equally simple as the 
16-tap example that was previously 
shown. Matrix-based DFG design 
description is used to construct 
block-level model for the design 
using the “add_line” function in 
MATLAB. The function specifies 
connectivity between the input and 
output ports as described in this 
slide. Construction of a functional 
block is shown on the left-middle 
plot. This block can then be 
abstracted to construct 
architectures with varying level of 

parallelism. Four and sixteen levels of parallelism are shown. Signal interleaving at the output is also 
automatically constructed. 

 

 

Slide 12.29 

The results show the supply voltage 
and estimated total power as a 
function of throughput for varying 
degrees of parallelism (P1 to P16) 
in the filter design. Thick line 
represents supply voltage that 
minimizes total power. For a 

to 200MHz parallel data, P8 has 
5% lower power than P4, but it also 
has 38% larger area than P4. 
Considering the power-area 
tradeoff, architecture P4 is chosen 
as the solution. The design 
operating at 0.43V achieved overall 

68% power reduction compared to direct-mapped P1 design operating at 0.68V. Die photo of the 
UWB design is shown. The next step is to verify chip functionality. 
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64-tap filter design:
 Effective 1 GS/s
 200 MHz @ 0. 43 V
 Parallel-4 filter

P1 P2 P4 P8 P16

P8 versus P4
P8 has 5% lower power

but also 38% larger area

Solution: parallel-4 architecture (VDD
opt = 0.43 V)

12.29

Architecture Exploration: MDL Description

16 levels of
Parallelism

levels of  
i

>> add_line(‘connecting’, ‘Counter/1’, ‘Register/1’)
basic block connectivity

functional block

4 levels of parallelism

16 levels of parallelism

12.28

 Use MATLAB “add_line” command for block connectivity

1GS/s input rate, which is equivalent 
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Functional verification of ASICs is 
also done within 
MATLAB/Simulink framework 
that is used for functional 
simulations and architecture design. 
Since the Simulink model can be 
mapped to both FPGA and ASIC, 
an FPGA board can be used to 
facilitate real-time I/O verification. 
The FPGA can emulate the 
functionality in real-time and 
compare results online with the 
ASIC. It can also host test vectors 
and capture ASIC output for offline 
analysis. 

 

 

Slide 12.31 

In order to verify chip functionality, 
the idea is to utilize Simulink test 
bench that’s implicitly available 
from algorithm development [8].  
We therefore need emulation 
interface between the test bench 
and emulation ASIC, so Simulink 
can fully control the electrical 
interface between the FPGA and 
ASIC boards. Simulink library is 
therefore extended with the 
required I/O functionality. 

 

 

 

 

 

 

 

 

 

FPGA Based Chip Verification

MATLAB™

ASIC
board

FPGA
board

Simulink
model

emulation

Real-time
hardware
verification

12.30

Hardware Test Bench Support

 Approach: use Simulink test bench (TB) for ASIC verification
– Develop custom interface blocks (I/O)
– Place I/O and ASIC RTL into TB model

12.31

+ + =
TB TB

I/O

ASIC

I/O

ASIC

Simulink implicitly 
provides the test bench

 Additional requirements from the FPGA test platform
– As general purpose as possible (large memories, fast I/O)
– Use embedded CPU to provide high-level interface to FPGA

[8] D. Markovi et al., "ASIC Design and Verification in an FPGA Environment," in Proc. Custom 
Integrated Circuits Conf., Sep. 2007, pp. 737-740.

[8]
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The yellow-block library is used for 
chip verification.  It is good for 
dataflow designs such as DSP.  The 
library is called the BEE2 system 
blockset [9], designed at the 
Berkeley Wireless Research Center, 
and now maintained by 
international collaboration 
([www.casper.berkeley.edu]).  The 
I/O debugging functionality is 
provided by several types of blocks.  
These include software / hardware 
interfaces such as registers, FIFOs, 
block memories; external general 
purpose I/O port interfaces (these 

two types are primarily used for ASIC verification); there are also A/D and D/A interfaces for 
external analog components; and software-controlled debugging resources.  This library is 
accompanied with custom scripts that automate FPGA backend flow to abstract away FPGA 
specific interface and debugging details.  From a user standpoint, it is push-of-a-button flow that 
generates configuration file for the FPGA. 

 

Slide 12.33 

This slide shows a typical I/O 
library usage in a Simulink test 
bench model. The block in the 
middle is the Simulink hardware 
model and the ASIC functionality is 
described with Simulink blocks.  
Block in the dashed lines indicates 
actual ASIC board, which is driven 
by the FGPA.  The yellow blocks 
are the interface between two 
hardware platforms; they reside on 
the FGPA. The GPIO blocks 
define mapping between ASIC I/O 
and the GPIO headers on the 
FPGA board.  The software register 

block allows single 32-bit word transfer between MATLAB and FPGA board.  This block is used to 
configure control bits that manage ASIC verification. The ASIC clock is provided by the FPGA, 
which can generate the clock internally or synchronize to an external source.  Input test vectors are 
stored in block RAM memory.  Block RAMs are also used to store results of FPGA emulation 
(BRAM_FPGA) and sampled outputs from the ASIC board (BRAM_ASIC). So, the yellow block 
interface is programmed on the FPGA board and controlled from MATLAB environment. 

 

Simulink Test Model

software_reg

sim_rst
reset

reg0

BRAM_IN

IN OUT
ADDR

WE

BRAM_ASIC

logic

Simulink
hardware

model

ASIC
board gpio

-c-

in

rst

clk

-c-
-c- in

logic

gpio

gpio

gpio

out

-c-

BRAM_FPGA

out
IN OUT
ADDR

WE

IN OUT
ADDR

WE

rst

12.33

Design Environment: Xilinx System Generator

12.32

 Custom interface blocks
– Regs, FIFOs, BRAMs
– GPIO ports
– Analog subsystems
– Debugging

1-click 
compile

[9] C. Chang, Design and Applications of a Reconfigurable Computing System for High Performance 
Digital Signal Processing, Ph.D. Thesis, University of California, Berkeley, 2005. 

[9]
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Here is an example of Simulink test 
bench model used for I/O 
verification of the singular value 
decomposition (SVD) chip. ASIC is 
modeled with the blue SVD block, 
with many layers of hierarchy 
underneath. The yellow blocks are 
the interface between the FPGA 
and the ASIC. The white blocks are 
simple controllers, built from 
counters and logic gates, to manage 
memory access.  Inputs are taken 
from the input block RAM and fed 
into both the ASIC board and its 
equivalent description on the 

FGPA. Outputs of the FPGA and ASIC are stored in output block RAMs. Finally we can use 
another block RAM for debugging purposes to locate the samples where eventual mismatch has 
occurred. 

 

 

Slide 12.35 

This slide illustrates the hardware 
test setup.  The client PC has 
MATLAB/Simulink and custom 
BEE Platform Studio flow 
featuring I/O library and custom 
routines for data access. Test 
vectors are managed using custom 
“read_xps” and “write_xps” 
software routines that exchange 
data between FPGA block RAMs 
(BRAMs) and MATLAB.  The PC-
FPGA interface can be realized 
using serial port or Ethernet. The 
FPGA-ASIC interface can use 
general-purpose I/O (GPIO) 

connectors or high-speed differential-line ZDOK+ connectors. 

 

 

 

 

Example: SVD Test Model

Emulation-based ASIC I/O test
12.34

FPGA Based ASIC Test Setup

 Test bench model on the FPGA board
 Block read / write operation
– Custom read_xps, write_xps commands

FPGA
board

Client 
PC

ASIC
board

12.35

 PC to FPGA interface
– UART RS232 (slow, limited applicability)
– Ethernet (with an FPGA operating system support)

 FPGA-ASIC interface
– GPIO (electrically limited to ~130 Mbps)
– High-speed ZDOK+ differential-line link (~500 Gbps, fclk limited)
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A low-data-rate test setup is shown 
here. Virtex-II FPGA board is 
accessed from the PC using serial 
RS232 link and connects to the 
ASIC board using GPIO. This 
model is programmed onto the 
FPGA board, which stimulates the 
ASIC over general purpose I/Os 
and samples outputs from both 
hardware boards. Block RAMs and 
software registers are controlled 
through the serial port. This setup 
is convenient for at-speed 
verification of the ASIC that 
operate below 130 MHz and do not 

require large amounts of data. Key limitations of this setup are low speed of the serial port (~kb/s) 
and relatively slow GPIO interface that is electrically limited to ~130Mb/s. 

 

 

Slide 12.37 

Shown is an example of a medium-
data-rate test setup. The I/O speed 
between the FPGA and ASIC 
boards can be improved with 
differential pair connectors such as 
those used in the Xilinx personality 
module.  With ZDOK+ links 
projected to work in the multi-
GS/s range, the FPGA-ASIC 
bandwidth is now limited by the 
FPGA clock and/or speed of ASIC 
I/O ports.  This setup is based on 
advanced Virtex-II board from the 
UC Berkeley Radio Astronomy 
Group (CASPER). The board is 

called IBOB (Interface Break-out Board). Limitations of this setup are serial PC-FPGA interface and 
limited capacity of BRAM that is used to store test vectors. 

 

 

 

 

Low Data-Rate Test Setup

IBOB FPGA board

ASIC board

Limitations: Speed of RS232 (~kb/s) & GPIO interface (~130 MHz)

GPIO

12.36

FPGA
board

Client 
PC

ASIC
board

RS232

~kb/s ~130 Mb/s

GPIO

 FPGA board features
– Virtex-II Pro (FPGA, PowerPC405)
– 2x 18Mb (36b) SRAMs (~250MHz)
– 2x CX4 10Gb high-speed serial 
– 2x Z-DOK+ high-speed differential 

GPIO (80 diff pairs)
– 80x LCMOS/LVTTL GPIO

 PC interface
– RS232 UART to PPC
– Custom scripts

read_xps/write_xpsIBOB: Interconnect Break-Out Board

Medium Data-Rate Test Setup

Limitations: Speed of RS232 interface (~kb/s) & FPGA BRAM capacity
12.37

FPGA
board

Client 
PC

ASIC
board

RS232

~Kb/s ~500 Mb/s

ZDOK+

 Virtex-II based FPGA board
– IBOB v1.3

[www.casper.berkeley.edu]
 FPGA-ASIC interface

– ZDOK+ high-speed differential 
interface

– Allows testing up to ~250MHz 
(limited by the FPGA clock)

 PC interface
– RS232 UART

IBOB v1.3 

FPGA board
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 Slide 12.38 

To address the speed bottleneck of 
the serial port, Ethernet link 
between the user PC and the FPGA 
board is used. The Ethernet link 
between the PC and FPGA is 
already a standard feature on most 
commercial parts. Shown here is 
another board developed by the 
CASPER team, called ROACH 
(Reconfigurable Open Architecture 
Computing Hardware). The board 
is based on a Virtex-5 FPGA chip. 
Furthermore, the client PC 
functionality can be pushed into the 
FPGA board with operating system 

support. 

 

 

 Slide 12.39 

Custom operating system, BORPH 
(Berkeley Operating system for 
ReProgrammable Hardware) 
extends a standard Linux system 
with integrated kernel support for 
FPGA resources [9].  The BEE2 
flow produces BORPH object files 
instead of usual FPGA 
configuration “bit” files.  This 
allows users to execute hardware 
processes on FPGA resources the 
same way they run software on 
conventional machines.  BORPH 
also allows access to the general 
Unix file system, which enables test 

bench to access the same test-vector files as the top-level Simulink. The OS is supported by 
BEE2/3 and ROACH boards, and has limited support on IBOB boards. 

 

 

 

 

 

High Data-Rate Test Setup

12.38

BORPH
FPGA
board

Client 
PC

ASIC
board

Ethernet

~500 Mb/s

ZDOK+

 FPGA board features
– Virtex 5 FPGA, External PPC440
– 1x DDR2 DIMM
– 2x 72Mbit (18b) QDR SRAMs 

(~350MHz)
– 4x CX4, 2x ZDOK+ (80 diff pairs)

 External PPC provides much faster 
interface to FPGA resources (1GbE)

 PC to FPGA interface
– OS (BORPH) hosted on the FPGA

BORPH: Berkeley Operating system 
for ReProgrammable Hardware

ZD
O

K+

ROACH

FPGA board

ROACH: Reconfigurable Open 
Architecture Compute Hardware

BORPH Operating System

 About BORPH
– Linux kernel modification for hardware abstraction
– It runs on embedded CPU connected to FPGA

 “Hardware process”
– Programming an FPGA running Linux executable
– Some FPGA resources are accessible in Linux process memory 

space

 BORPH makes FPGA board look like a Linux workstation
– It is used on BEE2, ROACH
– Limited version on IBOB w/ expansion board

12.39

[10]H. So, A. Tkachenko, and R.W. Brodersen, "A Unified Hardware/Software Runtime Environment 
for FPGA-Based Reconfigurable Computers using BORPH," in Proc. Int. Conf. Hardware/Software 
Codesign and System Synthesis, 2008, pp. 259-264. 

[10]
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Slide 12.40 

As an example, we illustrate test 
setup for high-speed digital filter. 
This system requires clock of 400 
MHz, which is beyond the 
capability of Virtex-II based boards. 
The chip also requires long test 
vectors, over 4Mb, and the use of 
asynchronous clock domains. 
ROACH-based setup is highlighted 
in the diagram. High-speed 
ZDOK+ connectors are used 
between the ASIC and FPGA 
boards. Quad-data-rate (QDR) 
SRAM on the FPGA board is used 
to support longer test vectors. The 

ROACH board is controlled by the PC using 1GbE Ethernet port. Optionally, a PowerPC based 
control using BORPH could be used. 

 

 

Slide 12.41 

This setup was used for real-time 
FPGA verification up to 330MHz 
(limited by the FPGA clock).  The 
ASIC board shown here is a high-
speed digital front-end DSP 
designed to operate with I/O rates 
of up to 450MHz (limited by the 
speed of the chip I/O pads). 

Support for expressing 
asynchronous clock domains is 
limited compared to what is 
physically possible in the FPGA. 
Asynchronous clock domains are 
required when the ASIC does not 
have equal data rates at the input 

and output, for example in decimation. Earlier versions of XSG handled this by running in the 
fastest clock domain while toggling clock enable (CE) for slower domains. While newer versions of 
XSG can infer clock generation, the end-to-end toolflow was built on a single-clock assumption. 
Therefore, this test setup was composed of two independent modules representing the two different 
clock speeds, which were merged into a single end-design. 

 

 

Example: Multi-Rate Digital Filter

 Testing Requirements
– High Tx clock rate (450 MHz target)

● Beyond practical limits of IBOB’s V2P
– Long test vectors (~4 Mb)
– Asynchronous clock domains for Tx and Rx

12.40

BORPH FPGA 
Test Board

PowerPC

QDR 
SRAM

ASIC Test Board

ASIC

Client 
PC

FPGA

BRAM

LV
DS

 I/
O

1GbE

ROACH based
test setup

Asynchronous Clock Domains

 Merged separate designs for test vector and readback datapaths
 XSG has very limited capability for expressing multiple clocks
– CE toggling to express multiple clocks

 Further restricted by 
bee_xps tool automation
– Assumes single clock 

design (though many 
different clocks available)

12.41

Fixed 60 MHz Rx

255-315 MHz Tx
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Slide 12.42 

The full shared-memory testing 
infrastructure allowed testing the 
chip up to 315MHz. This included 
mapping one of the 36Mb QDR 
SRAMs onto the PowerPC bus to 
enable software access for loading 
arbitrary test vectors at runtime. At 
315MHz, the critical paths in the 
control logic of the bus attachment 
presented a speed bottleneck. 

This speed barrier was overcome 
by pre-loading test vectors into the 
FPGA bitstream using ROMs. 
Trading off the flexibility of 
runtime-loadable test vectors 

pushed the maximum speed of chip test up to 340MHz. At this point, there existed a physical 
critical path in the FPGA for generating a 340MHz clock for the test chip.  

 

 

Slide 12.43 

Various verification strategies are 
summarized in this slide. We look 
at ASIC emulation, I/O interface, 
and test bench. 

Simulation of design built from 
Simulink blocks is straightforward, 
but can be quite slow.  The 
alternative is Simulink ModelSim 
co-simulation, with HDL 
description of the ASIC. 

Mapping this HDL onto FPGA 
and using hardware-in-the-loop 
tools greatly improves the 
verification speed, but is limited by 

the speed of PC-to-FPGA interface.  Pure hardware emulation is the best solution, because it can 
fully utilize processing capability of the FPGA.   

After mapping the final design onto ASIC, we close the loop by using FPGA for the I/O test.  
The idea is to move towards test setup fully embedded on the FPGA that includes local operating 
system and remote access support. 

 

 

Results and Limitations

 Results
– Test up to 315 MHz w/ loadable vectors in QDR;

up to 340 MHz with pre-compiled vectors in ROMs
– 55 dB SNR @ 20 MHz bandwidth

 Limitations
– DDR output FF critical path @ 340 MHz (clock out)
– QDR SRAM bus interface critical path @ 315 MHz
– Output clock jitter?
– LVDS receivers usually only 400-500 Mbps

● OK for data, not good for faster clocks
● Get LVDS I/O cells?

12.42

FPGA Based ASIC Verification: Summary

Simulation
Simulink Simulink Simulink Pure SW Simulation

HDL Simulink Simulink Simulink ModelSim 
co-simulation

Emulation
FPGA HIL tools Simulink Hardware-in-the-loop 

simulation
FPGA FPGA FPGA Pure FPGA emulation

ASIC 
I/O Test

FPGA &
ASIC FPGA Custom SW Testvectors outside 

FPGA
FPGA &

ASIC FPGA FPGA Testvectors inside 
FPGA

ASIC I/O TB TB
I/O

ASIC

12.43

 The trend is towards fully embedding logic 
analysis on FPGA, including OS support for 
remote access
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Slide 12.44 

Currently, data rates in and out of 
the FPGA are limited due to the 
use of what is essentially a monitor 
and control interface. Without 
having to resort to custom electrical 
interfaces or pushing up to 
10GbEthernet standards, several 
steps can be taken in order to push 
up to the bandwidths needed for 
testing. 

A support for long test vectors 
(~10Mb) at moderate data rates 
(~Mb/s) is required by some 
applications. The current 
infrastructure on an IBOB would 

only allow for loading of a single test vector at a time, with each load occurring at ~10 Kb/s over an 
RS232 link. 

A UDP (Uniform Datagram Protocol)-based link to the same software interface is also available. 
Test vectors would still be loaded and used one at a time, but the time required for each would be 
decreased by about three orders of magnitude as the link bandwidth increases to about ~10Mb/s. 
This would enable moderate-bandwidth streaming with a software-managed handshaking protocol. 

Fully-streaming test vectors beyond these data rates would require hardware support that is not 
available in the current generations of boards. Newer boards that have an Ethernet interface 
connected directly to the FPGA, not just the PowerPC, would allow TCP/IP-based streaming into 
the FPGA, bypassing the PowerPC software stack 

 

Slide 12.45 

MATLAB/Simulink environment 
for algorithm modeling and 
hardware implementation was 
discussed. The environment 
captures bit-true cycle-accurate 
behavior and can be used for 
FPGA and ASIC implementations. 
Hardware description allows for 
rapid prototyping using FPGAs. 
The unified design environment 
can be used for wordlength 
optimization, architecture 
transformations and logic 
verificaiton. Leveraging hardware 
equivalency between FPGA and 

ASIC, an FPGA can host logic analysis for I/O verification of fabricated ASICs. Further 

Further Extensions

 Design recommendations
– Send source-synchronous clock with returned data
– Send synchronization information with returned data

● “Vector warning” or frame start, data valid
 KATCP: communication protocol interfacing to BORPH
– Can be implemented over TCP telnet connection
– Libraries and clients for C, Python
– KATCP MATLAB client (replaces read_xps, write_xps)

● Can program FPGA from directly from MATLAB – no more JTAG cable!
● Provides byte-level read/write granularity
● Increases speed from ~Kb/s to ~Mb/s 

(Room for improvement; currently high protocol overhead)
 Towards streaming
– Transition to TCP/IP-based protocols facilitates streaming
– Ethernet streaming w/o going through shared memory

12.44

Summary

 MATLAB/Simulink is an environment for algorithm modeling and 
optimized hardware implementation
– Bit-true cycle-accurate model can be used for functional 

verification and mapping to FPGA/ASIC hardware
– The environment is suited for automated architecture 

exploration using high-level scheduling and retiming
– Test vectors used in algorithm development can also be used 

for functional verification of fabricated ASIC
 Enhancements to traditional FPGA-based verification
– Operating system can be hosted on an FPGA for remote access 

and software-like execution of hardware processes
– Test vectors can be hosted on FPGA for real-time data 

streaming (for data-limited or high-performance applications)

12.45
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refinements include operating system support for remote access and real-time data streaming. The 
use of the design environment presented in Chaps. 9, 10, 11, and 12 will be exemplified on several 

 

Slide 12.46 

Next several slides briefly show ILP 
formulation of scheduling and 
retiming. Retiming step is the 
bottleneck in CPU runtime for 
complex algorithms. Several 
approaches for retiming are 
compared in terms of runtime and 
optimality of results. 

 

 

 

 

 

 

Slide 12.47 

Scheduling and retiming routines 
are the essence of architectural 
transformations, as described in 
Chap. 11. By employing 
scheduling and retiming, we can do 
parallelism, time-multiplexing 
(folding), and pipelining. This slide 
shows a traditional model for 
scheduling and retiming based on 
ILP formulation.  

The objective is to minimize 
cost function cp·Mp, where Mp is 
the number of processing elements 
of type p and cp is the normalized 
cost of the processing element Mp. 

For example, processing element of type 1 can be an adder; processing element of type 2 can be a 
multiplier; in which case M1 is the number of adders, M2 is the number of multipliers, etc. If the 
normalization is done with respect to the adders, c1 is 1, c2 can be 10 to account for the higher area 
cost of the multipliers. Constraints in the optimization are that the number of processes of type p 
executed in any cycle cannot exceed available resources (Mp) for that process, and that each node xuj 
of the algorithm is scheduled once during N cycles. To ensure correct functionality, precedence 

Integer Linear Programming Models
for Scheduling and Retiming

Appendix

Basic ILP Model for Scheduling and Retiming

 Case 1: r = 0 (scheduling only, no retiming): sub optimal
 Case 2: r  0 (scheduling with retiming): exponential run time

12.47

wf = N · w d + A · p + N · A · r 0 Precedence constraints

Scheduling Retiming

Minimize

Subject to

Mp : # of PEs of type p

Resource constraint

Each node is scheduled once
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examples in Chaps. 13, 14, 15, and 16. 
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constraints have to be maintained as described by the last equation. By setting the retiming vector to 
0, the optimization reduces to scheduling and does not yield optimal solution. If the retiming vector 
is non-zero, the ILP formulation works with a number of unbounded integers and results in 
exponential run-time, which is impractical for large designs. Therefore, an alternate problem 
formulation has to be specified to ensure feasible run-time and optimal result. 

 

Slide 12.48 

Improved scheduling formulation is 
shown here. The algorithm 
separates scheduling and retiming 
routines in order to avoid 
simultaneously solving a large 
number of integer variables (for 
both scheduling and retiming). 
Additional constraint is placed in 
scheduling to enable optimal 
retiming after the scheduling step. 
The additional constraint specifies 
that all loops should have non-zero 
latency, which allows proper 
movement of registers after 
scheduling. The retiming 

inequalities are then solved using polynomial-complexity Bellman-Ford algorithm. By decoupling 
scheduling and retiming tasks, we can achieve optimal results with feasible run-time. 

 

Slide 12.49 

Scheduling and retiming solutions 
are compared on this slide for the 
case of a wave digital filter. 
Normalized area, power and CPU 
runtime are shown for varying 
folding factors. It can be seen that 
scheduling and retiming (methods 2 
and 3) always improve the results in 
comparison to a scheduling-only 
approach (method 1). In some 
cases, scheduling does not even 
find a solution (folding factors 2, 3, 
6, and 7). Methods 2 and 3 achieve 
optimal solutions, but they vary in 
run-time. Method 2 is a traditional 

ILP approach that simultaneously solves scheduling and retiming problems. To make a best-case 
comparison, we bound the retiming variables in the close proximity (within ±1) of the solution. Due 
to the increased number of variables, method 2 still takes very long time. In method 3, we use 

B · ( w + ( A · p d ) / N ) 0 Loop constraints to ensure
feasibility of retiming

Each node is scheduled once
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A · r ( w + ( A · p d ) / N ) Retiming inequalities solved by
Bellman-Ford (B-F) Algorithm

Time-Efficient ILP Model for Scheduling & Retiming

Precedence constraints

Simulink
Arch.Opt
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 Feasible CPU runtime (polynomial complexity of B-F algorithm)

Minimize

Subject to

Mp : # of PEs of type p

Resource constraint

Each node is scheduled once
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Example: Wave Digital Filter

Method 3 (Sch. + B-F retiming):
 Power & Area optimal
 Reduced CPU runtime

Method 3 yields optimal solution with feasible CPU runtime
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Optimal
Suboptimal
No solution

scheduling

scheduling + retiming

scheduling

scheduling + retiming

Method 1

Method 2 (*)

Method 3

Architecture ILP scheduling:
 Method 1: Scheduling
 Method 2: Scheduling + retiming
 Method 3: Sched. + Bellman Ford

(*) reported CPU runtime for Method 2 is 
very optimistic (bounded retiming variables)

Goal: architecture optimization in area-power-performance space

12.49
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unbounded retiming variables, but due to separation of scheduling and retiming, a significantly 
reduced CPU runtime is achieved. The retiming variables are decoupled from the ILP and appear in 
the Bellman-Ford algorithm (polynomial time complexity) once ILP completes scheduling. 
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Part IV 

 

Design Examples: GHz to kHz 

 

 

 

 

 

 

 

 

 

 

 



 

Slide 13.1 

This chapter discusses DSP 
techniques used to design digitally 
intensive front ends for radio 
systems.  Conventional radio 
architectures use analog 
components and RF filters that do 
not scale well with technology, and 
have poor tunability required for 
supporting multiple modes of 
operation. Digital CMOS scales 
well in power, area, and speed with 
each new generation, and can be 
easily programmed to support 
multiple modes of operation.  In 
this chapter, we will discuss 

techniques used to “digitize” radio front ends for standards like LTE and WiMAX.  Signal 
processing and architectural techniques combined will be demonstrated to enable operation across 
all required channels. 

 

Slide 13.2 

Cellular and wireless LAN devices 
are becoming more and more 
complex every day. Users want 
seamless Internet connectivity and 
GPS services on the go. Data 
channels in emerging standards like 
LTE and WiMAX are spread across 
widely varying frequency bands. 
The earlier practice was to build a 
separate front end for each of these 
bands. But this leads to excess area 
overhead and redundancy. In this 
scenario, a single device capable of 
transmitting and receiving data in a 
wide range of frequency bands 

becomes an attractive solution. The idea is to enable a radio system capable of capturing data at 
different RF frequencies and signal bandwidths, and adapt to different standards through external 
tuning parameters. Circuit designers will not have to re-design the front end for new RF carriers or 
bandwidth. Compared to its dedicated counterpart, there will be overhead associated with designing 
such flexible front ends. Hence, the main objective is to implement a tunable radio with minimal 
cost by maximizing digital signal processing techniques. This chapter takes a look at this problem 
and discusses solutions to enable reconfigurable radios.  

 

PHY
physical layer

Flexible radio 

Digital Signal Processing

WLAN Cellular
 Flexible radios
– Large # of frequency bands
– Integrate GPS and WLAN
– Demands high complexity, 

low power 

 New wide-band standards 
– Long term evolution (LTE) 

cellular – 2.0 GHz to 2.6 GHz
– WiMAX – 2.3 GHz to 2.7 GHz

 Digital front ends (DFE)
– DSP techniques for high

flexibility with low power 

Motivation

13.2

Multi-GHz Radio DSP
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Slide 13.3 

Flexibility in radio circuits will 
enable the deployment of cognitive 
radios in future wireless devices. 
Cognitive radios allow secondary 
users to utilize the unused spectrum 
of the primary user. The spectrum-
sensing phase in cognitive radios 
detects the available carrier 
frequencies and signal bandwidths 
not presently being utilized by the 
primary user. The tunable radio 
frontend then makes use of this 
information to send and receive 
data in this available bandwidth. A 
low cost digital frontend will enable 

easy reconfiguration of transmit and receive RF carriers as well as the signal bandwidths.  

 

 

Slide 13.4 

The traditional architecture of radio 
receiver frontends has RF and 
analog components to support the 
signal conditioning circuits. The RF 
signal received from the antenna is 
filtered, amplified, and down-
converted before being digitized by 
the ADC and sent to the baseband 
blocks, as shown in the receiver 
chain in the figure. The RF and 
analog components in the system 
work well when operating at a 
single carrier frequency and known 
signal bandwidth. The problem 
arises when the same design has to 

support multi-mode functionality. The front end needs programmable blocks if multiple modes are 
to be supported in a single integrated system. Incorporating programmability in RF or analog blocks 
is very challenging. Designers face several issues while ensuring acceptable performance across wide 
range of frequency bands. The RF filter blocks are a big bottleneck due to their inflexibility and huge 
design cost. Also, power consumption in analog blocks does not scale well with scaled technology, 
making the design process considerably more difficult for new generations of CMOS.  

 

 

Next Generation: Cognitive Radios

 Spectrum sensing extracts 
– Available carrier frequency 
– Data bandwidth

 Tunable receiver/transmitter uses the available spectrum
 Flexible radios are enablers of cognitive radios

Spectrum 
Sensing

Tunable
Radios

13.3

Conventional Radio Rx Architecture

D
S
P

ADC

Antenna

LO0
90

Pre-selection
filter

LPF

LPF

LNA
ADC

Issues:
 Re-configurability for multi-standard support
– Variable carrier frequency, bandwidth, modulation schemes
– Difficult to incorporate tuning knobs in analog components
– RF filters tend to be inflexible, bulky and costly

 Power consumption in analog components does not scale well 
with technology

13.4
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Slide 13.5 

The increasing speed of digital 
CMOS with each new technology 
generation, led to the idea of 
moving more and more of the 
signal conditioning circuits to the 
digital domain. In the most ideal 
scenario, the receiver digital front-
end (DFE) will enable direct 
digitization of the RF signal after 
low-noise amplification in the 
receiver chain, as shown in the 
bottom figure in the slide. The 
digital signal is then down-
converted and filtered before being 
sent to the baseband modem. In 

this approach, almost all the signal conditioning has been moved to the mixed-signal/digital domain.  

 

 

Slide 13.6 

The main benefits of this idea are 
easy programmability, small area 
and low power of the DSP 
components, which replace the RF 
and analog blocks. But in doing so, 
we have pushed a large part of the 
computational complexity into the 
ADC, which must now digitize the 
incoming RF signal at GHz speeds 
(fs1) [1], while also ensuring 
sufficient dynamic range necessary 
for wideband digitization. Also, 
some of the DSP blocks in the 
DFE chain must now process 
signals at GHz sample rates. To 

mitigate the difficulties of high-speed, high dynamic range ADC design, other intermediate 
realizations for digital front ends have been proposed in literature. In [2], the ADC design 
constraints were relaxed by first down-converting the received signal to an intermediate frequency, 
followed by analog filtering and subsequent digitization at 104 Ms/s. In [3], the authors use discrete-
time signal processing approaches for signal conditioning. We take a look at the design challenges 
and advantages associated with adopting a wholly digital approach in radio receiver design. This will 
enable us to understand challenges associated with high-speed DSP applications.  

 

 

DFE: Benefits and Challenges

[1] N. Beilleau et al., "A 1.3V 26mW 3.2GS/s Undersampled LC Bandpass  ADC for a SDR ISM-band 
Receiver in 130nm CMOS," in Proc. Radio Frequency Integrated Circuits Symp., June 2009, 
pp. 383-386. 

[2] G. Hueber et al., "An Adaptive Multi- Mode RF Front-End for Cellular Terminals, " in Proc. Radio 
Frequency Integrated Circuits RFIC Symp., June 2008, pp. 25-28. 

[3] R. Bagheri et al., "An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS," in Proc. 
Int. Solid-State Circuits Conf., Feb. 2006, pp. 480-481. 

 Benefits: 
– Easy programmability
– Small area and low power of the DSP components

 Challenges:
– More complex ADC, which has to work at GHz speeds [1]

– Some DSP blocks have to process GHz-rate signals
 Some existing solutions:
– Intermediate-frequency ADC, analog filtering and digitization [2]

– Discrete-time signal processing for signal conditioning [3]
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Digitizing the Rx Front End (DFE)
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Slide 13.7 

The ADC in the receiver chain 
takes the RF signal as input and 
digitizes it at frequency fs1. The 
digitized signal is first down-
converted using a mixer/digital 
multiplier. This baseband signal has 
bandwidth in the order of 0–20 
MHz for the current cellular and 
WLAN standards. The sampling 
frequency fs1, however, is in the 
GHz range, making the signal 
heavily over-sampled. The 
MODEM at the end of the receiver 
chain accepts signals at frequency 
fs2, typically in the MHz range, its 

value being dictated by the standard. The Rx DFE blocks must down-sample the baseband signal 
from sample rate fs1 to the MODEM sampling rate of fs2. This down-sampling operation must be 
performed with negligible SNR degradation. Also, for full flexibility, the DFE must be able to 
down-sample from arbitrary frequency fs1 to any baseband MODEM frequency fs2. This processing 
must be achieved with power dissipation and area comparable to or less than the traditional RF 
receivers built with analog components.  

 

Slide 13.8 

Up to now we have talked about 
the digitization of the receiver 
front-end chain. The same concept 
applies to the transmitter chain as 
well. The top figure in the slide 
shows the conventional transmitter 
architecture. The low-frequency 
baseband signal from the MODEM 
is converted to an analog signal 
using a digital-to-analog converter. 
This signal is then low-pass filtered, 
amplified, and up-converted to the 
RF carrier frequency using analog 
and RF blocks. Incorporating 
flexibility with minimum power and 

area overhead in the analog and RF blocks, again, prove to be a bottleneck in this implementation. 
The bottom figure in the slide shows the proposed Tx DFE implementation [4]. Here, the signal 
conditioning circuits have been moved to the digital domain with the objective of incorporating 
flexibility in the design components, and also to avoid problems of linearity, mismatch, and dynamic 
range, commonly associated with analog circuits.  

 

Rx DFE Functionality

Sample-rate
Conversion Channelization

fs1 fs1

fs2 fs2

fs2 fs2

fs2 fs2f f

I/Q down-
conversion

Convert from ADC 
frequency fs1 to 

modem frequency 
fs2 with negligible 
SNR degradation  

Antenna

Pre-selection
filter

LNA

DSPRx DFE

fs1 fs2

ADC

MODEM

LO0
90
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Digitizing the Tx Front End (DFE)

DSP

fs1fs2

DAC

MODEM

Antenna

LO

RF filter PA

fs2

fs2

DAC

DAC

Antenna

PA

LPF

LPF
0

90

Tx DFE
RF filter

D
S
P

[4] P. Eloranta et al., "A Multimode Transmitter in 0.13 um CMOS Using Direct-Digital RF Modulator," 
IEEE J. Sold-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007. 

[4]
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Slide 13.9 

The Tx DFE up-samples the 
incoming baseband signal from rate 
fs2 (MODEM sampling rate) to the 
higher sampling rate fs1 at the D/A 
input. Over-sampling the signal is 
necessary for more than one 
reason. Firstly, the spectral images 
at multiples of the baseband 
sampling frequency can be 
suppressed by digital low-pass 
filtering after over-sampling. 
Secondly, the quantization noise 
spreads across a larger spectrum 
after over-sampling, with the 
amplitude reducing by 3dB for 

every doubling of sampling frequency, provided the number of digital bits in the data stream is not 
reduced. Noise amplitude reduction is necessary to satisfy the power emission mask requirement in 
the out-of-band channels.  The degree of over-sampling is determined by the extent to which 
quantization noise power levels need to be suppressed.  

Over-sampling, however, is not without its caveats. A large part of the complexity is now pushed 
to the D/A converter, which must convert digital bits to analog signals at GHz rates. The Tx DFE 
structure must provide up-sampling and low-pass filtering of spectral images at small power and area 
overhead, to allow larger power headroom for the D/A converter. To ensure full flexibility, the 
DFE chain must up-sample signals from any MODEM frequency fs2 to any D/A frequency fs1.  Also, 
this up-sampling should be done with an acceptable value of error vector magnitude (EVM) of the 
transmitted signal.  

 

Slide 13.10 

The slide shows examples of 
flexibility requirements for present-
day cellular and WLAN standards 
like long-term evolution (LTE) and 
the wireless MAN (WiMAX 
802.16). The RF carrier frequencies 

2.69GHz in the uplink (transmitter 
chain) and 2.11–2.69GHz in the 
downlink (receiver chain). The 
signal bandwidth ranges between 
1.25–20MHz. The RF carrier 
frequencies determine the 
bandwidth of the direct conversion 
ADC, and consequently the value 

of fs1, the ADC sampling frequency. The signal bandwidth determines the MODEM sampling 

Channel 
BW [MHz]

Sampling Frequency [MHz]
LTE WiMAX

1.25 1.92 -
2.5 3.84 -
5 7.68 5.6
7 - 8

8.75 - 10
10 15.36 11.2
15 23.04 -
20 30.72 22.4

 Wide range of RF carrier frequencies
 Support for multiple data bandwidths & MODEM frequencies

Example: LTE & WiMAX Requirements

Uplink (LTE) 1.92-2.4 GHz
Downlink (LTE) 2.1-2.4 GHz

WiMAX 2.3-2.69 GHz 

MODEM Frequencies

13.10

Tx DFE Functionality

Sample-rate
Conversion

fs2 fs2

fs1 fs1

I/Q up-
conversion

Convert from MODEM 
frequency fs1 to RF
frequency fs2 while 
maintaining EVM 

DSP

fs1fs2

DAC

MODEM

Antenna

PA
Tx DFE

RF filter

LO0
90
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frequencies (fs2) for both DFEs. The table shows corresponding MODEM sampling frequency for 
different signal bandwidths for the LTE and WiMAX standards. The MODEM sampling 
frequencies are slightly greater than the channel bandwidth (Nyquist rate). This is due to the 
presence of extra bits for guard bands and headers, which increase the actual signal bandwidth. In 
the next slides we look at the design challenges associated with the design of digital front-end 
receivers and transmitters. 

 

Slide 13.11 

The first challenge in the design of 
direct-conversion receivers is the 
implementation of the high speed 
A/D converter. The sampling rate 
must be high since the RF signal is 
centered at a GHz carrier ranging 
between 2 and 2.7GHz for 
LTE/WiMAX. According to 
Nyquist criterion, a sampling 
frequency of 4 to 5.4GHz is 
required for direct RF signal 
digitization. For example, the slide 
illustrates an ADC bandwidth of 4 
GHz required to digitize a signal 
centered at 2 GHz. A point to note 

is that the signal bandwidth is much smaller than the RF carrier frequency (in the order of MHz). 
Nevertheless, if Nyquist criterion is to be followed then the sampling frequency will be dictated by 
the RF carrier frequency and not the signal bandwidth. The second challenge stems from the SNR 
specifications of greater than 50dB for current standards. This imposes a linearity requirement in 
the range of 8–14 effective number of bits on the ADC. The ADC design is therefore constrained by 
two difficult specifications of high sampling rate as well as high linearity.   

 

 

 

 

 

 

 

 

 

 

 

Rx DFE Challenge #1: Very High-Speed ADC

 Nyquist criterion demands fs > 2fRF

 For RF carrier beyond 1 GHz, fs very high
 Digitizing the RF signal needs large ADC bandwidth
 High linearity requirements (8-14 ENOB)
 High dynamic range for wide-band digitization 

2.7 +2.73.0 +3.0Freq. (GHz)

Nyquist criterion
ADC fs > 5.4 GHz

Low noise floor
for high SNR

13.11
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Slide 13.12 

After the ADC digitizes the 
incoming RF signal at frequency fs1, 
the digital signal must be down-
converted from the RF carrier to 
the baseband. This has to be done 
by a mixer/digital multiplier. Digital 
multiplication at GHz rate is 
practically infeasible or extremely 
power hungry even for short 
wordlengths (4–5 bits). The down-
sampling/decimation filters in the 
DFE must process the high-speed 
incoming data at frequency fs1. 
Another problem lies in enabling 
the processing of such high-speed 

data with minimal power and area overhead, which is mandatory if the DFE is to be migrated to 
mobile handset type of applications. Since the choice of fs1 and fs2 is arbitrary in both the Tx and Rx 
chain, it will often be the case that the sample rate change factor (fs1/fs2) will be fractional. Supporting 
fractional rate change factors becomes an additional complexity in the DFE design.  

 

Slide 13.13 

Processing of digital samples at 
frequency fs1 in the ADC and the 
DSP blocks is a primary bottleneck 
in the receiver chain. The timing 
constraints on the entire DFE chain 
can reduce significantly, if fs1 can be 
lowered through optimization 
techniques. This reduction in 
sample rate, however, must not 
adversely affect the signal-to-noise 
ratio. One such technique is under-
sampling or sub-Nyquist sampling. 
Under-sampling exploits the fact 
that the signal bandwidth in cellular 
and WLAN signals is orders of 

magnitude lower than the RF carrier frequency. Hence, even if we sample the RF signal at 
frequencies lesser than the Nyquist value of 2fRF, a replica of the original signal can be constructed 
through aliasing. When a continuous-time signal is sampled at rate fs, then post sampling, analog-
domain multiples of frequency band fs overlap in the digital domain. In the example shown here, an 
RF signal centered at 2.7GHz is sampled at 2 GHz. Segments of spectrum in the frequency band of 
1 to 3 GHz and −1 to −3 GHz fold back into the −1 to +1GHz sampling band . We ge t a replica o f
the original signal at 0.7GHz and −0.7GHz. This phenomenon is referred to as aliasing. If there is 
no interference in the −1 to +1GHz spectrum range, then the signal replica at 0.7GHz is 

Challenge #2: Down-Conversion & Decimation

 Rx DFE Design
– Carrier multiplication (digital mixing) at GHz frequencies 
– Anti-aliasing filters next to the ADC function at GHz rate
– Architecture must  support fractional decimation factors 
– Low power requirement for mobile handset applications 

Sample-rate
Conversion

fs1 fs1

fs2 fs2

ADC
fs1 > 1 GHz

High-speed 
digital mixing

I/Q down 
conversion

Decimate 
b/w arbitrary 

fs1 to fs2

High-speed
filtering

LO0
90
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Under-Sampling

 Nyquist criterion
– Sample the RF signals at fs > 2fRF

 Sample at rate lower than Nyquist frequency
– Signal bandwidth << fRF
– Exploit aliasing, every fs folds back to the baseband 

2.7 +2.73.0 +3.0Freq. (GHz) 0.7 +0.71.0 +1.0Freq. (GHz)

Nyquist sampling, fs > 2fRF Under-sampling, fs < 2fRF

13.13
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uncorrupted. Band-pass filtering before the A/D conversion can ensure this. The number of bits in 
the ADC determines the total noise power, and this noise (ideally white) spreads uniformly over the 
entire sampling frequency band. Lowering the sampling frequency results in quantization noise 
spread in a smaller frequency band, as shown in the figure on the right, which has higher noise floor 
levels. Hence, the extent of under-sampling is restricted by the allowed in-band noise power level.  

 

 

Slide 13.14 

We have now looked at the critical 
constraints of bandwidth and 
linearity imposed on the ADC. We 
also looked at ways to reduce the 
ADC sample rate. But achieving 
linearity specifications of 50–60dB 
is still difficult over a uniform ADC 
bandwidth spanning several 
hundred MHz. For smaller 
bandwidth signals, a popular 
approach is to reduce the noise in 
the band of interest through over-
sampling and sigma-delta 
modulation. Over-sampling is a 
technique used to push down the 

quantization noise floor in the ADC bandwidth. The total quantization noise power of the ADC 
remains unchanged if the number of bits in the ADC is fixed. With higher sampling frequency, the 
same noise power is spread over a larger frequency band, pushing down the noise amplitude levels. 
After filtering, only the noise content in the band of interest contributes to the SNR, everything 
outside is attenuated. Sigma-delta modulation is a further step towards reducing the noise power in 
the signal band of interest. With this modulation, the quantization noise is shaped in a manner that 
pushes the noise out of the band of interest leading to a higher SNR. The figure on the right shows 
an example of this noise shaping.  

 

 

 

 

 

 

 

 

 

In-band noise

Sigma-delta shaped 
quantization noise

In-band noise

Flat quantization 
noise spectrum

 Design constraints relax if number of bits in signal reduce
– Leads to more quantization noise
– Sigma-delta modulation shapes the quantization noise
– Noise is small in the signal band of interest

13.14
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Slide 13.15 

The slide shows an example of 
first-order sigma-delta noise 
shaping. The noise shaping is 
implemented by high-pass filtering 
the quantization noise E(z), while 
the incoming signal U(z) is 
unaltered. The equations in the 
slide illustrate the process for first-
order filtering with transfer 
function H(z)=(1−z −1). Changing 
this filter transfer function can 
increase the extent of noise 
shaping. Common practice is to use 

noise power in the band of interest.  

 

Slide 13.16 

If the value of fs1 is quite large even 
after under-sampling, then further 
optimization is needed to enable 
high-throughput signal processing. 
One such technique is parallelism, 
which will be utilized several times 
in the course of DFE design. Time-
interleaved ADC is the common 
term used for parallel ADCs. In this 
case, the incoming continuous-time 
signal is processed by N ADCs 
running in parallel and operating at 
sampling frequency fs/N, fs being 
the sampling frequency of the 
complete ADC. Time interleaving 

uses multiple ADCs functioning with time-shifted clocks, such that the N parallel ADCs generate a 
chunk of N continuous samples of the incoming signal. Adjacent ADC blocks operate on clocks 
that are time shifted by 1/fs. For example, in the figure, for a 2-way parallel ADC, the system clock at 
rate fs is split into two clocks, fclk1 and fclk2, which are time-shifted by 1/fs, and with equal frequency of 
fs/2. Both clocks independently sample the input signal for A/D conversion. The output of the 
ADC are 2 parallel channels of data that generate 2 digital samples of the input at rate fs/2, making 
the overall sampling frequency of the system equal to fs. Although this is a very attractive technique 
to increase the sample rate of any ADC, the method has its shortcomings. One problem is the 
timing jitter between multiple clocks that can cause sampling errors. To avoid this, the use of a small 
number (2–4) of parallel channels is recommended. With fewer channels, the number of clock 

Parallel ADC Implementation

 Use parallelism to support high speed sampling
– Time-interleaved ADC structures

Runs multiple ADCs in parallel, P parallel channels of data

S/H

S/H

ADC1

ADC2

Offset/Gain error
adjustment

Offset/Gain error
adjustment

Clock
Distributionfsystem,clk

Analog
Signal

fclk1

fclk2
Out1

Out2

fclk1

fclk2

P = 2
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Noise Shaping in Sigma-Delta Modulation

 Quantization noise shaping for reduced number of bits

+ + z 1u(n) y(n)
x(n) v(n) v(n  1)

e(n)

Quantization noise 
high-pass filtered

Noise shaping function 1st order, 
H(z) = 1  z 1x(n) = u(n) – y(n)

v(n) = x(n) + v(n – 1)
y(n) = v(n – 1) + e(n)
v(n) = u(n) – e(n)
y(n) = u(n – 1) + e(n) – e(n – 1)

Y(z) = z 1U(z) + E(z)·(1 – z 1)

13.15
higher-order IIR filters (2nd to 4th) in 
the feedback loop to reduce the 
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domains is less, and the timing jitter is easier to compensate through calibration mechanisms after 
A/D conversion.  

 

Slide 13.17 

Once the incoming RF signal is 
digitized, the next task is to down-
convert it to the baseband. For this 
purpose, we require a digital mixer. 
The mixer has two components, a 
multiplier and a frequency 
synthesizer. If the ADC sampling 
frequency fs1 is in the GHz range, 
then the multiply operation 
becomes infeasible. Digital 
sine/cosine signal generation is 
usually implemented through look-
up tables or CORDIC units. These 
blocks also cannot support GHz 
sampling rates. Use of parallel 

channels of data through time-interleaved ADCs is one workaround for this problem. N parallel 
channels make the throughput per channel equal to fs1/N. This, however, does not quite solve the 
problem, since to ensure timing feasibility of carrier multiplication, the value of N will have to be 
very large leading to ADC timing jitter issues, discussed previously.  

 

Slide 13.18 

A solution to the carrier 
multiplication problem is to make 
the ADC sampling frequency 
programmable. If the value of fs1 is 
a function of fRF, then we can 
ensure that after under-sampling 
the replica signal is judiciously 
positioned, so that we avoid any 
carrier multiplication after all. For 
example, in the figure shown in the 
slide, fs1 = (4/3)·fRF. After under-
sampling, the replica signal is 
created at frequency fRF/3 that 
corresponds to the π/2 position in 
the digital domain (fs1/2 being the π 

position) [1]. The mixing process reduces to multiplication with sin(π/(2n)) and cos(π/(2n)), both of 
which are elements of the set {1, 0, −1, 0}, when n is an integer. Hence, implementing the mixer 
becomes trivial, requiring no look up tables or CORDIC units.  Similarly  fs1 = fRF can also be used, in 
which case the replica signal is created at the baseband. In this case the ADC sampling and carrier 

Carrier Multiplication 

I/Q down-conversion

I path

Q pathfs1

ADC
Programmable
Sin / Cos wave

 Multiplication with sine and cosine fRF

– fRF is arbitrary with respect to ADC sampling frequency fs1

– Mixer will be digital multiplier, infeasible at GHz frequency
– Sine and cosine signals come from a programmable block
– Carrier generation also not feasible at high fs1

Digital front-end mixer

0
90

13.17

Optimized Carrier Multiplication

fRF +fRFfs +fs2/3fRF +2/3fRF

2/3fRF +2/3fRFfRF/3 +fRF/3

Under-sampling, ADC fs = 4/3·fRF

 Choose fs1 = 4/3·fRF
– Under-sampling of signal positions it at fs1/4 = fRF/3
– Sine and Cosine signals for fs1/4 {1,0, 1,0} 

Digital front-end mixer

I/Q down-conversion

I path

Q pathfs1 = 4/3·fRF

ADC
0

90

[1] N. Beilleau et al., "A 1.3V 26mW 3.2GS/s Undersampled LC Bandpass  ADC for a SDR ISM-band 
Receiver in 130nm CMOS, " in Proc. RFIC Symp., June 2009, pp. 383-386.

[1]
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mixing will be done simultaneously; but two ADCs will be necessary in this case to generate separate 
I and Q data streams. A programmable PLL will be required for both these implementations in order 
to tune the sampling clock of the ADC depending on the received carrier frequency.   

 

Slide 13.19 

After incorporating all the 
optimization techniques discussed, 
a possible implementation of the 
Rx DFE is shown in the figure. The 
receiver takes in the RF signal and 
under-samples it at frequency 
4·fRF/3. The ADC is time-
interleaved with four channels of 
data. Under-sampling positions the 
replica signal at π/2 after 
digitization, making the mixing 
process with cosine and sine waves 
trivial. This is followed by 
decimation by 16 through a 
cascade-integrated-comb (CIC) 

filter, which brings the sampling frequency down to fRF/12. The decimation by R CIC block is the 
first programmable block in the system. This block takes care of the down-conversion by integer 
factor R (variable value set by user). Following this block is the fractional sample rate conversion 
block, which is implemented using a polynomial interpolation filter. The fractional rate change 
factor is user specified. The polynomial interpolation filter has to hand-off data between two 
asynchronous clock domains. The final block is the decimation-by-2 filter, which is a low-pass FIR. 
In the next few slides we will discuss the DSP blocks shown in this system.  

 

Slide 13.20 

We earlier saw the phenomenon of 
aliasing, when a continuous time 
signal is under-sampled. The same 
concept is applicable when a 
discrete signal sampled at frequency 
fs1 is down-sampled to a lower 
frequency fs2. Any 
noise/interference outside the band 
(−fs2/2, fs2/2) folds back into the 
baseband with an increased noise 
level, as shown in Fig. (b). This 
aliased noise can degrade the SNR 
significantly. The DFE must 
attenuate the out-of-band noise 
through low-pass filtering (shown 

 Sources of noise during sample-rate conversion 
– Out-of-band noise aliases into desired frequency band
– DFE must suppress noise 
– SNR degradation limited to 2-3 dB 

Down-
sampling

2/3fRF +2/3fRF1/3fRF +1/3fRF 1/3fRF +1/3fRF

Increased
noise level 

Rx DFE Sample-Rate Conversion

Filtered
noise level 

(a) (b)
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with the red curve in Fig. (a)) before down-sampling. The low-pass filtering reduces the noise 
level shown by the dashed curve in Fig. (b). The SNR degradation from the output of the ADC to 
the input of the MODEM should be limited to within 2–3dB, to maximize the SNR at the input of 
the MODEM. One way to suppress this noise is through CIC filtering, which is attractive due to its 
simple structure and low-cost implementation.  

 

Slide 13.21 

The slide shows an implementation 
of a CIC filter used for down-
sampling by a factor of D. The 
structure has an integrator followed 
by a down-sampler and 
differentiator. Frequency response 
of this filter is shown on the left. 
The response ensures that the 
attenuation is small in the band of 
interest spanning from –fs/D to 
fs/D. The out-of-band noise and 
interference lies in the band fs/D to 
fs/2 and –fs/D to –fs/2. The filter 
attenuates the signal in the out-of-
band region. Increasing the number 

of CIC filter sections increases the out-of-band attenuation. The integrated transfer function of the 
CIC filter for a single section and decimation factor D is shown at the bottom of the slide. 
Characteristics of higher-order CIC filtering are discussed next.  

 

Slide 13.22 

The previous slide shows a single 
integrator and differentiator section 
in the CIC. An increase in 
attenuation can be obtained with 
additional sections. Although the 
implementation of the filter looks 
quite simple, there still remain a few 
design challenges. Firstly, the 
integrator is a recursive structure 
that often requires long 
wordlengths. This creates a primary 
bottleneck with respect to the 
maximum throughput (fs) of the 
filter. In our system (Slide 13.19), a 
CIC filter is placed just after the 

ADC, where data streams can have throughput up to several hundred MHz.  A second drawback of 
the feedback integrator structure is its lack of support for parallel streams of data input. Since we 

Cascaded CIC Decimation Filters

 Generalized CIC filters
– K cascaded section of integrators and differentiators
– K > 1 required for higher out of band attenuation
– Adjacent sections can be pipelined to reduce critical path

Input
signal 
@ fs

K cascaded sections K cascaded sections
Output
signal 
@ fs/D

(1 z D )K

(1 z 1)K
fs/2 +fs/2fs/D +fs/D

K = 2
K = 3

Z 1

+ + D

Z 1 Z 1 Z 1
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Direct-mapped structure
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Input @ Fs  Output @ Fs/DCIC
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Out-of-band noise 
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+

D

 Cascade integrated comb filters for integer decimation
 Direct mapped structure
–Recursive, long wordlength, throughput-limited
–Bigger gate sizes needed to support higher throughput

13.21

CIC Decimation Filters



Multi-GHz Radio DSP  267 
 

would like to use time-interleaved ADCs, the CIC should be able to take the parallel streams of data 
as input. In the next slide we will see how the CIC transfer function can be transformed to solve 
both of these problems.  

 

Slide 13.23 

The CIC filter transfer function, 
when expanded, is an FIR or feed-
forward function as shown in the 
first equation on this slide. When 
the decimation factor D is of the 
form ax, the transfer function can 
be expressed as a cascade of x units 
decimating by a factor of a. In the 
example shown in the slide, the 
transfer function for decimation by 
2N is realized using a cascade of 
decimation-by-2 structures. The 
number of such structures is equal 
to N or log2(D) where D=2 N. The 
decimation-by-2 block is simple to 

implement requiring multiply-by-2 (shift operation) and additions when the original CIC has 2 
sections. Also, the feed-forward nature of the design results in smaller wordlengths, which makes 
higher throughput possible. An additional advantage of the feed-forward structure is its support for 
parallel streams of data coming from a time-interleaved ADC. So, we get the desired filter response 
along with a design that is amenable to high-throughput specifications.  It may look like this 
implementation adds extra area and power overhead due to the multiple sections in cascade, 
however it should be noted that the successive sections work at lowered frequencies (every section 
decimates the sampling frequency by 2) and reduced wordlengths. The overall structure, in reality, is 
power and area efficient.  
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Slide 13.24 

Although integer sample-rate 
conversion can be done using CIC 
or FIR filters as shown earlier, these 
filters cannot support fractional 
decimation. Owing to the flexibility 
requirement in the DFE, the system 
must support fractional sample-rate 
conversion. There a couple of ways 
to implement such rate 
conversions. One way is to express 
the fractional rate conversion factor 
as a rational number p/q. The signal 
is first up-sampled by a factor of q 
and then down-sampled by a factor 
of p to obtain the final rate 

conversion factor. For example, to down-convert from 10.1 MHz to 10 MHz, the traditional scheme 
is to first up-sample the signal by a factor of 101 and then down-sample by 100, as shown in the 
figure on the left. But this would mean that some logic components would have to function at an 
intermediate frequency of 10.1 GHz, which can be infeasible. To avoid this problem, digital 
interpolation techniques are used to reconstruct samples of the signal at the output clock rate given 
the samples at the input clock rate. The figure shows digital interpolation of the output samples (red 
dots), given the input samples (red dots). Since both clocks have different frequencies, the phase 
delay between their positive edges changes every cycle by a difference of alpha (α), which is given by 
the difference in the time-period of both clocks. This value of alpha is used to re-construct the 
output samples from the input ones, through use of interpolation polynomials. The accuracy of this 
re-construction depends on the order of interpolation. Typically, third-order is sufficient for 2–3 dB 
of noise figure specifications. To minimize area and power overhead, fractional sample-rate 
conversion should be done, as far as possible, at slow input clock rates.  

 

Slide 13.25 

The interpolation process is 
equivalent to re-sampling. Given a 
discrete signal at a certain input 
clock fin, analog interpolation would 
involve a digital to analog 
conversion and re-sampling at 
output clock fout using an ADC. This 
method uses costly mixed-signal 
components, and ideally we would 
like to pursue an all-digital 
alternative. As mentioned in the 
previous slide, it is possible to 
construct the digital samples at 
clock fout, given the input samples at 

Interpolation

 Analog interpolation
– Equivalent to re-sampling
– Needs costly front end components like ADC, DAC

 Digital interpolation
– Taylor series approximation
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Delay1 = 0

Clk1 (10.1 MHz)

Clk2 (10 MHz)

Delay2 = Delay3 = 2

fs1

fs2

 101  100

10.1 MHz to 10 MHz 

Intermediate freq. 10100 MHz 

High intermediate frequency
power inefficient 

Digitally interpolate red dots from the blue ones

Input 
@ 10 MHz

 Transfer digital sample between clocks with different frequencies 
– Clocks have increasing difference in instantaneous phase
– Phase increase rate inversely prop. to frequency difference

 Challenge: Phase delay increases by  every clock cycle

13.24

Fractional Sample-Rate Conversion
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clock fin and the time difference alpha (α) between both clocks. The process is equivalent to an 
implementation of Taylor’s series, where the value of the signal at time τ +α is obtained by knowing 
the value of the signal at time τ, and the value of the signal derivatives at time τ. This slide shows the 
Taylor’s series expansion of a function at f(τ+α). The value of f(τ) is already available in the 
incoming input sample. The remaining unknowns are the derivatives of the signal at time τ.  

 

Slide 13.26 

Signal derivatives can be obtained 
by constructing an FIR transfer 
function, which emulates the 
frequency response of the 
derivative function. For example, 
the transfer function for the first 
derivative in the Laplace domain is 
s·F(s). This corresponds to a ramp-
like frequency response D1(w). This 
ideal response will require a large 
number of taps, if implemented 

function. An optimization can be 
performed at this stage, if the signal 
of interest is expected to be band-

limited. For example, if the signal is band-limited in the range of −2π/3 to +2π/3 (−fs/3 to +fs/3), 
then the function can emulate the ideal derivative function in this region, and attenuate the signals 

response can be obtained with surprisingly small number of taps using an FIR function, leading to a 
low-cost power-efficient implementation of the interpolator.  

 

Slide 13.27 

The slide shows a third-order 
Taylor’s series interpolator. The 
computation uses the first three 
derivative functions D1(w), D2(w) 
and D3(w). Following the 
approximation techniques described 
in the previous slide, the three 
functions were implemented using 
8-tap FIRs. The functions emulate 
the ideal derivative response up to 
0.7π, which will be referred to as 
the upper useful frequency. Signals 
outside the band of −0.7π to 0.7π 
will be attenuated due to the 

 Third-order truncation of the series is typically sufficient
 Implementing differentiators
– Implement D1(w) using an FIR filter
– Ideal response needs infinite # of taps
– Truncate FIR   poor response at high frequencies 

Ideal
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Practical Realization
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dt
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Implementing Taylor Series

The Farrow Structure

 8 taps in the FIR to approximate differentiator Di(w)
 The upper useful frequency is 0.7
 C0 is an all-pass filter in the band of interest
 Structure can be re-configured easily by controlling parameter 
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using a time-domain FIR type 

outside this band, as shown in the right figure. This will not corrupt the signal of interest, with the 
added benefit of attenuating the interference/noise outside the signal band. The modified frequency 
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attenuating characteristics of the approximate transfer functions. The most attractive property of 
this structure is its ability to interpolate between arbitrary input and output clocks. For different sets 
of input and output clocks, the only change is in the difference between their time-periods alpha (α). 
Since α is an external input, it can be easily programmed, making the interpolator very flexible. The 
user need only make sure that the signal of interest lies within the upper useful frequency band of 
(−0.7π, 0.7π), to be able to use the interpolator.  

 

Slide 13.28 

The unknown initial phase 
difference between the input and 
output clock becomes a problem 
for the interpolation process. If 
both clocks are synchronized so 
that their first positive edges are 
aligned at t =0 , as shown in the top 
timing diagram, then the 
interpolation method works. But if 
there is an initial phase difference 
between the two clocks at time t =  
0, then the subsequent phase 
difference will be the sum of the 
initial phase difference and α. 
Additional phase detection circuit 

will be required to detect the initial phase. The phase detector can be implemented by tracking the 
positive-edge transitions of both clocks. At some instant the faster clock has two rising edges within 
one cycle of the slower clock. The interpolator calibrates the initial phase by detecting this event.  

 

Slide 13.29 

Now that we have looked at all the 
components of the block diagram 
for the Rx DFE shown in Slide 
13.19, we can take a look at the 
expected functionality of this Rx 
DFE. The slide shows the 
frequency spectrum after various 
stages of computations in the DFE. 
The top-left figure is the spectrum 
of the analog input sampled at 3.6 
GHz with a 5-bit ADC. The ADC 
input consists of two discrete tones 
(the tones are only a few MHz apart 
and cannot be distinguished in the 
top-left figure). The ADC noise 

spectrum is non-white, with several spurious tones scattered across the entire band. The top-right 

Decimation by 16 
fs = 225 MHz

Decimation by 3.6621
fs = 61.44 MHz

Decimation by 2 
fs = 30.72 MHz

fs = 3.6 GHz

Rx DFE Functionality

 Input uniformly quantized with 5 bits

13.29

Need additional circuitry to synchronize phase of both clocks

Polynomial
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Filter
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clock domains
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fRF /(6R) 
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Initial phase difference = 0

System works

fRF /(6R) 

2fOUT

Initial phase difference  0

Needs phase alignment

 System assumes that asynchronous clocks start with equal phase
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Clock-Phase Synchronization
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figure shows the signal after decimation by 16 and at a sample rate of 225 MHz. The two input 
tones are discernable in the top-right figure, with the noise beyond 225 MHz filtered out by the CIC. 
This is followed by two stages of decimation, integer decimation-by-3 using CIC filters and 
fractional decimation by 1.2207. The overall decimation factor is the product 3.6621, which brings 
the sample rate down to 61.44 MHz. The resulting spectrum is shown in the bottom-left figure. We 
can still see the two tones in the picture. The bottom-right figure shows the output of the final 

MHz. This completes our discussion on the Rx DFE design and we move to Tx DFE design 
challenges in the next slide.  

 

 

Slide 13.30 

The Tx DFE has similar 
implementation challenges as the 
Rx. The figure shows an example of 
a Tx DFE chain. The baseband 
signal from the MODEM is up-
sampled and mixed with the RF 
carrier in the digital domain, before 
being sent to a D/A converter. 
High-speed digital-to-analog 
conversion is required at the end of 
the DFE chain. The digital signal 
has to be over-sampled heavily, to 
lower noise floor levels, as 
discussed earlier. This would mean 
that anti-imaging filters and digital 

mixers in the Tx DFE chain would have to work at enormously high speeds. Implementing such 
high-throughput signal processing and data up-conversion becomes infeasible without opportunistic 
use of architectural and signal-processing optimizations. DRFC techniques [4] allow RF carrier 
multiplication to be integrated in the D/A converter architecture. The D/A converter power has to 
be optimized to lower the power consumption associated with digitally intensive Tx architectures.  

 

 

 

 

 

 

 

 

 

Tx DFE: Low-Power Design Challenges

High-speed 
filtering

Interpolate 
b/w arbitrary 

fs1 to fs2 High-speed
D/A + mixing

 Challenge #1: DAC design
– High speed digital-to-analog conversion required

 Challenge #2: Tx DFE design
– Carrier multiplication (digital mixing) at GHz frequencies 
– Anti-imaging filters before DAC function at GHz rates
– Architecture must support fractional interpolation factors

Up-sampling

fs2 fs2

fs1 fs1

I/Q 
up-conversion

LO0
90 DAC

[4] P. Eloranta et al., "A Multimode Transmitter in 0.13 um CMOS Using Direct-Digital RF Modulator," 
IEEE J. Sold-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007. 

[4]
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decimation-by-2 unit that filters out the second tone and leaves behind the signal sampled at 30.72 
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Slide 13.31 

The power consumption of the 
D/A conversion block is directly 
proportional to the number of bits 
in the incoming sample. Sigma-delta 
modulation can be used at the end 

conversion, to reduce the total 
number of bits going into the D/A 
converter. We saw earlier that 
sigma-delta modulation reduces the 
noise in the band of interest by 
high-pass filtering the quantization 
noise. This technique reduces the 
number of output bits for a fixed 
value of in-band noise power, since 

the noise introduced due to quantization is shaped outside the region of interest.  

 

 

Slide 13.32 

The implementation proposed in 
[5] uses a 1-bit sigma-delta 
modulator with third-order IIR 
filtering in the feedback loop. A 
second approach [6] uses 6-bit 
sigma-delta modulator with 3
order IIR noise shaping. The high-
speed sigma-delta noise shaping 
filters are the main challenge in the 
implementation of these 
modulators.  

 

 

 

 

 

 

 

 

 

Implementation Techniques

 Typically use 1st to 3rd order IIR integrators as loop filters
– 1-bit sigma delta modulator with 3rd-order IIR [5]

– 6-bit sigma-delta modulator with 3rd-order IIR [6]

[5] A. Frappé et al., "An All-Digital RF Signal Generator Using High-Speed Modulators," IEEE J. Solid-
State Circuits, vol. 44, no. 10, pp. 2722-2732, Oct. 2009. 

[6] A. Pozsgay et al., "A fully digital 65 nm CMOS transmitter for the 2.4-to-2.7 GHz WiFi/WiMAX
bands using 5.4 GHz RF DACs, " in Proc. Int. Solid-State Circuits Conf., Feb 2008, pp. 360-619.
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Noise Shaping in Transmitter

Feedback loop is an obstacle in supporting high sample rate fs2,
Typically use 1st to 3rd order IIR integrators as loop filters
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Slide 13.33 

The up-sampling process results in 
images of the original signals at 
multiples of the original sampling 
frequency. In the figure, up-
sampling by 3 leads to the 3 images 
shown in the spectrum on the right. 
While transmitting a signal, the Tx 
must not transmit power above a 
maximum level in the spectrum 
adjacent to its own band, since the 
adjacent bands belong to a different 
user. The adjacent-channel power 
ratio (ACPR) metric measures the 
ratio of the signal power in the 
channel of transmission and the 

power leaked in the adjacent channel. This ratio should be higher than the specifications set by the 
standard. Hence, images of the original spectrum must be attenuated through low-pass filtering 
before signal transmission. The common way is to do this through FIR and CIC filtering. The 
filtering process must not degrade the error vector magnitude (EVM) of the transmit constellation. 
The EVM represents the aggregate of the difference between the ideal and received vectors of the 
signal constellation. High quantization noise and finite wordlength effects during filtering can lower 
the EVM of the transmitted signal.  
 

 

Slide 13.34 

CIC filters are used for suppressing 
the images created after up-
sampling. The CIC transfer 
function is shown on the right in 
the slide. The nulls of the transfer 
function lie at multiples of the 
sampling frequency fs, which are the 
center of the images formed after 
up-sampling. The traditional 
recursive implementation of these 
filters suffers from long 
wordlengths and low throughput 
due to the feedback integrator. 
Optimization of these structures 
follows similar lines of feed-

forward implementation as in the Rx.  

 

 

CIC Interpolation Filters

 Direct-mapped structure
–Recursive, long wordlength, throughput-limited
–Bigger gate sizes needed to support higher throughput
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Tx DFE Sample-Rate Conversion

Up
Sampling

fBB/2 +fBB/2 3fBB/2 +3fBB/2fBB/2 +fBB/2

Original spectrum unfolds U timesOriginal spectrum

U = 3

 Sources of noise during sample-rate conversion 
– Images of the original frequency spectrum after up-sampling
– Images corrupt the adjacent unavailable transmission bands  
– DFE must suppress these images created after up-sampling 
– Image suppression should ensure acceptable ACPR & EVM

13.33
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Slide 13.35 

CIC filters used for up-sampling 
can also be expressed as feed-
forward transfer functions, as 
shown in the first equation in the 
slide. A cascade of x up-sampling 
filters can implement the modified 
transfer function, when the up-
sample factor U equals ax. The 
example architecture shows up-
sampling by 2N. For a cascade of 
two sections (K=2), the filter 
architecture can be implemented 
using shifts and adds. This 
architecture avoids long 
wordlengths and is able to support 

parallel streams of output data as well as higher throughput per output stream.  

 

 

Slide 13.36 

The transmit DFE structure shown 
in this slide can be regarded as the 
twin of the Rx DFE (from Slide 
13.19) with the signal flow reversed.  
The techniques used for Tx 
optimization are similar to those 
used in the Rx architecture.  The 
only difference is that the sampling 
frequency is higher at the output 
end as opposed to the input end in 
the Rx and all the DSP units up-
sampling/interpolation instead of 
decimation. The polynomial 
interpolation filter described for the 
Rx DFE design can be used in the 

Tx architecture as well for data handoff between asynchronous clock domains.  
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Slide 13.37 

Simulation results for Tx DFE are 
shown in this slide.  The input 
signal was at the baseband 
frequency of 30.72MHz and up-
converted to 5.4GHz.  The 
received signal PSD shows that the 
output signal is well within the 
spectrum mask and ACPR 
requirement.  The measure EVM 
(error vector magnitude) was about 
−47dB for the received spectrum.  

 

 

 

 

Slide 13.38 

In summary, this chapter talked 
about implementation of receiver 
and transmitter signal conditioning 
circuits in a mostly digital manner. 
The main advantages associated 
with this approach lie in avoiding 
non-linear analog components and 
utilizing benefits of technology 
scaling with new generations of 
digital CMOS.  Digitizing the 
receiver radio chain is an ongoing 
topic of research, mainly due to the 
requirement of high-speed, high 
dynamic-range mixed-signal 
components. Sigma-delta 

modulation and time interleaving are some techniques that could make such designs feasible.  DSP 
challenges and optimization techniques like use of feed-forward CIC filters, and polynomial 
interpolators were also discussed in detail to handle the filtering, down/up-sampling and fractional 
interpolation in the transceiver chain. 

 

 

 

 

 

Tx DFE Functionality

 Input from baseband modem quantized with 12 bits
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Summary

 Digital front-end implementation
– Avoids analog non-linearity
– Power and area scales with technology

 Challenges
– High dynamic range ADC in receiver
– High throughput at Rx input and Tx output
– Minimum SNR degradation of received signal
– Quantization noise and image suppression at Tx output
– Fractional sample-rate conversion

 Optimization
– Sigma-delta modulation
– Feed-forward CIC filtering
– Farrow structure for fractional rate conversion  

13.38
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Slide 14.1 

This chapter will demonstrate 
hardware realization of 
multidimensional signal processing. 
The emphasis is on managing 
design complexity and minimizing 
power and area for complex signal 
processing algorithms.  As an 
example, adaptive algorithm for 
singular value decomposition will 
be used.  Power and area efficiency 
derived from this example will also 
be used as a reference for flexibility 
considerations in Chap. 15. 

 

 

 

Slide 14.2 

The goal of the next two chapters is 
to present design techniques that 
can be used to build a universal 
MIMO (abbreviation of multi-input 
multi-output) radio architecture for 
multiple signal bands or multiple 
users.  This flexible radio 
architecture can be used to support 
various standards ranging from 
wireless LAN to cellular devices.  
The design challenges are how to 
integrate complex MIMO signal 
processing, how to provide 
flexibility to various operating 
conditions, and how to extend the 

flexibility to multiple signal bands.  

 

 

 

 

 

 

 

Introduction to Chapters 14 & 15

 Goal: develop universal MIMO 
radio that works with multiple 
signal bands / users

 Challenges
– Integration of complex multi-

antenna (MIMO) algorithms 
– Flexibility to varying operating 

conditions (single-band)
– Flexibility to support 

processing of multiple signal 
bands

 Implication: DSP for distributed / 
cooperative MIMO systems

PHY

Flexible radio 

Digital Signal Processing

WLAN Cellular
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MHz-rate Multi-Antenna Decoders:
Dedicated SVD Chip Example
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Slide 14.3 

In the following two chapters, we 
will demonstrate design techniques 
for dealing with complexity and 
flexibility [1].  This chapter will 
describe chip realization of a 
MIMO singular value 
decomposition (SVD) for fixed 

design complexity.  In the next 
chapter, two MIMO sphere 
decoder chips will demonstrate 
varying levels of flexibility.  The 
first sphere decoder chip will 
demonstrate the flexibility in 
antenna array size, modulation 

scheme, search method, and number of sub-carriers (single-band).  The second sphere decoder chip 
will extend the flexibility to support multiple signal bands and support both hard/soft outputs.  As 
shown in the table, the flexibility includes antenna array size (array sizes) from 2 2 to 8 8, number 
of sub-carriers from 128 to 2048, modulation scheme 2-64QAM, and multiple bands from 1.25 to 
20MHz. 

 

 

Slide 14.4 

We will start with background on 
MIMO communication. Diversity-
multiplexing tradeoff in MIMO 
channels will be introduced and 
illustrated on several common 
algorithms. After covering the 
algorithm basics, architecture 
design techniques for implementing 
algorithm kernels will be described, 
with emphasis on energy and area 
minimization. The use of design 
techniques will be illustrated on 
dedicated MIMO SVD chip. 

 

 

 

 

 

The Following Two Chapters will Demonstrate

 A 4x4 singular value decomposition in 2 GOPS/mW – 90 nm
 A 16-core 16x16 single-band multi-mode MIMIO sphere decoder 

that achieves up to 17 GOPS/mW – 90 nm
 A multi-mode multi-band (3GPP-LTE compliant) MIMO sphere 

decoder in < 15 mW (LTE specs < 6mW) – 65 nm
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[1] C.-H. Yang, Energy-Efficient VLSI Signal Processing for Multi-Band MIMO Systems, Ph.D. Thesis, 
University of California, Los Angeles, 2010. 

[1]

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip
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Slide 14.5 

Multi-input multi-output (or 
MIMO) communication systems 
use multiple transmit and receive 
antennas for data transmission and 
reception.  The function of  the 
MIMO decoder is to constructively 
combine the received signals to 
improve the system performance.  
MIMO communication is inspired 
by the limited availability of  
spectrum resources.  The spectral 
efficiency has to be improved to 
satisfy the increased demand for 
high-speed wireless links by using 
MIMO technology.  MIMO 

systems can increase data rate and/or communication range. In principle, multiple transmit antennas 

extending the communication range.  The DSP challenge is the MIMO decoder, hence it is the focus 
of  this chapter. 

 

 

Slide 14.6 

Given a MIMO system, there is a 
fundamental tradeoff  between 
diversity and spatial multiplexing 
algorithms [2], as shown in this 
slide.  MIMO technology is used to 
improve the reliability of  a wireless 
link through increased diversity or 
to increase the channel capacity 
through spatial multiplexing.  The 
diversity gain d is characterized by 
decreasing error probability as 
1/SNRd.  Lower BER or higher 
diversity gain improves the path 
loss and thereby increases the 
range.  The spatial multiplexing gain 

r is characterized by increasing channel capacity proportional to r log(SNR).  Higher spatial 
multiplexing gain, for a fixed SNR, supports higher transmission rate per unit bandwidth.  Both 
gains can be improved using a larger antenna array, but for a given antenna array size, there is a 
fundamental tradeoff  between these two gains. 

 

 

MIMO Communication System

 Why MIMO?
– Limited availability of unlicensed spectrum bands
– Increased demand for high-speed wireless connectivity

 MIMO increases data rate and/or range
– Multiple Tx antennas increase the transmission rate
– Multiple Rx antennas improve the signal reliability, equivalently 

extending the communication range

Rx
array

...
Tx

array

channel
estimator

MIMO
decoders ... ŝ

MIMO
channel

M antennas N antennas

... ...

14.5

MIMO Diversity-Multiplexing Tradeoff

 Sphere decoding can extract both diversity and spatial 
multiplexing gains
– Diversity gain d : error probability decays as 1/SNRd

– Multiplexing gain r : channel capacity increases ~ r·log (SNR)

Optimal tradeoff curve

14.6

[2] L. Zheng and D. Tse, "Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna 
Channels," IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003. 

[2]

increase the transmission rate, and multiple receive antennas improve signal robustness, thereby 
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Slide 14.7 

Diversity algorithms, including 
repetition and Alamouti schemes 
[3], can only achieve the optimal 
diversity gain (which is relevant to 
the transmission range).  In 
contrast, Spatial-multiplexing 
algorithms such as V-BLAST 
algorithm [4], can only achieve the 
optimal spatial multiplexing gain 
(which is related to the transmission 
rate).  Then the question is how to 
span the entire tradeoff  curve to 
unify these point-wise solutions, 
and how can we do it in hardware?  

 

 

Slide 14.8 

This slide illustrates multi-path 
wireless channel with multiple 
transmit and multiple receive 
antennas.  MIMO technology can 
be used to improve robustness or 
increase capacity of a wireless link.  
Link robustness is improved by 
multi-path averaging as shown in 
this illustration.  The number of 
averaging paths can be artificially 
increased by sending the same 
signal over multiple antennas.  
MIMO systems can also improve 
capacity, which is done by spatially 
localizing transmission beams, so 

that independent data streams can be sent over transmit antennas. 

In a MIMO system, channel is a complex matrix H formed of transfer functions between 
individual antenna pairs.  Vectors x and y are Tx and Rx symbols, respectively.  Given x and y, the 
question is how to estimate gains of these spatial sub-channels. 

 

 

 

Most Practical Schemes are Suboptimal

 Diversity maximization: repetition, Alamouti
 Spatial multiplexing maximization: V-BLAST, SVD

Tradeoff curve of 
Repetition and 
Alamouti schemes

V-BLAST

 Optimal tradeoff: maximum likelihood detection (very complex)

14.7

[3] S. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," IEEE J. 
Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998. 

[4] G.J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading 
Environment when Using Multi-Element Antennas," Bell Labs Tech. J., pp. 41-59, 1996. 

[4]
[3]

Multi-Path MIMO Channel

1st path, 
1 = 1

2nd path, 
2 = 0.6x y

Tx
array

Rx
array

MIMO channel: Matrix H

 Multi-path averaging can be used to improve robustness or 
increase capacity of a wireless link

14.8



Dedicated MHz-rate MIMO Decoders  281 
 

Slide 14.9 

Singular value decomposition is an 
optimal way to extract spatial 
multiplexing gains [5].  Channel 

and V, where U and V are unitary, 
and  is a diagonal matrix.  With 
partial channel knowledge at the 
transmitter, we can project 
modulated symbols onto V matrix, 
essentially sending signals along 
eigen-modes of the fading channel.  
If we post-process received data by 
rotating y along U matrix, we can 
fully orthogonalize the channel 
between x  and y .  Then, we can 

send independent data streams through spatial sub-channels, which gains are described with  
matrix. 

This algorithm involves hundreds of adders and multipliers, and also dividers and square roots.  
This is well beyond the complexity of an FFT or Viterbi unit.  Later in this chapter, we will illustrate 
design strategy for implementing the SVD algorithm. 

 

 

Slide 14.10 

SVD is just one of the points on 
the optimal diversity-multiplexing 
tradeoff curve; the point which 
maximizes spatial multiplexing as 
shown on the left plot.  
Theoretically, optimal diversity-
multiplexing can be achieved with 
maximum likelihood (ML) 
detection.  Practically, ML is very 
complex and infeasible for large 
antenna-array size.  A promising 
alternative to ML is the sphere 
decoding algorithm.  It can closely 
achieve the maximum likelihood 
(ML) detection performance with 

several orders of magnitude lower computational complexity (polynomial vs. exponential).  This 
way, sphere decoder can be used to extract both diversity and spatial multiplexing gains in a 
computationally efficient way. 

 

Example 1: SVD Channel Decoupling

V†V

1

U
4

... U†

z'1

z'4

H = U · · V†
y' = ·x' + z'

Channel RxTx

y'x'
x y

Complexity: 100’s of add, mult; also div, sqrt

Architecture that minimizes power and area?

14.9

[5] A. Poon, D. Tse, and R.W. Brodersen, "An Adaptive Multiple-Antenna Transceiver for Slowly Flat-
Fading Channels," IEEE Trans. Communications, vol. 51, no. 13, pp. 1820-1827, Nov. 2003.

[5]

Example 2: Sphere Decoding

 The diversity-multiplexing tradeoff can be realized using 
maximum-likelihood (ML) detection
 Sphere decoder can approximate ML solution with acceptable 

hardware complexity

Spatial multiplexing (rate)

Di
ve

rs
ity

 (r
an

ge
)

Repetition
Alamouti

BLAST
SVD

Spatial multiplexing (rate)

Di
ve
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ity

 (r
an

ge
)

larger
array

smaller
array

Basic idea Adding flexibility
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matrix H is a product of U, Σ, and 
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Mathematically, we can formulate 
the received signal y as Hs+n, 
where H is the channel matrix 
describing the fading gains between 
any two transmit and receive 
antennas.  s is the transmit signal, 
and n is  AWGN.  Theoretically, 
the maximum-likelihood estimate is 
optimal in terms of bit error rate 
performance.  It is achieved by 
minimizing the Euclidean distance 
of y Hs, where s is drawn from a 
constellation set .  Straightforward 
approach is to use an exhaustive 
search. As shown here, each node 

represents one constellation point.  The trellis records the decoded symbols.  For M Tx antennas, we 
have to enumerate all possible solutions, which have the complexity kM, and find the best one.  Since 
the complexity is exponential, it’s not feasible for practical implementation. 

 

 

Slide 14.12 

Another approach is the sphere 
decoding algorithm. We decompose 
the channel matrix H into Q R, 
where Q is unitary and R is upper-
triangular. After the matrix 
transformation, the ML estimate 
can be written in another form, 
which minimizes the Euclidean 

 

 

ML Detection: Exponential Complexity

 Received signal:

 ML estimate:

 Approach 1: Exhaustive search, O(kM)

Pre-
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channel matrix

y MIMO
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y Hs n

2ˆ argminML s
s y Hs

Sphere Decoding: Polynomial Complexity

 Approach 2: Sphere decoding, O(M3) 
– Idea: decompose H as H = QR
– Q is unitary, i.e. QHQ = I, R is an upper-triangular matrix
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2ˆ arg   min ,ML s

Hy QRs y ys 2 ,2y y HQy yHQy

By using the unique structure of  R, 
we decode s from antenna M first, 
and use the decoded symbol to 
decode the next one, and so on. 
The decoding process can be 
modeled as tree search. Each node 

represents one constellation point and search path records the decoded sequence. Since the 
Euclidean distance is non-decreasing as the increase of  the search depth, we can discard the 
branches if  the partial Euclidean distance is already larger than the search radius. 

distance 𝑦̃ −𝑅𝑠, where 𝑦̃ = 𝑄 𝑦. ∙
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On average, the complexity of  the 
sphere decoding algorithm is 
around cubic in the number of  
antennas, O(M3). We can see a 
significant complexity reduction for 
16 16 64-QAM system in high 
SNR regime. This reduced 
complexity means one could 
consider higher-order MIMO 
systems and use extra degrees of  
freedom that are made possible by a 
more efficient hardware. 

 

 

 

 

Slide 14.14 

The sphere decoding algorithm is 
mapped onto FPGA to compute 
BER vs. SNR plots. The x-axis is 
the Eb/N0, and the y-axis is the bit-
error rate. For the left plot, we see 
that the performance of  4 4, 8 8, 
and 16 16 is comparable, but the 
throughput is different given a fixed 
bandwidth. For example, the 
throughput of  8 8 is twice faster 
than 4 4. For the second plot, the 
throughput of  4 4, 8 8 with 
repetition coding by 2, and 16 16 
with repetition coding by 4 is the 
same, but the BER performance is 

improved significantly. One interesting observation is that the performance of  the 8 8 system with 
repetition coding by 2 has outperformed the 4 4 system with the ML performance by 5dB. This 
was made possible with extra diversity gain achieved by repetition. 

 

 

 

 

 

Hardware Emulation Results

 Comparable BER performance of 4 4, 8 8, and 16 16, with 
different throughput given a fixed bandwidth
 Repetition coding by a factor 2 reduces the throughput by 2 , but 

improves BER performance
 An 8 8 system with repetition coding by 2 outperforms the ML 

4 4 system performance by 5dB
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Complexity Comparison

 Maximum likelihood: O(kM)

 Sphere decoding: O(M3)

 Example: k = 64 (64-QAM), M = 16 (16 antennas)

– Sphere decoding has 1025 lower complexity!

 Reduced complexity allows for higher-order MIMO systems

14.13
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×
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Implementation of the SVD 
algorithm is discussed next. We will 
show key architectural techniques 
for dealing with multiple frequency 
sub-carriers and large algorithm 
complexity. The focus will be on 
area and energy minimization. 

 

 

 

 

 

 

 

Slide 14.16 

This slide shows a block diagram of 
an adaptive blind-tracking SVD 
algorithm.  The core of the SVD 
algorithm are the U  and V blocks, 
which estimate corresponding 
matrices. Hat symbol is used to 
indicate estimates. Channel 
decoupling is done at the receiver. 
As long as there is a sizable number 
of received symbols within a 
fraction of the coherence time, the 
receiver can estimate U and  from 
the received data alone.  Tracking 
of V matrix is based on decision-
directed estimates of the 

transmitted symbols. V matrix is periodically sent to the transmitter through the feedback channel. 

We derive MIMO decoder specifications from the following system: a 4 4 antenna system that
uses variable PSK modulation, 16MHz channel bandwidth and 16 sub-carriers. In this chapter, we 
will illustrate implementation of the U  algorithm and rotation along U matrix, which has over 80% 
of complexity of the entire SVD.   

 

 

 

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip

14.15

Adaptive Blind-Tracking SVD

 MIMO decoder specifications
– 4x4 antenna system; variable PSK modulation
– 16 MHz channel bandwidth; 16 sub-carriers

U†·y

V†·x'

V·x'

U

V

y'x' x y
Demod

mod

V

MIMO
channel

uplink
V x

x'

U
out
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The U  block performs sequential 
estimation of the eigenpairs, 
eigenvectors and eigenvalues, using 
adaptive MMSE algorithm.  
Traditionally, this kind of tracking 
is done by looking at the eigenpairs 
of the autocorrelation matrix.  The 
algorithm shown here uses vector-
based arithmetic with additional 
square root and division, which 
greatly reduces implementation 
complexity. 

These equations are meant to 
show the level of complexity we 
work with.  On top, we estimate 

components of U and  matrices using adaptive LMS-based tracking algorithm.  The algorithm also 
uses adaptive step size, computed from the estimated gains in different spatial channels.  Then we 
have square root and division implemented using Newton-Raphson iterative formulas.  The 
recursive operation also means nested feedback loops. 

Overall, this is about 300 adders, 400 multipliers, and 10 square roots and dividers.  This kind of 
complexity is hard to optimize at the RTL level and chip designers typically don’t like to work with 
equations.  The question is, how do we turn the equations into silicon? 

 

Slide 14.18 

This slide shows Simulink model of 
a MIMO transceiver.  With this 
graphical timed data-flow model, 
we can evaluate the SVD algorithm 
in a realistic closed-loop 
environment.  The lines between 
the blocks carry wordlength 
information.   

The first step in design 
optimization is wordlength 
optimization, which is done using 
the floating-to-fix point conversion 
tool (FFC) described in Chap. 10.  
The goal is to minimize hardware 
utilization subject to user-specified 

MSE error at the output due to quantization. The tool does range detection for integer bits and uses 
perturbation theory to determine fractional bits.  Shown here are total and fractional bits at the top 
level.  The optimization is performed hierarchically due to memory constraints and long simulation 
time. 

LMS-Based Estimation of U

wi(k)=wi(k–1)+ i· [ yi(k) ·yi
†(k) ·wi(k–1)– i

2(k–1) ·wi(k–1)]

i
2(k) =wi

†(k) ·wi(k)
ui(k)= wi(k) / i

2(k)

yi+1(k)= yi(k) – [ wi
†(k) ·yi(k) ·wi(k)] / i

2(k)

y1(k)

U LMS
Deflation
Antenna 1

U LMS
Deflation
Antenna 2

U LMS
Deflation
Antenna 3

U LMS

Antenna 4

( i = 1,2,3,4)

 This complexity is hard to optimize in RTL
– 270 adders, 370 multipliers, 8 sqrt, 8 div

14.17

Wordlength Optimized Design
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The next step is to go down the hierarchy and optimize what’s inside the blocks. 

 

Slide 14.19 

Data-stream interleaving is applied 
to reduce area of the 
implementation.  Recursive 
operation is the underlying principle 
in the LMS-based tracking of 
eigenmodes, so we analyze simple 
case here to illustrate the concept.  
Top diagram implements the 
recursive operation on the right.  
The output z(k) is a sum of current 
input and delayed and scaled 
version of previous output. Clock 
frequency corresponds to the 
sample time. This simple model 
assumes ideal multiply and add 

blocks with zero latency. 

So, we refine the model by adding appropriate latency at the output of the multiply and add blocks. 
Then we can take this as an opportunity to interleave multiple streams of data and reduce area 
compared to the case of parallel realization. This is directly applicable to multiple carriers 
corresponding to narrowband sub-channels. 

If the number of carriers N exceeds the latency required from arithmetic blocks, we add 
balancing registers. We have to up-sample computation by N and time-interleave incoming data. 
Data stream interleaving is applicable to parallel execution of independent data streams. 

 

Slide 14.20 

For time-serial ordering, we use 
folding. PE* operation performs a 
recursive operation (* indicated 
recursion). We can take output of 
the PE* block and fold it over in 
time back to its input or select 
incoming data stream y1 using the 
life-chart on the right. The 16 sub-
carriers, each carrying a vector of 
real and imaginary data, are sorted 
in time and space to occupy 16 
consecutive clock cycles to allow 
folding over antennas. 

Both interleaving and folding 
introduce pipeline registers to 

Multi-Carrier Data-Stream Interleaving

Recursive operation:
z(k) = x(k) + c ·z(k – 1)

N data streams:

bm

c

a
xN … x2 x1

zN … z2 z1

time index k

y1 y2 … yN

time index k – 1

z

a+b+m=N
N· fclk

fclk

c

z(k)x(k)

y(k–1)
x1, x2, …, xN

Extra b registers
to balance latency

14.19

Architecture Folding

16 data streams
data sorting

16 clk cycles

y2(k)y3(k)y4(k)

c1c16

y1(k)

s=0s=1s=1s=1

PE*

4fclk

in0

1

s

y1(k)
in

y1(k)

y2(k)y3(k)

y4(k)

 Folding = up-sampling & pipelining
– Reduced area (shared datapath logic)

c1c16 c2

14.20
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memorize internal states, but share pipeline logic to save overall area. 

 

Slide 14.21 

One of the key challenges in 
implementing recursive algorithms 
is loop retiming. This example 
shows loop retiming for an iterative 
divider that was used to implement 
1/ i(k) in the formulas from Slide 
14.17. Using the DFG 
representation and simply going 
around each of these loops; we 
identify the number of latencies in 
the multiplier, adder, multiplexer, 
and then add balancing delays (d1, 
d2) so that the loop latency equals 
N, the number of sub-carriers. It 
may seem that this is an ill-

conditioned system because there are more degrees of freedom than constraints, but that is not the 
case. Multiplier and adder latency are both a function of cycle time. 

 

 

Slide 14.22 

In order to determine proper 
latency in the multiplier and adder 
blocks, their latency is characterized 
as a function of cycle time. It is 
expected that the multiplier has 
longer latency than the adder due to 
larger complexity. For the same 
cycle time we can exactly determine 
how much add and multiply latency 
we need to specify in our 
implementation. The latencies are 
obtained using the characterization 
flow shown on the left. We thus 
augment Simulink blocks with 
library cards for area, power, and 

speed of the building blocks. 

 

 

 

Challenge: Loop Retiming

 Iterative division:

L2

L1

 Loop constraints:
– L1:    m + u + d1 = N
– L2:    2m + a + u + d2 = N

Opt: m, a, u
d1, d2

 Latency parameters (m, a) are a function of cycle time
14.21
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This loop retiming approach can be 
hierarchically extended to an 
arbitrary level of  complexity. This 
DFG shows the entire U  block, 
which has five nested feedback 
loops. We use the divider and 
square root blocks from lower level 
of  hierarchy as nodes in the top-
level DFG. Each of  the lower 
hierarchical blocks brings 
information about latency of  
primary inputs to primary outputs, 
and internal loops. In this example, 
the internal loops L1

(1) and L2
(1) are 

shown on the left. The superscript 
indicates the level of  hierarchy. Additional latency constraints are specified for each loop at the next 
level of  hierarchy, level 2 in this example. Loops L1

(2), L4
(2), and L5

(2) are shown. Another point to 
note is that we can leverage the use of  delayed LMS by allowing extra sample period (N clock cycles) 
to relax constraints on the most critical loop. This was algorithmically possible in the adaptive SVD.  

After setting the number of  registers at the top level, there is no need for these registers to cross 
the loops during circuit implementation. We ran top-level retiming on the square root and divide 
circuits, and compared following two approaches: (1) retiming of  designs with pre-determined block 
latencies as described in Slides 14.21 22, 2) retiming of  flattened top-level design with  

 

Slide 14.24 

We can use synthesis estimates for 
various hierarchical blocks and feed 
them back into Simulink. Here are 
power numbers for the U  blocks. 
About 80% of power is used for 
computations and 20% for data 
manipulation to facilitate 
interleaving and folding. The blocks 
do not have the same numerical 
complexity or data activity, so 
power numbers vary from 0.2% to 
27.7%. We can back-annotate each 
of  these values early in the design 
process and estimate required 
power for various system 

U Block: Power Breakdown

 “report_power –hier –hier_level 2”
(one hier level shown here)
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Hierarchical Loop Retiming

 Divider
– IO latency

2m + a + u + 1 (div)
– Internal Loops

L1
(1): 2m + a + u + d1 = N

L2
(1): m + u + d2 = N

 Additional constraints
(next layer of hierarchy)
– L1

(2): div + 2m + 4a + 2u + d1 = N
– · · ·
– L4

(2): 3m + 6a + u + d4 = N
– L5

(2): 6m + 11a + 2u + d5 = N + N

(delayed LMS)
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(, and 14.
latencies. The first approach took 15 minutes and the second approach took 45 minutes. When the 
same comparison was ran for the UΣ block, hierarchical approach with pre-determined retiming 
took 100 minutes, while flat top-level retiming did not converge after 40 hours! This clearly 
illustrates the importance of  top-level hierarchical retiming approach. 
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components. From this Simulink description, we can map to FPGA or ASIC. 
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This is the architecture we 
implemented.  Interleaving by 16 
(16 sub-carriers) and folding by 4 (4 
antennas) combined reduce area by 

mapped parallel implementation.  
In the energy-delay space, this 
architecture corresponds to the 
energy-delay sensitivity for a 
pipeline stage of  0.8, targeting 
0.4V operation.  The architecture is 
then optimized as follows: 

Starting from a 16-bit realization 
of  the algorithm, we apply 
wordlength optimization for a 30% 

reduction in energy and area. 

The next step is logic synthesis where we need to incorporate gate sizing and supply voltage 
optimizations. From circuit-level optimization results, we know that sizing is the most effective at 
small incremental delays compared to the minimum delay.  Therefore we synthesize the design with 
20% slack and perform incremental compilation to utilize benefits of sizing for a 40% reduction in 
energy and a 20% reduction in area of  the standard-cell implementation.  Standard cells are 
characterized for 1V supply, so we translate timing specifications to that voltage. At the optimal VDD 
and W, energy-delay curves of  sizing and VDD are tangent, corresponding to equal sensitivity. 

Compared to the 16-bit direct-mapped parallel realization with gates optimized for speed, the 
total area reduction of  the final design is 64 times and the total energy reduction is 16 times.  Major 
techniques for energy reduction are supply voltage scaling and gate sizing. 

 

 

 

 

 

 

 

 

 

Energy/Area Optimization

 SVD processor in Area-Energy-Delay Space
– Wordlength optimization, architecture optimization
– Gate sizing and supply voltage optimizations

Energy

DelayArea 0

40%

16b design

wordlength

sizing

30%

Initial synthesis

7x

VDD scalingOptim.
VDD, W

30%

20%

Interl.
13.8x

Fold
2.6x

Final design

64x lower area, 
16x lower energy 
compared to 16-b 
direct mapping

14.25

36 times compared to direct-
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Slide 14.26 

Here is the summary of  all design 
techniques and their impact on 
energy and area. Main techniques 
for minimizing energy are 
wordlength reduction and gate 
sizing (both reduce the switching 
capacitance), and voltage scaling. 
Area is primarily minimized by 
interleaving and folding. Overall, 2 
Giga additions per second per mW 
(GOPS/mW) of  energy efficiency 
is achieved with 20GOPS/mm2 of  
integration density in 90nm CMOS 
technology. These numbers will 
serve as reference for flexibility 

explorations in Chap. 15. 
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Next, chip measurement results will 
be shown. The chip implements 
dedicated algorithm optimized for 
reduced power and area. The 
algorithm works with single 
frequency band and does not have 
flexibility for adjusting antenna-
array size. 

 

 

 

 

 

 

 

 

 

 

 

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip

14.27

Summary of Design Techniques

 Technique  Impact
– Wordlength opt 30% Area  (compared to 16-bit)
– Gate sizing opt  15% Area 
– Voltage scaling  7x Power 
– Loop retiming  (together with gate sizing)
– Interleaving  16x Throughput 
– Folding  3x Area 

 Net result
– Energy efficiency: 2.1 GOPS/mW
– Area efficiency: 20 GOPS/mm2

(90 nm CMOS, OP = 12-bit add)

14.26
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Slide 14.28 

The chip implements an adaptive 
4 4 singular value decomposition in 
a standard-Vt 90nm CMOS 
process. The core area is 3.5mm2, 
and the total chip area with I/O 
pads is 5.1mm2.  The chip is 
optimized for 0.4V.  It runs at 
100MHz and executes 70GOPS 
12-bit equivalent add operations, 
consuming 34mW of  power in full 
activity mode with random input 
data.  The resulting power/energy 
efficiency is 2.1GOPS/mW.  Area 
efficiency is 20GOPS/mm2.  This 
100MHz operation is measured 

over 9 die samples in a range of  385 to 425mV.  

Due to the use of  optimization techniques for simultaneous area and power minimization, the 
chip achieves considerable improvement in area and energy efficiency as compared to representative 
chips from the ISSCC conference [6]. The numbers next to the dots indicate year of  publication and 
paper number. All designs were normalized to a 90nm process for fair comparison. The SVD chip is 
therefore a demonstration of  achieving high energy and area efficiencies for a complex algorithm. 
The next challenge is to add flexibility for multiple operation modes with minimal degradation of  
energy and area efficiency. This will be discussed in Chap. 15. 

 

 

Slide 14.29 

 

 

 

 

4x4 MIMO SVD Chip, 16 Sub-Carriers

 Demonstration of energy, area-efficiency, and design complexity
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[6] D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Minimization for Multidimensional 
Signal Processing," IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 922-934, Apr. 2007. 

[6]

Emulation and Testing Strategy

 Simulink test vectors are also used in chip testing

iBOB (FPGA)

Chip board
(ASIC)

14.29

×

Simulink was used for design entry 
and architecture optimization.  It is 
also used for chip testing.  We 
export test vectors from Simulink, 
program the design onto FPGA, 
and stimulate the ASIC over 
general-purpose I/Os.  The results 
are compared on the FPGA in real 
time.  We can bring in external 
clock or use internally generated 
clock from the FPGA board. 



 

Slide 14.30 

This is the result of  functional 
verification.  The plot shows 
tracking of  eigenvalues over time, 
for one sub-carrier.  These 
eigenvalues are the gains of  
different spatial sub-channels. 

After the reset, the chip is 
trained with a stream of  identity 
matrices and then it switches to 
blind tracking mode.  Shown are 
measured and theoretical values to 
illustrate tracking performance of  
the algorithm.  Although the 
algorithm is constrained with 
constant-amplitude modulation, we 

are still able to achieve 250Mbps over 16 sub-carriers using adaptive PSK modulation. 
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This table is a summary of  
measured results reported in [7]. 

Optimal supply voltage is 0.4V 
with 100MHz clock, but the chip is 
functional at 255mV, running with 
a 10MHz clock. The leakage power 
is 12% of the total power in the 
worst case, and clocking power is 
14mW, including leakage. With 
3.5mm2 of core area, the achieved 
power density is 10mW/mm2. 
Maximal throughput is 250Mbps 
using 16 frequency sub-channels. 

 

 

 

 

 

 

 

SVD Chip: Summary of Measured Results

Silicon Technology 90 nm 1P7M std-Vt CMOS
Total Power Dissipation 34 mW

Leakage / Clocking 4 mW / 14 mW
U / Deflation 20 mW / 14 mW

Active Chip Area 3.5 mm2

Power Density 10 mW/mm2

Opt VDD / fclk 0.4 V / 100 MHz
Min VDD / fclk 0.25 V / 10 MHz
Max Throughput 250 Mbps / 16 carriers

14.31

[7] D. Markovi , R.W. Brodersen, and B. Nikoli , "A 70GOPS 34mW Multi-Carrier MIMO Chip in 
3.5mm2," in Proc. Int. Symp. VLSI Circuits, June 2006, pp. 196-197. 

[7]
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Slide 14.32 

This chapter presented optimal 
diversity-spatial multiplexing 
tradeoff in multi-antenna channels 
and discussed algorithms that can 
extract diversity and multiplexing 
gains. The optimal tradeoff is 
achieved using maximum likelihood 
(ML) detection, but ML is infeasible 
due to numerical complexity. 
Singular value decomposition can 
maximize spatial multiplexing (data 
rate), but does not have flexibility 
to increase diversity. Sphere 
decoder algorithm emerges as a 
practical alternative to ML. 

Implementation techniques for a dedicated 4 4 SVD algorithm have been demonstrated. It was 
shown that high-level retiming of recursive loops is crucial for timing closure during logic synthesis. 
Using architectural and circuit techniques for power and area minimization, it was shown that 
complex algorithms in a 90nm technology can achieve energy efficiency of 2.1GOPS/mW and area 
efficiency of 20GOPS/mm 2. Next, it is interesting to investigate the energy and area cost of adding 
flexibility for multi-mode operation. 
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Summary and Conclusion

 Summary
– Maximum likelihood detection can extract optimal diversity and 

spatial multiplexing gains from a multi-antenna channel
– Singular value decomposition maximizes spatial multiplexing
– Sphere decoder is a practical alternative to maximum likelihood
– Design techniques for managing design complexity while 

minimizing power and area have been discussed

 Conclusion
– High-level retiming is critical for optimized realization of 

complex recursive algorithms
– Dedicated complex algorithms in 90 nm technology can achieve

2 GOPS/mW
20 GOPS/mm2
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Slide 15.1 

This chapter discusses design 
techniques for dealing with design 
flexibility, in addition to complexity 
that was discussed in the previous 
chapter. Design techniques for 
managing adjustable number or 
antennas, modulations, number of  
sub-carriers and search algorithms 
will be presented. Multi-core 
architecture, based on scalable 
processing element will be 
described. At the end, flexibility for 
multi-band operation will be 
discussed, with emphasis on flexible 
FFT that operates over many signal 

bands. Area and energy cost of  the added flexibility will be analyzed. 

 

 

Slide 15.2 

We use a MIMO SVD chip as a 
starting point in our study of  the 
energy and area cost of  hardware 
flexibility. This chip implements 
singular value decomposition for 
MIMO channels [1]. It supports 
4 4 MIMO systems and 16 sub-
carriers. This chip achieves a 2.1 
GOPS/mW energy-efficiency and 
20GOPS/mm2 area  efficiency  at  
0.4 V. Compared with the baseband 
and multimedia processors 
published in ISSCC, this chip 
achieves the highest efficiency 
considering both area and energy.  

Now the challenge is how to add flexibility without compromising efficiency?  Design flexibility is 
the focus of  this chapter. 

 

 

 

 

 

Reference: 4x4 MIMO SVD Chip, 16 Sub-Carriers

 Challenge: add flexibility with minimal energy overhead
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3.5mm2," in Proc. Int. Symp. VLSI Circuits, June 2006, pp. 196-197.
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The chapter is structured as 
follows. Design concepts for 
handling flexibility for multiple 
operating modes with respect to the 
number of  antennas, modulations 
and carriers will be described first. 
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In hardware implementation of  the 
sphere decoding algorithm, focus 
has mainly been on fixed antenna 
array size and modulation scheme. 
The supported antenna-array size is 
restricted to 8×8 and mostly 4×4, 
and the supported modulation 
scheme is up to 64-QAM. The 
search method is either K-best or 
depth-first. In addition, most 
designs consider only single-carrier 
systems. The key challenges are the 
support of  larger antenna-array 
sizes, higher-order modulation 
schemes and flexibility. In this 

chapter, we will demonstrate solutions to these challenges by minimizing hardware complexity so 
that we can increase the supported antenna-array size, modulation scheme and add flexibility. 

 

 

 

 

Outline

 Scalable decoder architecture
– Design challenges and solutions
– Scalable PE architecture
– Hardware complexity reduction

 Chip 1:
– Multi-mode single-band 
– 16x16 MIMO SD Chip
– Energy and area efficiency

 Chip 2: 
– Multi-mode multi-band
– 8x8 MIMO SD + FFT Chip
– Flexibility Cost

15.3

Representative Sphere Decoders

 Design challenges
– Antenna array size: constrained by complexity (Nmult)
– Constellation size: only fixed constellation size considered
– Search method: no flexibility for both K-best and depth-first
– Number of sub-carriers: only single-carrier systems considered

 We will next discuss techniques that address these challenges

Reference Array size Modulation Search method Ncarriers

Shabany, ISSCC’09 44 64-QAM K-best 1

Knagge, SIPS’06 88 QPSK K-best 1

Guo, JSAC’05 44 16-QAM K-best 1

Burg, JSSC’05
Garrett, JSSC’04 44 16-QAM Depth-first 1

15.4
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Scalable processing element (PE) 
will be presented. The PE will be 
used in two sphere-decoder chips to 
demonstrate varying levels of  
flexibility. The first chip will 
demonstrate multi-PE architecture 
for multi-mode single-band 

antennas. The second chip will 
extend the flexibility to multiple frequency bands. It features flexible FFT operation and also soft-
output generation for iterative decoding. 

operation that supports up to 16 16 ×
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We start by reducing the size of  the 
multipliers, because multiplier size 
is the key factor for complexity 
reduction and allows for increase in 
the antenna-array size. We consider 
two equivalent representations. At 
the first glance, the former has one 
multiplication while the latter has 
two. However, a careful 
investigation shows the latter is a 
better choice from hardware 
perspective. First, sZF and QHy can 
be precomputed. Hence, they have 
negligible impact on the total 
number of  operations. Second, the 

wordlength of  s is usually shorter than sZF. Therefore, separating terms results in multipliers with 
reduced wordlength, thus reducing the area and delay. The area reduction is at least 50% and the 
delay reduction also reaches 50% for larger wordlength of  R and sZF. 
 

 

Slide 15.6 

The first step is to simplify complex 
multipliers since complex 
multipliers used for Euclidean-
distance calculation dominate the 
hardware area.  An 8.5 times 
reduction is achieved by using 
folding technique. The size of  the 
multipliers also affects hardware 
area directly. A seven times area 
reduction is achieved by choosing a 
simpler representation, using Gray 
encoding to compactly represent 
the constellation, and optimizing 
wordlength of  datapath. We can 
further reduce the multiplier area by 

using shift-and-add operations, replacing the negative operators with inverters and leaving the carry-
in bits in the succeeding adder tree. The final multiplier design is shown here, which has only one 
adder and few inverters, and multiplexers [2]. With this design, a 40% area reduction is achieved 
compared to the conventional implementation. 

 

 

Numerical Strength Reduction

 Multiplier size is the key factor for complexity reduction
 Two equivalent representations

 The latter is a better choice from hardware perspective
– Idea: sZF and QHy can be precomputed
– Wordlength of s (3-bit real/imag part) is usually shorter than sZF
 separate terms multipliers with reduced wordlength/area

WL of sZF 6 8 10 12

WL(R) = 12, Area/delay 0.5/0.83 0.38/0.75 0.3/0.68 0.25/0.63

WL(R) = 16, Area/delay 0.5/0.68 0.38/0.63 0.3/0.58 0.25/0.54

Area and delay reduction due to numerical strength reduction

15.5

2ˆ argmin ( )ZML Fs R s s 
2

ˆ argmin H
ML ys Q Rs 

#1: Multiplier Simplification

 Hardware area is dominated by complex multipliers
– 8.5 reduction in the number of multipliers (folding: 136  16)
– 7 reduction in multiplier size

Choice of mathematical expression: 16  16  16  4
Gray encoding, only odd numbers used: 16  4  16  3
Wordlength optimization: 16  3  12  3

Re{s}
/Im{s}

2’s 
complement

Gray 
code operation

7 0111 100 8 1
5 0101 101 4+1
3 0011 111 4 1
1 0001 110 1
1 1111 010 1  1
3 1101 011 3  1
5 1011 001 5  1
7 1001 000 7  1

Final multiplier design
s[1] s[0]

<<2

neg

<<1

1

-1

x4

x8

s[2]

s[0]

s[1] s[0]

Re{R}
/Im{R}

neg
0
1

1
0

1
0

0
1

15.6

[2] C.-H. Yang and D. Markovi , "A Flexible DSP Architecture for MIMO Sphere Decoding," IEEE 
Trans. Circuits & Systems I, vol. 56, no. 10, pp. 2301-2314, Oct. 2009.

[2]

Overall 40% lower multiplier area
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The second challenge is how to 
support larger modulation sizes. To 
improve BER performance, the 
Schnorr-Euchner (SE) enumeration 
technique states that we have to 
traverse the constellation points 
according to the distance increment 
in an ascending order for each 
transmit antenna. The basic idea of  

Straightforward implementation is to calculate the distance of  all possible constellation points and 
find the point with the minimum distance as the first candidate. The hardware cost grows quickly as 
the modulation size increases. 

 

 

Slide 15.8 

Efficient decision scheme is shown 
here. The goal is to enumerate 
possible constellation points 
according to the distance increment 
in an ascending order. In the 
constellation plane, for example, we 
first need to examine the point that 
is the closest between RiiQi and bi. 
Region partition search is based on 
deciding the closest point by 
deciding the region in which bi lies 
[4]. This method is feasible because 
real part and imaginary part can be 
decoded separately as shown in the 
gray highlights. The next question is 

how to enumerate the remaining points? 

 

 

 

 

#2: Metric Enumeration Unit (MEU)

 Schnorr-Euchner (SE) enumeration [3]

– Traverse the constellation candidates according to the distance 
increment in an ascending order

– Corresponds to finding the points closest to bi and scaling 
constellation points RiiQi from the closest to the farthest

Exhaustive search

15.7
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 Exhaustive search is not suitable for large constellation size
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[3] A. Burg et al., "VLSI Implementation of MIMO Detection Using the Sphere Decoding Algorithm," 
IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566-1577, July 2005.

Efficient Decision Scheme

 Decision plane transformation
– Decode bi/Rii on plane 

 bi on plane Rii·
– Decode Re and Im parts separately
– Scalable to high-order constellations

Q

I
bi

Q

I

0

0

decision
boundary

Rii

15.8

bi

Region 
decision

Region 
decision

sî

real part

imag. part

Rii

Rii

[4] C.-H. Yang and D. Markovi , "A Flexible VLSI Architecture for Extracting Diversity and Spatial 
Multiplexing Gains in MIMO Channels," in Proc. IEEE Int. Conf. Communications, May 2008, 
pp. 725-731. 

[4]

298  Chapter 15 

this algorithm is using locally 
optimal solution to speed up the 
search of  globally optimal solution. 
In the constellation plane, we have 
to traverse the point closest to bi 
and scale constellation points RiiQi 

from the closest to the farthest [3]. In this example, Q2 should be visited first, and Q4 second. 
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Geometric relationship can be used 
instead of  sorting algorithm to 
simplify calculation and reduce 
hardware cost. Again, we use 

search point and remaining points. 
Eight surrounding constellation 
points are divided into 2 subsets 
first: 1-bit error and 2-bit errors 
using Gray coding. Take the 2-bit 

point is decided by checking the 
sign of  the real part and imaginary 
part of  (bi  Riisi), which has four 
combinations. After examining the 

2nd   point, the 3
decision boundary. The same idea is used for 1-bit error subset. 
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The third step is to resolve 
limitation of  the conventional 
search algorithms: depth-first and 
K-best. Depth-first starts the search 
from the root of  the tree and 
explores as far as possible along 
each branch until a leaf  node is 
found or the search is outside the 
search radius. It can examine all 
possible solutions, but the 
throughput is low. K-best 
approximates the breath-first search 
by keeping K branches with the 
smallest partial Euclidean distance 
at each level and finding the best 

one at the last stage. Since only forward search is allowed, error performance is limited. 

 

 

 

 

 

#3: Search Algorithm

 Conventional search algorithms
– Depth-first: starts from the root of the tree and explores as far 

as possible along each branch until a leaf node is found  
– K-best: keeps only K branches with the smallest partial 

Euclidean distance (PED) at each level

Depth-first K-best

ant-M ... ant-2 ant-1

constellation
plane

constellation
plane

forward trace
backward trace

ant-M ... ant-2 ant-1

15.10

Efficient Candidate Enumeration

 8 surrounding constellation points divided into 2 subsets:
– 1-bit error and 2-bit errors if Gray coding is used

 The 2nd closest point decided by the decision boundaries
 The remaining points decided by the search direction

15.9
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rd  to 5th  points are decided by the search direction, which is decided by another 

decision boundary to decide the 2nd 

error subset as an example: the 2nd 



300  Chapter 15 
 

Slide 15.11 

The basic architectures for these 
two search methods are shown 
here. Depth-first uses folding 
architecture and K-best uses multi-
stage architecture. In essence, 
depth-first allows back-trace search, 
but K-best searches forward only. 
The advantages of  depth-first 
include smaller area and better 
performance. In contrast, K-best 
provides constant throughput and 

 

 

 

Slide 15.12 

Metric calculation unit has to 
compute summation of  Riisi. We use 
an FIR-like architecture to facilitate 
metric calculation. Because the 
trace goes back up by one layer 
instead of  random jump, a bi-
directional shift register chain is 
used to support back trace and 
forward trace. Coefficients of  R 
matrix can be stored in an area-
efficient way, because R is an 
upper-triangular matrix. The real 
and imaginary parts can be 
organized into a square memory 
without storing 0s. 

 

 

 

 

 

 

 

Architecture Tradeoffs

 Basic architecture

Depth-first (folding)

PE

K-best (parallel and multi-stage)

PE
1

PE
2

PE
M...

Algorithm Area Throughput Latency Radius shrinking 

Depth-first Small Variable Long Yes

K-best Large Constant Short No

 Practical considerations

 Algorithmic considerations
– Depth-first can reach ML given enough cycles
– K-best cannot reach ML, it can approach it

15.11

Metric Calculation

 Metric Calculation Unit (MCU) computes

 Bi-directional shift register chain is embedded to support back 
trace and forward trace

 Area-efficient storage of R matrix coefficients: 
off-diagonal terms organized into a square memory

15.12

Ri,i Ri,i+1 Ri,M

. . .

Ri,i+2 . . .

si+1
si

si+2 sM

adder tree

1

M

ii i
j i

R s

shorter latency. Combining these 
advantages is quite challenging. 
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Slide 15.13 

Given the ability to use multiple 
processing elements concurrently, 
we consider a multi-core search 
algorithm from [5]. It distributes 
search paths over multiple 
processing elements. Since each PE 
has the flexibility in forward and 
backward search, the whole search 
space can be examined when 
additional processing cycles are 
available. When a higher 
throughput is not required, we can 
increase the energy efficiency by 
reducing clock frequency and 
supply voltage due to the 

distribution of  computations. 

 

 

Slide 15.14 

To extend the processing period for 
signal processing across PEs, 
multiple data streams or sub-
carriers are interleaved into each PE 
sequentially. As shown here, only 
one sub-carrier is processed in one 
clock cycle, but it is processed over 
all PEs. For area saving, the input 
register bank can be shared by all 
PEs, so we don’t need to build 16 
copies for 16 PEs. For power 
saving, we can disable inactive 
registers for other sub-carriers 
using clock-gating technique since 
only one sub-carrier is processed in 

one clock cycle. 

 

 

 

 

 

 

A Multi-Core Search Algorithm

 Search paths distributed over multiple processing elements
 Flexibility in forward and backward trace allows the search of 

more solutions when additional processing cycles are available
 Higher energy efficiency by reducing clock frequency & voltage

constellation
plane

PE 1
PE 2

PE L

forward trace
backward trace

ant-M ... ant-2 ant-1

...

Multi-core

15.13

[5] C.-H. Yang and D. Markovi , "A Multi-Core Sphere Decoder VLSI Architecture for MIMO 
Communications," in Proc. IEEE Global Communications Conf., Dec. 2008, pp. 3297-3301. 

[5]

#4: Data-Interleaved Processing

 Shared register bank for reduced area (16  1)
– Token signal is passed to activate individual registers
– Clock-gating technique for data retrieval (90% power saving)
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Slide 15.15 

The block diagram of  one PE is 
shown here. Each PE is scalable to 
support varying antenna arrays, 
multiple modulations, and multiple 
data streams through signal 
processing and circuit techniques. 
Flexibility in antenna-array size is 
supported through hardware reuse. 
Simplified boundary-decision 
scheme is used to support multiple 
modulation schemes. Bi-directional 
shift registers support flexible 
search method. Data-interleaving 
technique is used to support 
multiple sub-carriers. Flexibility is 

added with a small area overhead.   

 

 

Slide 15.16 

Overall, a 20 times area reduction is 

mapped architecture using signal 
processing and circuit techniques 
listed here. Main area impact comes 
from architecture folding (an 8.5x 
reduction). Simplified metric 
enumeration gives additional 30% 
area reduction, simplified multiplier 
further reduces overall area by 20% 
and so does the wordlength 
reduction step. 

 

 

 

 

 

 

 

 

Scalable PE Architecture

sub

shift- register chain

Symbol
selection

sub

R

ŝ

bi

...

yi
~

7 pipeline
stagesadder tree

...

...

partial product

MCU

MEU

Rii

folding architecture:
multiple antenna

arrays

Flexibility

radius
check

new search path

bi-directional shift
register chain:

backward trace and
forward trace

data-interleaving:
multiple sub-carriers

symbol mapping:
multiple modulations

 Antenna array: 2x2 – 16x16, Modulation: BPSK – 64-QAM
 Sub-carriers: 8 – 128, Detection: Depth-first, K-best

15.15

Hardware Complexity Reduction

 An 20 area reduction compared to 16-bit direct mapping
– Signal processing & circuit techniques

folding simplified 
multiplier

memory 
reduction

wordlengh
reduction

initial

8.5x

20%
5%

20%

total 20x
reduction

A
re

a

MEU
simplfication

30%

15.16

achieved compared to 16-bit direct-
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Slide 15.17 

The scalable processing element 
from Slide 15.15 will now be used 
for multi-PE architecture to 
demonstrate hard-output multi-
mode single-band MIMO sphere 
decoding. The focus will be on 
energy and area efficiency analysis 
with respect to added design 
flexibility. 16×16 MIMO chip will 
be used as design example for the 
flexibility analysis. 

 

 

 

 

 

Slide 15.18 

Here is the chip micrograph of  
multi-core single-band sphere 
decoder [6]. This chip is fabricated 
in a standard-VT 1P8M 90 nm 
CMOS process. It can support the 
flexibility summarized on the left. 
The core supply voltage is tunable 
from 0.32 V to 1.2 V according to 
the operation mode. The overall die 
area is 8.88 mm2, within which the 
core area is 5.29 mm2; each PE has 
area of  0.24 mm2. Register banks 
and scheduler facilitate multi-core 
operation. 

 

 

 

 

 

 

 

Outline

Scalable decoder architecture

– Design challenges and solutions

– Scalable PE architecture

– Hardware complexity reduction

Chip 1:

– Multi-mode single-band 

– 16x16 MIMO SD Chip

– Energy and area efficiency

Chip 2: 

– Multi-mode multi-band

– 8x8 MIMO SD + FFT Chip

– Flexibility Cost

15.17

Chip 2: Multi-Core Sphere Decoder, Single-Band

 Flexibility

– 22 – 1616 antennas

– BPSK – 64QAM 

– K-best / depth-first

– 8-128 sub-carriers

 Supply voltage 

– Core: 0.32 V – 1.2 V

– I/O: 1.2 V / 2.5 V

 Silicon area

– Die: 8.88 mm2

– Core: 5.29 mm2

– PE: 0.24 mm2
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8
 m

m

2.98 mm

15.18

[6] C.-H. Yang and D. Marković, "A 2.89mW 50GOPS 16x16 16-Core MIMO Sphere Decoder in 90nm 
CMOS," in Proc. IEEE European Solid-State Circuits Conf., Sep. 2009, pp. 344-348. 

[6]
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More PEs are used to improve 
BER performance or throughput. 
In the single-PE case, one node is 
examined each cycle. When the 
node is outside the search radius, 
backward-search is required. When 
a solution with a smaller Euclidean 
distance is found, the search radius 
can be shrunk to reduce the search 
space. The search process continues 
until all the possible nodes are 
examined if  there is no timing 
constraint. In the multiple-PE case, 
we put multiple PEs to search at the 
same time. Therefore, more nodes 

are examined each cycle. Like the single-PE, the search paths will be bounded in the search radius 
for all PEs. Since multiple PEs are able to find the better solutions earlier, the search radius can be 
shrunk faster. Again, the search process continues until all the possible nodes are examined if  there 
is no timing constraint. 

 

Slide 15.20 

By connecting multiple PEs, a new 
search path can be loaded directly 
when a previously assigned search 
tree is examined [2]. Search radius is 
updated through interconnect 
network when a solution with a 
smaller Euclidean distance is found. 

Search paths are distributed over 
16 processing elements. The multi-
core architecture provides a 10x 
higher energy efficiency than the 
single-core architecture by reducing 
clock frequency and supply voltage 
while keeping the same throughput 
[7]. On the other hand, operating at 

the same clock frequency, it can provide a 16x higher throughput. By connecting multiple PEs, the 
search radius is updated through the interconnect network. It updates the search radius by checking 
the Euclidean distance of  all PEs to speed up search process. It also supports multiple sub-carriers. 
Multiple sub-carriers are interleaved into PEs through hardware sharing. 

 

 

Parallel (Multi-PE) Processing

 Limitation of single-PE design
– More processing cycles needed to achieve the ML performance, 

which decreases the throughput

 Search over multiple PEs
..

.

. . .

. . .

...

...
...

... ...
...

Single-PE Multi-PE
trace-back

radius 
shrinking

..
.

. . .

. . .

...

...
...

... ...
...

15.19

A Multi-Core Architecture

 Distributed search: slower fclk, lower VDD

 Updates search radius by examining all PEs
 Allocates new search paths to the PEs conditionally
 Multi-core is 10 more energy-efficient than single-core

15.20

[2] C.-H. Yang and D. Markovi , "A Flexible DSP Architecture for MIMO Sphere Decoding," IEEE 
Trans. Circuits & Systems I, vol. 56, no. 10, pp. 2301-2314, Oct. 2009.

[7] R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in MATLAB/Simulink
Environment," in Proc. Symp. VLSI Circuits, June 2008, pp. 192-193. 

[7]
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To test the chip, we use an FPGA 
board to implement pattern 
generation and logic analysis. The 
functionality of  the FPGA is built 
in a Simulink graphical 
environment and controlled 
through MATLAB commands. Two 
high-speed Z-DOK+ connectors 
provide data rate up to 500 Mbps. 
The test data are stored in the on-
board block RAM and fed into the 
ASIC board. The outputs of  the 
ASIC board are captured and 
stored in the block RAM, and 
transferred to PC for further 

analysis. The real-time operation and easy programmability simplify the testing process and data 
analysis. 

 

 

Slide 15.22 

 

 

 

 

Multi-Core Improves BER Performance

 Max throughput: # processing cycles = # Tx antennas
 BER performance improvement when Eb/N0 > 15 dB
– 3-5 dB for 1616 systems – 4-7 dB for 44 systems

44 antenna array, 16-QAM1616 antenna array

Eb/No (dB)

64-QAM 1-core
64-QAM 4-core
64-QAM 16-core
16-QAM 1-core
16-QAM 4-core
16-QAM 16-core
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improvement
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FPGA-aided ASIC Verification

 FPGA board controlled through MATLAB
– FPGA implements pattern generation and logic analysis
– Z-DOK+ connectors: data rate up to 500 Mbps

FPGA 
board

ASIC 
board

15.21

MATLAB™

performance can be improved. A 3-
5 dB improvement is observed for 
16×16 systems. For 4×4 array size, 

 

Here are the results of  BER 
performance. We constrain the 
number of  processing cycles to be 
equal to the number of  transmit 
antennas for the maximum 
throughput. For 16×16 array size, 
the solid line represents the 64-
QAM modulation and the dashed 
line represents the 16-QAM 
modulation. As we increase the 
number of  PEs, the BER 

improvement over the 1-PE architecture. Note that the performance gap between the re d -line  and 
the ML detection comes from the constraint on the number of  processing cycles. The circuit 
performance is shown next. 

16 PEs provide a 7 dB 



306  Chapter 15 
 

Slide 15.23 

The clock frequency of  the chip is 
set to 16, 32, 64, 128, and 256MHz 
for a bandwidth of  16MHz. Power 
consumption for these operation 

 

 

 

 

 

 

 

 

 

 

 

Chip 2: Performance Summary

Modulation BPSK – 64QAM
Data streams 8 – 128
Array size 22 – 1616
Algorithm K-best/depth-first
Mode (complex/real) C
Process (nm) 90
Clock freq. (MHz) 16 – 256 
Power (mW) 2.89/0.32V – 275/0.75V
Energy (pJ/bit) 30.1 – 179
Bandwidth (MHz) 16
Throughput (bps/Hz) 12 – 96

Fl
ex

ib
ili

ty
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Chip 2 Measurements: Tunable Performance

Efficiency
Power
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High speed (HS): 1,536 Mbps, 275 mW @ 0.75 V, 256 MHz

(179)

(122.4)

(30.1)

Low power (LP): 96 Mbps, 2.89 mW @ 0.32 V, 16 MHz

0.75

275

(17( 9))

0.32

2.89

15.23

points ranges from 2.89mW at 
0.32V to 275mW at 0.75V, which 
corresponds to the energy 
efficiency of  30.1pJ/bit to 
179pJ/bit.  

Slide 15.24 

It also has higher flexibility in terms 
of  antenna array size, modulation 
scheme, search algorithm, an
number of  sub-carriers with a
small hardware overheard. 

d

Compared with the state-of-the-art 
chip, the proposed chip has up to 
8x higher throughput/BW, in which 
4 times comes from the antenna 
array size and 2 times comes from 
complex-valued signal processing. 
This chip also has 6.6x lower 
energy/bit, which mainly comes 
from hardware reduction, clock-
gating technique and voltage scaling.
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If  we compare the MIMO decoder 
chip with the SVD chip from 
Chap. 14, we find that the sphere 
decoder has even better energy 
efficiency, as shown on the right. 
This is mainly due to multiplier 
simplification, leveraging Gray code 
based arithmetic, clock gating, and 
aggressive voltage scaling. The area 
efficiency of  the sphere decoder is 
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We next consider extending the 
flexibility to multiple signal bands. 
The receiver architecture is shown 
in this slide. The signals captured by 
multiple receive antennas are 
digitized through ADCs and then 
converted back to frequency 
domain through FFT. The 
modulated data streams carried 
over the narrow-band sub-carriers 
are constructively combined 
through the MIMO decoder. Soft 
outputs are generated for advanced 

 

 

 

 

 

Area and Energy Efficiency

 Highest energy efficiency in the open literature
– Power-Area optimization across design boundaries
– Multiplier simplification that leverages Gray coding

 Cost of flexibility: 2 area cost (multi-core control)
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More Flexibility: Multi-Band Rx Architecture

 Goal: Complete MIMO decoder with FFT in < 10 mW

FFTA/D

FFTA/D

FFTA/D

... ... ...

Channel
Estimator

Channel
Decoder

RF

RF

RF
pre-
proc.

MIMO
Decoder

(soft/hard
output)

15.26

reduced by 2x due to interconnect 
and multi-core control overhead. 

error-correction signal processing. 
The design target is to support 

multiple signal bands (1.25 MHz to 20 MHz) with power consumption less than 10 mW. 
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The 3GPP-LTE is chosen as an 
application driver in this design.  
The specifications of 3GPP-LTE 
systems related to digital baseband 
are shown in the table. Signal bands 
from 1.25 MHz to 20MHz are 
required. To support varying signal 
bands, the FFT block has to be 
adjusted from 128 to 2,048 points. 

We assume up to 8×8 antenna 
array for scalability to future 
cooperative relay-based MIMO 
systems. In this work, we will 
leverage hard-output sphere 
decoder architecture scaled down to 

work with 8×8 antennas, include flexible FFT and add soft-output generation. 

 

 

Slide 15.28 

We will next present power-area 
minimization techniques for multi-
mode multi-band sphere decoder 
design. We will mainly focus on the 
flexible FFT module and evaluation 
of the additional cost for multi-
band flexibility. 

 

 

 

 

 

 

 

 

 

 

 

Reference Design Specifications

 Design considerations
– Make 8x8 array: towards distributed MIMO
– Leverage hard-output multi-core SD from chip 1 

(re-design for 8x8 antenna array)
– Include flexible FFT (128-2048 points) front-end block
– Include soft-output generation

 What is the cost of multi-mode multi-band flexibility?

Bandwidth (MHz) 1.25, 2.5, 5, 10, 15, 20 

FFT size 128, 256, 512, 1024, 1536, 2048

Antenna configuration 11, 22, 32, 42

Modulation QPSK, 16QAM, 64QAMLT
E 

Sp
ec

s

15.27

Outline

 Scalable decoder architecture
– Design challenges and solutions
– Scalable PE architecture
– Hardware complexity reduction

 Chip 1:
– Multi-mode single-band 
– 16x16 MIMO SD Chip
– Energy and area efficiency

 Chip 2: 
– Multi-mode multi-band
– 8x8 MIMO SD + FFT Chip
– Flexibility Cost

15.28
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Hard-output MMO sphere decoder 
kernel from the first chip is 
redesigned to accommodate 
increased number of sub-carriers as 
required by LTE channelization. 
Soft outputs are supported through 
a low-power clock-gated register 
bank (to calculate Log-likelihood 
ratio). Power consumption listed 
here is for 20 MHz band in the 64-
QAM mode. The chip dissipates 5.8 
mW for the LTE standard, 13.83 
mW for full 8×8 array with soft-
outputs [8]. The hard-output sphere 
decoder kernel achieves E/bit of 15 

pJ/bit (18.7GOPS/mW) and outperforms prior work. The chip micrograph and summary are 
shown on this slide. The chip fully supports LTE and has added flexibility for systems with larger 
array size or cooperative MIMO processing on smaller sub-arrays. 
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Reconfigurable FFT block is 
implemented by several small 
processing units (PUs), as shown in 
this slide. The FFT block is scalable 
to support 128 to 2,048 points by 
changing datapath inter-connection. 
Multi-path single-delay-feedback 
(SDF) architecture provides high 
utilization for varying FFT sizes. 
Unused PUs and delay lines are 
clock-gated for power saving. 
Twiddle (TW) factors are generated 
by trigonometric approximation 
instead of fetching coefficients 
from ROMs for area reduction. To 

support varying FFT sizes, we adopt a single-path-delay-feedback (SDF) architecture. 

 

 

 

 

Chip 3: 8x8 3GPP-LTE Compliant Sphere Decoder

 3G-LTE is just a subset of supported operating modes [8]

3.
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ft
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Pr
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Technology 1P9M 65 nm Std-VT CMOS

Max. BW 20 MHz

FFT size 128, 256, 512, 1024, 1536, 2048

Array size 2×2 – 8×8

Modulation BPSK, QPSK, 16QAM, 64QAM

Outputs Hard/Soft

Mode Complex valued

Core area 2.39×1.40 mm2

Gate count 2,946K

Power 13.83 mW (5.8 mW for LTE)

Energy/bit 15 pJ (21 pJ (ESSCIRC’09), 100 pJ (ISSCC’09))

15.29

[8] C.-H. Yang, T.-H. Yu, and D. Markovi , "A 5.8mW 3GPP-LTE Compliant 8x8 MIMO Sphere Decoder 
Chip with Soft-Outputs," in Proc. Symp. VLSI Circuits, June 2010, pp. 209-210. 

Key Block: Reconfigurable FFT

 Multiple Single-Delay-Feedback (SDF) architecture
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The PUs are modular to support 
different radix representations, 
allowing power-area tradeoffs. We 
take the highest radix to be 16.  
This requires four processing units, 
as the building blocks shown on the 
right. Higher-order processing 
elements can be reconfigured to 
lower-order ones. For example, 
PU4 can be simplified to PU3, 
PU2, or PU1; PU3 can be 
simplified to PU2 or PU1, etc. This 
modularity will be examined in 
architectural exploration for each 
FFT size. 
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With the 2-D decomposition, we 
can re-formulate the FFT operation 
as shown in the equations on this 
slide. k=k1×k 2 is the FFT bin 
index and N=N1×N2 is the FFT 
length. k1 and k2 are the sub-FFT 
bin index for N1-point FFT and N2-
point FFT, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Modular Processing Unit

 Processing units (PUs)
– modular 
– reconfigurable to support 

different operations

-j
-

C1

C2

PU3 (2/1) PU4 (3/2/1)

-j
-

C1

C2

C6

Type Implementation
Radix-16 PU1+PU2+PU3+PU4
Radix-8 PU1+PU2+PU3
Radix-4 PU1+PU2
Radix-2 PU1

PU1

-

-j

-

PU2 (1)
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2-D FFT Decomposition: Algorithm

 FFT size N = N1 × N2

15.32

21

0

( ) ( )
N

n

nkj
NX k x n e






1 2 2 1 2 11 2

1 2

1 2

2 ( )1

0

( )1

1 2 2
0

( )
n n k k N

j
N N

NN N

n n

x n N n e
  

 



 

1 1 2 1 2 22 1
1 1 2 2

2 1

2 2 21

1 2 2
0

1

0

( )
n kN N n k n k

j j

n n

j
N N N Nx n N n e e e

  







       
    

 

N1-point FFT

N2-point FFT

Twiddle factor



Flexible MHz-rate MIMO Decoders  311 
 

 
 

Slide 15.33 

Each N1-point FFT can be 
operated at N2-times lower 
sampling rate in order to maintain 
the throughput while further 
reducing the supply voltage to save 
power. In our application N2 =8 
for all but 1,536-point design where 
N2 =6. The FFT is built with 
several smaller processing units, so 
we can change the supported FFT 
size by changing the connection. 

 

 

 

 

 

Slide 15.34 

2,048-point FFT is made with N1 = 
256 and N 2 = 8. The 256-point 
FFT is decomposed into two stages 
with radix-16 factorization. Radix-
16 is implemented by concatenating 

in Slide 15.31. Delay-lines associated 
with PUs are configured to adjust 
signal delay properly.  

 

 

 

 

 

 

 

 

 

 

 

2-D FFT Decomposition: Architecture

 Example: 
N1 = 256, N2 = 8 (/6)

PU2

D128

PU3

D64/D32

PU4

D32/D16

PU1

D16/D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

15.33

Example: 2048-pt FFT

 256-point FFT: configuration = 1616

factor 16

imp PU1+PU2+PU3+P4

256 pt.
SDF FFT

8 pt.
FFT

factor 16

imp PU1+PU2+PU3+P4

15.34

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

PU1, PU2, PU3, and PU4, as shown
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Slide 15.35 

1,536-point design shares the same 
front-end processing with 2,048-
point design and uses N2= 6 in the 
back-end.  

 

 

 

 

 

 

 

 

 

Slide 15.36 

The 1,024-point FFT is 
implemented by disabling PU2 at 
the input (shown in gray) to 
implement the radix-8 stage 
followed by the radix-16 stage. The 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 1024-pt FFT

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

256 pt.
SDF FFT

8 pt.
FFT

 256-point FFT: configuration = 816

factor 16

imp PU1+PU2+PU3+P4

15.36

Example: 1536-pt FFT

256 pt.
SDF FFT

6 pt.
FFT

 256-point FFT: configuration = 1616

factor 16

imp PU1+PU2+PU3+P4

factor 16

imp PU1+PU2+PU3+P4

15.35

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

idle PU2 module is turned off for 
power saving.  
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Slide 15.37 

512-point FFT can be implemented 
with two radix-8 stages by disabling 

 

 

 

 

 

 

 

 

 

 

Slide 15.38 

256-point design is implemented 
with the radix-4 stage followed by 
the radix-8 stage by disabling the 
units shown in gray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: 512-pt FFT

64 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D32

PU4

D16

PU1

D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 88

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

15.37

Example: 256-pt FFT

32 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D64

PU4

D16

PU1

D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 48

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

factor 4

imp PU1+PU2

PU1+PU4

15.38

the two PU2 front units shown in 
gray.  
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Slide 15.39 

Finally, 128-point FFT that uses 
radix-16 in the first stage is shown.  

Two key design techniques for 
FFT area and power minimization 
are parallelism and FFT 
factorization. Next, we are going to 
illustrate the use of these 
techniques.  

 

 

 

 

 

 

Slide 15.40 

Parallelism is used to reduce power 
consumption by taking advantage 
of voltage scaling. Parallel 
architecture allows for slower 
operating frequency and therefore 
lower supply voltage. Combined 
with the proposed FFT structure, 
the value of N2 is the level of 
parallelism. To decide the optimal 
level of parallelism, we plot feasible 
combinations in the Power vs. Area 
space (normalized to N1 = 2,048, N2 
=1 design) and choose the one 
with minimal power-area product as 
the optimal design. According to 

our analysis, N2= 4 and N2=8 have similar power-area products. We choose 8-way parallel design 
to lower the power consumption. 

 

 

 

 

 

 

Example: 128-pt FFT

16 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 116

factor 16

imp PU1+PU2+PU3+P4

factor 1

imp N/A

15.39

Optimal Level of Parallelism (N2)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Normalized
Area

N1=1024
N2=1

N1=512
N2=2

N1=256
N2=4 N1=128

N2=8
N1=64
N2=16

N2: level of parallelism

N1 = 256
N2 = 8

Optimal design

N1 = 2048
N2 = 1

N1 = 512
N2 = 4 N1 = 128

N2 = 16
Normalized 

Area

Normalized 
Power

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

 Optimal design: Minimum power-area product

15.40

N1 = 1024
N2 = 2
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Slide 15.41 

Next, we optimize each N1-point 
FFT by the processing unit 
factorization. Take a 256-point FFT 
as the design example. There are 13 
possible radix factorizations, as 
illustrated in the Table. Each 
processing unit and the 
concatenated twiddle factor 
multiplier have different areas and 
switching activities, allowing power 
and area tradeoff.  The plot shows 
power and area among the possible 
architectures for a 256-point FFT, 
normalized to the radix-2 case. 
Power-area product reduction of 

75 % can be achieved by using 2 radix-16 processing elements (A13) as the building block. 

 

 

Slide 15.42 

Here, we analyze different radix 
factorizations for the 128–2,048-
point FFT design. The optimal 
reconfiguration is decided by the 
architecture with the minimum 
power-area product. For 128-point 
FFT, 8-times parallel with radix-16 
is the optimal choice. Other 
combinations are not shown here 
due to their poor performance. 
Using this methodology, we can 
decide the optimal reconfiguration 
for all required FFT sizes. All the 
big dots represent the optimal 
factorization for various FFT sizes. 

 

 

 

 

 

 

Optimal Factorization for 256-pt FFT

Possible architectures
for 256-pt FFT

Ref. Design
A1

A2
A3

A4
A5

A6A7A8
A9A10 A11

A12
A13 Final Design Norm

A

0.6

0.8

1

0.4 0.6 0.8 1
0.4

Optimal design

Ref design
A1

A13

Arch R2 R4 R8 R16 Mult

A1 8 7

A2 6 1 6

A3 4 2 5

A4 5 1 5

A5 3 1 1 4

A6 4 1 4

A7 1 2 1 3

A8 2 2 3

A9 2 1 1 3

A10 1 2 2

A11 2 1 2

A12 1 1 1 2

A13 2 1

N
or

m
al

ize
d 

Po
w

er

Normalized Area

15.41

400 600 800 1000 1200 1400
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800

Optimal FFT Factorization for all FFT Sizes

 Optimal reconfiguration decided by power-area product

FFT 
size

Optimal 
Factorization

2048 16168

1536 16166

1024 8168

512 888

256 488

128 168Av
g.

 A
dd

iti
on

/c
yc

le
(N

or
m

. P
ow

er
)

2x16
4x8

256pt (8x parallel)

8x8
4x16

512pt (8x parallel)

Total # of Adders (Norm. Area )

16

4x4

128pt (8x parallel)

4x8x8

16x16

1536pt (6x parallel)

4x8x8

16x16

2048pt (8x parallel)

8x16

4x4x8

1024pt (8x parallel)

15.42
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Slide 15.43 

Combining the 2-D FFT 
decomposition and processing-unit 
factorization, a 20-times power-area 
product reduction can be achieved 
compared to the single delay 
feedback radix-2 1,024-point FFT 
reference design.  To decide the 
optimal level of parallelism, we 
enumerate and analyze all possible 
architectures and plot them in the 
power vs. area space. An 8× 
parallelism has the minimum 
power-area product considering 
voltage scaling. Overall, a 95% 
(20x) power-area reduction is 

achieved compared to the reference design, where 5× comes from architecture parallelism and 4× 
comes from radix factorization.  

 

 

Slide 15.44 

For the delay line implementation, 
we compare register-file (RF) and 
SRAM-based delay lines. According 
to the analysis, for a larger size 
delay line, RF has smaller area and 
less power consumption even 
though the cell area of RF is bigger. 
But even for the same length delay 
line, there are several different 
memory partitions. Again, we plot 
all possible combinations in the 
power-area space and choose the 
design with the minimum power-
area product. 2×256 is optimal for 
length 512, and 4×256 is optimal 

for length 1024.  

 

 

 

 

 

FFT Architecture: Summary

 Optimal design: 20 power-area product reduction
– 5 improvement: optimal parallelism        (1)
– 4 improvement: optimal FFT factorization (2)

Ref. design

Po
w

er
-A

re
a 

Pr
od

uc
t

80%

75%

95%

(1) (1) + (2)

15.43

Delay-Line Implementation

 Delay line: Register-File (6T/cell ) outperforms SRAM
DL size 51232 Delay line 102432 Delay line

Architecture SRAM RF SRAM RF

Area (mm2) 0.042 0.037 0.052 0.044

Power (mW) 0.82 0.21 0.84 0.24

 Optimal RF memory decided by power-area product

512x32

2x256x32

4x128x32

8x64x32

1024x32

2x512x32

4x256x32
8x128x32

15.44
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Slide 15.45 

Power breakdown of the chip is 
shown here. Since these five blocks 
have individual power supplies, we 
can measure their own powers. 
Operating for 8×8 antenna array 
with soft outputs, the chip 

4×4 mode with only hard outputs, 
the chip dissipates 5.8mW of 
power.  

 

 

 

 

 

Slide 15.46 

Let’s see the cost of flexibility. Area 
and energy efficiency of SVD chip 
(chip1), SD chip (chip 2), and LTE-
SD chip (chip3) are compared. The 
area efficiency of LTE-SD chip is 
dropped by 2.8× compared to the 
SVD chip, and 1.3× compared to 
the previous SD chip. The area-
efficiency reduction comes from 
the control and interconnect 
overhead of multi-PE, multi-PU, 
and also from memory overhead 
for register file. The energy 
efficiency of SD chip and LTE-SD 
chip is 1.5×–8.5× higher than that 

of the SVD chip. The improved energy efficiency is attributed to optimization across design 

 

 

 

 

 

Chip 2: Power Breakdown
Po

w
er

 (m
W

)

0

1

2

3

4

5

6

7

FFT core RF bank hard-output 
SD kernel

pre-proc. 
unit

soft-output 
bank 

8x8 w/ soft-outputs

4x4 w/o soft-outputs

(VDD, fClk) 8x8 w/ soft outputs 4x4 w/ hard outputs

FFT core (parallel x 8) 6.20 (0.45 V, 20 MHz) 2.83 (0.43 V, 10 MHz)

RF bank (32 kb) 2.35 (1 V, 40-160 MHz) 1.18 (1 V, 20-80 MHz)

Hard-output SD kernel (16-core) 0.97 (0.42 V, 10 MHz) 0.45 (0.36 V, 5 MHz)

Pre-processing unit 4.06 (0.82 V, 160 MHz) 1.34 (0.64 V, 80 MHz)

Soft-output bank (parallel x 8) 0.25 (0.42 V, 20 MHz) N/A

Total power 13.83 mW 5.8 mW
15.45

Cost of Flexibility

 2.8 area cost compared to SVD chip
– Multi-PE and multi-PU control overhead
– Memory overhead (register file) 

2.2x

Energy efficiency(GOPS/mW)

SVD

100 MHz
(0.4 V)
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SD

256 MHz
(0.75 V)

16 MHz
(0.32 V)

15

5

0

LTE-SD

LTE-SD
20 MHz
(0.45 V)

160 MHz
(0.82 V)

20

1.3x

15.46

boundaries, arithmetic simplification, voltage scaling and clock-gating techniques. 

dissipates 13.83 mW. Operating for 
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Slide 15.47 

In conclusion, the flexible SD and 
LTE-SD chips are able to provide 
1.5× – 8.5×  higher  energy 
efficiency than the dedicated SVD 
chip.  16-core sphere decoder 
architecture provides 6× higher 
energy efficiency for same 
throughput or 16× higher 
throughput for same operating 
frequency compared to single-core 
architecture. Optimal 
reconfigurable FFT provides a 20 
times power-area product reduction 
from algorithm, architecture and 
circuit design. We optimize this 

FFT through FFT factorization, PU reconfiguration, memory partition and delay-line 
implementation. Combined with clock-gating technique, multi-voltage design, and aggressive voltage 
scaling, this chip consumes less than 6 mW for LTE standard in a 65 nm CMOS technology. 

 

 

Slide 15.48 

Hardware realization of MHz-rate 
sphere decoding algorithm is 
presented in this chapter. Sphere 
decoding can approach maximum 
likelihood (ML) detection with 
feasible computational complexity, 
which makes it attractive for 
practical realization. Scaling the 
algorithm to higher number of 
antennas, modulations, and number 
of frequency sub-carriers is 
challenging. The chapter discussed 
simplifications in multiplier 
implementation that allows 
extension to large antenna arrays 

(16×16), decision plane partitioning for metric enumeration, and multi-core search for improved 
energy efficiency and performance. Flexible processing element is used in a multi-core architecture 
to demonstrate multi-mode and multi-band operation with minimal overhead in area efficiency as 
compared to dedicated MIMO SVD chip. 

 

 

 

Results

 A 4x4 SVD achieves 2 GOPS/mW & 20 GOPS/mm2 (90 nm CMOS)

 Multi-mode single-band sphere decoder is even more efficient
– Scalable PE allows wide range of performance tuning

Low power: 2.89 mW & 96 Mbps @ 0.32 V (17 GOPS/mW)
High speed: 275 mW & 1,536 Mbps @ 0.75 V (3 GOPS/mW)

– Multi-core (PE) architecture provides
Higher power efficiency: 6x for same throughput
Improved BER performance: 3-5 dB
Higher throughput: 16x

 Multi-mode multi-band flexibility is achieved through flexible FFT
– 3GPP-LTE compliant 88 MIMO decoder can be implemented in 

< 6mW in a 65 nm CMOS

15.47

Summary

 Sphere decoding is a practical ML approaching algorithm
 Implementations for large antenna array, constellation, and 

number of carriers is challenging
– Multipliers are simplified by exploiting Gray-coded modulation 

and wordlength reduction
– Decision plane partitioning simplifies metric enumeration
– Multi-core search allows for increased energy efficiency or 

improved throughput
 Flexible processing element for multi-mode/band operation
– Supports antennas 2x2 to 16x16, modulations BPSK to 64QAM, 

8 to 128 sub-carriers, and K-best/depth-first search
– Multi-mode operation is supported with 2x reduction in area 

efficiency due to overhead to operate multi-core architecture
– Multi-band LTE operation incurs another 1.3x overhead

15.48
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Slide 16.1 

This chapter presents a design 
example of a kHz-rate neural 
processor.  A brief introduction to 
kHz design will be provided, 
followed by an introduction to 
neural spike sorting.  Several spike-
sorting algorithms will be reviewed.  
Lastly, the design of a 130- W, 64-
channel spike-sorting DSP chip will 
be presented. 

 

 

 

 

 

Slide 16.2 

The designs we analyzed thus far 
operate at few tens to hundreds of 
MHz and consume a few tens to 
hundreds of milliwatts of power.  
The sample rate requirement for 
these applications roughly tracks 
the speed of the underlying 
technology.  There are many 
applications that dictate sample 
rates much below the speed of 
technology such as those found in 
medical implants or seismic sensors.  
Medical implants in particular 
impose very tight power density 
limits to avoid tissue overheating.  

This chapter will therefore address implementation issues related to kHz-rate processors with 
stringent power density requirements (10–100x below communication DSP processors). 

 

 

 

 

 

 

Need for kHz Processors

 Conventional DSPs for communications operate at a few hundred 
MHz and consume tens to hundreds of mW of power

 Signals in biomedical and geological applications have 
bandwidths of 10 to 20 kHz
– These applications are severely power constrained 

(desired power consumption is tens of W)
Implantable neural devices are power density limited (<< 800 W/mm2)
Seismic sensor nodes are limited by battery life 
(desired battery life of 5 – 10 years)

 There is a need for energy-efficient implementation of kHz-rate 
DSPs to process signals for these applications

 In this chapter, we describe the design of a 64-channel spike-
sorting DSP chip as an illustration of design techniques for kHz-
rate DSP processors

16.2

kHz-Rate Neural Processors

Chapter 16
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Slide 16.3 

This slide reviews the energy-delay 
tradeoff in combinational logic.  
The solid line indicates the optimal 
tradeoff that is bounded by the 
minimum-delay point (MDP) and 
the minimum-energy point (MEP).  
All designs below the line are 
infeasible and all designs above the 
line are suboptimal.  The 
discrepancy between the MDP and 
the MEP is about one order of 
magnitude in energy (for example, 
scaling VDD from 1.0V to 0.3V 
gives an order of magnitude 
reduction in energy per operation) 

where the energy is limited by leakage.  Designing for the kHz sample rates thus requires circuit 
methods for aggressive leakage minimization as well as architectural techniques that minimize 
leakage through reduced area.  The use of these techniques will be illustrated in this chapter. 

 

 

Slide 16.4 

Electrophysiology is the technique 
of recording electrical signals from 
the brain using implantable 
microelectrodes.  As shown in this 
figure, the voltage recorded by a 
microelectrode is the resulting sum 
of the activity from multiple 
neurons surrounding the electrode.  
In many cases, it is important to 
know which action potentials, or 
“spikes”, come from which neuron. 
The process of assigning each 
action potential to its originating 
neuron so that information can be 
decoded is known as “spike 

sorting.”  This process is also used in basic science experiments seeking to understand how the brain 
processes information as well as in medical applications like brain-machine interfaces (BMIs), which 
are often controlled by single neurons. 

 

 

Energy-Delay Optimization and kHz Design

 Optimal tradeoff is the blue line between minimum-delay point
(MDP) and minimum-energy point (MEP)

Time/Op
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gy
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Dmin

Emin
MEP

MDP
Traditional

operation region

Ultra-low-energy
region

suboptimal

infeasible

~ 1,000 x

~
10

x

GHz MHz kHz

 kHz rates are 
sub-optimal 
due to high 
leakage power

16.3

What is Neural Spike Sorting?

 Electrophysiology is the technique of 
recording electrical signals from the 
brain using microelectrodes
 Single-unit activity (signals recorded 

from individual neurons) is needed for:
– Basic neuroscience experiments
– Medical applications, e.g.:

Epilepsy treatment
Brain-machine interfaces (BMIs)

 Neural signals recorded by microelectrodes are frequently 
composed of activity from multiple neurons surrounding the 
electrode
 Spike sorting is the process of assigning each action potential to 

its originating neuron so that information can be decoded
16.4

and about three orders of magnitude in speed.  The dotted line shows kHz region, beyond MEP, 
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Slide 16.5 

This slide provides background on 
neural spike sorting.  Spike sorting 
is generally performed in five 
successive steps: spike detection, 
spike alignment, feature extraction 
(FE), dimensionality reduction, and 
clustering.  Spike detection is simply 
the process of separating the actual 
spikes from the background noise.  
In alignment, each spike is aligned 
to a common point, such as the 
maximum value or the maximum 
derivative.  In feature extraction, 
spikes are transformed into a 
certain feature space that is 

designed to separate groups of spikes more easily than can be done in the original space (i.e., the 
time domain).  Dimensionality reduction is choosing which features to retain for clustering and 
which to discard. It is often performed after feature extraction to improve the accuracy of, and to 
reduce the complexity of, subsequent clustering.  Finally, clustering is the process of classifying 
spikes into different groups (i.e., neurons) based on the extracted features.  The final result of spike 
sorting is a list of spike times for each neuron in the recording.  This information can be represented 
in a graph called a “raster plot”, shown on the bottom of the right-most subplot of this figure. 

 

Slide 16.6 

Now we will review a number of 
spike-detection and feature-
extraction algorithms.  All spike 
detection methods involve first pre-
emphasizing the spike and then 
applying a threshold to the 
waveform.  The method of pre-
emphasis and the method of 
threshold calculation are presented 
for each of the following spike-
detection algorithms: absolute-value 
thresholding, the nonlinear energy 
operator (NEO), and the stationary 
wavelet transform product (SWTP).  
Then, four different feature-

extraction algorithms will be described: principal component analysis (PCA), the discrete wavelet 
transform (DWT), discrete derivatives (DD), and the integral transform (IT). 

 

The Spike-Sorting Process

1. Spike Detection: Separating spikes from noise

2. Alignment: Aligning detected spikes to a common reference

3. Feature Extraction: Transforming spikes into a certain set of 
features (e.g. principal components)

4. Dimensionality Reduction: Choosing which features to use in 
clustering

5. Clustering: Classifying spikes into different groups (neurons) 
based on extracted features

16.5

Algorithm Overview

 Spike detection
– Absolute-value threshold
– Nonlinear energy operator (NEO)
– Stationary wavelet transform product (SWTP)

 Feature extraction
– Principal component analysis (PCA)
– Discrete wavelet transform (DWT)
– Discrete derivatives (DD)
– Integral transform (IT)

16.6
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Slide 16.7 

One simple, commonly used 
detection method is to apply a 
threshold to the voltage of the 
waveform. This threshold can be 
applied to either the raw waveform 
or to the absolute value of the 
waveform.  Applying a threshold to 
the absolute value of the signal is 
more intuitive, since spikes can 
either be positive- or negative-
going.  The equations shown for 
the calculation of the threshold 
(Thr) are based on an estimate of 
the median of the data [1].  Note 
that this figure shows ±Thr (red 

dashed lines) applied to the original waveform rather than +Thr applied to the absolute value of the 
waveform. 

 

 

Slide 16.8 

The nonlinear energy operator 
(NEO) [2] is another method of 
pre-emphasizing the spikes.  The 
NEO is large only when the signal 
is both high in power (i.e., x2(n) is 
large) and high in frequency (i.e., 
x(n) is large while x(n+1) and 
x(n 1) are small).  Since a spike by 
definition is characterized by 
localized high frequencies and an 
increase in instantaneous energy, 
this method has an obvious 
advantage over methods that look 
only at an increase in signal energy 
or amplitude without regarding the 

frequency.  Similarly to the method in [1], the threshold Thr was automatically set to a scaled version 
of the mean of the NEO. It can be seen from this figure that the NEO has greatly emphasized the 
spikes compared to the figure in the previous slide. 

 

 

 

 

Spike-Detection Algorithms: 
Absolute-Value Thresholding

Apply threshold to:

 Absolute value of the original voltage waveform [1]

16.7

[1] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised Spike Detection and Sorting with 
Wavelets and Superparamagnetic Clustering,” Neural Comp., vol. 16, no. 8, pp. 1661-1687, 
Aug. 2004.
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Spike-Detection Algorithms: NEO

Apply threshold to:

 Nonlinear energy operator (NEO) [2]

16.8

[2]  J. F. Kaiser, “On a Simple Algorithm to Calculate the ‘Energy’ of a Signal,” in Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Process, vol. 1, Apr. 1990, pp. 381-384.

2[ ( )] ( ) ( 1)· ( 1)x n n x n x nx

1

1 [ ( )]
N

n

Thr C x n
N



kHz-Rate Neural Processors  325 
 

 
 

Slide 16.9 

The Discrete Wavelet Transform 
(DWT), originally presented in [4], 
is ideally suited for the detection of 
signals in noise (e.g., edge detection, 
speech detection).  Recently, it has 
also been applied to spike 
detection.  The stationary wavelet 
transform product (SWTP) is a 
variation on the DWT presented in 
[3], as outlined in this slide. 
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This figure shows an example of 
the SWTP signal and the calculated 
threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spike-Detection Algorithms: SWTP

Apply threshold to Stationary Wavelet Transform Product (SWTP)

1. Calculate SWT at 5 consecutive dyadic scales: 

2. Find the scale 2 j,max with the largest sum of absolute values:

3. Calculate point-wise product between SWTs at this & the two previous 
scales:

4. Smooth with Bartlett window w(n)

5. Threshold:

16.9
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Spike-Detection Algorithms: SWTP

 Apply threshold to Stationary Wavelet Transform Product [3]

16.10

[3] K.H. Kim and S.J. Kim, “A Wavelet-based Method for Action Potential Detection from Extracellular 
Neural Signal Recording with Low Signal-to-noise Ratio,” IEEE Trans. Biomed. Eng., vol. 50, no. 8, 
pp. 999-1011, Aug. 2003.
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Slide 16.11 

Principal Component Analysis 
(PCA) has become a benchmark FE 
method in neural signal processing.  
In PCA, an orthogonal basis 
(“principal components” or PCs) is 
calculated for the data that captures 
the directions in the data with the 
largest variation.  Each spike is 
expressed as a series of PC 
coefficients.  (These PC coefficients 
or scores, shown in the scatter plot, 
are then used in subsequent 
clustering.)  The PCs are found by 
performing eigenvalue 
decomposition of the covariance 

matrix of the data; in fact, the PCs are the eigenvectors themselves.  

 

Slide 16.12 

Besides being a well understood 
method, PCA is often used because 
it is an efficient way of coding data.  
Typically, most of the variance in 
the data is captured in the first 2 or 
3 principal components, thus 
allowing a spike to be accurately 
represented in 2- or 3-dimensional 
space.  However, a main drawback 
to this method is that the 
implementation of the algorithm is 
quite complex.  Just computing the 
principal component scores for 
each spike takes over 5,000 
additions and over 5,000 

multiplications (assuming 72 samples per spike), not to mention the even greater complexity 
required to perform the initial eigenvalue decomposition to calculate the principal components 
themselves.  Another drawback of PCA is that it achieves the greatest performance when the 
underlying data is from a unimodal Gaussian distribution, which may or may not be the case for 
neural data.  If the data is non-Gaussian, or multimodal Gaussian, then the basis vectors will not be 
independent, but only uncorrelated.  Furthermore, there is no guarantee that the direction of 
maximum variance will correspond to features that help discriminate between groups.  For example, 
consider a feature taken from a unimodal distribution with a high variance.  Now consider a feature 
taken from a multimodal distribution with a lower variance.  Clearly the feature with the multimodal 
distribution will allow for the discrimination between groups, even though the overall variance of 
that feature could be lower. 

Feature-Extraction Algorithms: PCA

 Projects data onto an orthogonal set of basis vectors such that 
the first coordinate (called the first principal component) 
represents the direction of largest variance

16.11

 Algorithm:
1. Calculate covariance matrix of data 

(spikes) (N-by-N).
2. Calculate eigenvectors (“principal 

components”) of covariance matrix 
(N 1-by-N vectors).

3. For each principal component (i = 
1,…,N), calculate the i th “score” as 
the scalar product of the data point 
(spike) and the i th principal 
component.

e

Feature-Extraction Algorithms: PCA

 Pros:
– Efficient (coding): can represent spike in 2 or 3 PCs

 Cons:
– Inefficient (implementation): hard to perform 

eigendecomposition in hardware
– Only finds independent axes if the data is Gaussian
– There is no guarantee that the directions of maximum variance 

will contain good features for discrimination

16.12
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The discrete wavelet transform has 
been proposed for FE by [4].  The 
DWT should be a good method for 
FE since it is a multi-resolution 
technique that provides good time 
resolution at high frequencies and 
good frequency resolution at low 
frequencies.  The DWT is also 
appealing because it can be 
implemented using a series of filter 
banks, keeping the complexity 
relatively low.  However, depending 
on the choice of mother wavelet 
and on the number of wavelet 
scales used, the number of 

computations required to compute the wavelet coefficients for each spike can become high. 

 

 

Slide 16.14 

Discrete Derivatives (DD) is a 
method similar to the DWT but 
simpler [5].  In this method, 
discrete derivatives are computed 
by calculating the slope at each 
sample point, over a number of 
different time scales.  A derivative 
with time scale  means taking the 
difference between spike sample at 
time n and spike sample that is  
samples apart. 

The benefits of this method are 
that its performance is very close to 
that of DWT while being much less 
computationally expensive.  The 

main drawback, however, is that it increases the dimensionality of the data, thus making subsequent 
dimensionality reduction even more critical. 

 

 

 

 

Feature-Extraction Algorithms: DWT

 Wavelets computed at dyadic scales 
form an orthogonal basis for 
representing data

 Convolution of wavelet with data 
yields wavelet “coefficients”

 Can be implemented by a series of 
quadrature mirror filter banks

 Pros and Cons
– Pro: Accurate representation of 

signal at different frequencies
– Con: Requires convolutions 

 multiple mults/adds per sample

16.13

[4] S. G. Mallat, “A Theory for Multiresolution Dignal Decomposition: The Wavelet Representation,” 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.

[4]

Feature-Extraction Algorithms: DD

 Like a simplified version of DWT
 Differences in spike waveform s(n) are 

computed at different scales:

 Must perform subsequent dimensionality 
reduction before clustering

 Pros and Cons
– Pro: Leads to accurate clustering
– Pro: Very simple implementation
– Con: Increases dimensionality
– Con: Subsequent dimensionality 

reduction increases overall system 
complexity

16.14

[5] Z. Nadasdy et al., “Comparison of Unsupervised Algorithms for On-line and Off-line Spike 
Sorting,” presented at the 32nd Annu. Meeting Soc. for Neurosci., Nov. 2002. 
[Online]. Available: http://www.vis.caltech.edu/ zoltan/
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Slide 16.15 

The last feature-extraction method 
considered here is the integral 
transform (IT) [6].  As shown in the 
top figure, most spikes have both a 
positive and a negative phase.  In 
this method, the integral of each 
phase is calculated, which yields 
two features per spike.  This 
method seems ideally suited for 
hardware implementation, since it 
can be implemented very simply 
and since it inherently achieves such 
a high level of dimensionality 
reduction (thereby reducing the 
complexity of subsequent 

clustering).  The main drawback, however, is that it has been shown not to perform well.  That is 
because these features tend not to be good discriminators for different neurons. 

 

 

Slide 16.16 

In a traditional neural recording 
system, unamplified raw data is sent 
outside the body through wires.  
Spike sorting of this data is 
performed offline, in software.  
This setup for neural recording has 
several disadvantages.  It precludes 
real-time processing of data, and 
can only provide support for a 
limited number of channels.  It also 
restricts freedom of movement of 
the subject, and the wires increase 
the risk of infection.  Spike sorting 
on a chip implanted inside the skull 
solves these problems.  It provides 

the fast, real-time processing that is necessary for brain-machine interfaces.  It also provides output 
data-rate reduction, which enables wireless transmission of data for a large number of channels.  
Thus, there is a clear need for the development of spike-sorting DSP chips. 

 

 

 

 

Feature-Extraction Algorithms: IT

 Most spikes have a negative and positive phase
 Algorithm

1. Calculate integral of negative phase ( )
2. Calculate integral of positive phase ( )

 Pros and Cons
– Pro: Efficient implementation (accumulators, 

no multipliers)
– Pro: High dimensionality reduction
– Con: Does not discriminate between 

neurons well

16.15

[6] A. Zviagintsev, Y. Perelman, and R. Ginosar, “Algorithms and Achitectures for Low Power Spike 
Detection and Alignment,” J. Neural Eng., vol. 3, no. 1, pp. 35-42, Jan. 2006. 
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Need for On-Chip Spike Sorting

 Traditional neural recording system: wired data; sorting offline in software

16.16

– Disadvantages of traditional approach
Not real time 
Limited number of channels

 Improved neural recording system: wireless data; sorting online, on-chip

– Advantages of in-vivo system
Faster processing
Data rate reduction

Wireless transmission of data 
possible 
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Slide 16.17 

There are a number of design 
constraints for a spike-sorting DSP 
chip.  The most important 
constraint for an implantable neural 
recording device is power density.  
A power density of 800 W/mm2 
has been shown to damage brain 
cells, so the power density must be 
significantly lower than this limit.  
Output data rate reduction is 
another important design 
constraint.  Low output data rates 
imply low power for wireless 
transmission.  Thus, a higher 
number of channels can be 

supported for a given power budget.  The spike-sorting DSP should also have a low area to allow 
for integration of the DSP, along with the analog front end and RF circuits, to the base of the 
recording electrode.  This figure shows a 100-channel recording electrode array, which was 
developed at the University of Utah [7] and which has a base area of 16mm2. 

 

 

Slide 16.18 

In the following design example, we 
have used a technology-driven 
algorithm-architecture selection 
process to implement the spike-
sorting DSP.  Complexity-
performance tradeoffs of several 
algorithms have been analyzed in 
order to select the most hardware 
friendly spike-sorting algorithms 
[8].  Energy- and area-efficient 
choices have been made in the 
architecture and circuit design 
process that lead to a low-power 
implementation for the 
multichannel spike-sorting ASIC 

[9].  The following few slides will elaborate on each of these design steps. 

 

 

 

 

Design Challenges

 Power density
– Tissue damage at 

800 W/mm2

 Data-rate reduction 
– Low power
– Large number of 

channels
 Low area 

– Integration with 
recording array

Utah Electrode Array [7]

[7] R. A. Normann, “Microfabricated Electrode Arrays for Restoring Lost Sensory and Motor 
Functions,” International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and 
Microsystems, pp. 959-962, June 2003.

16.17

Design Approach

 Technology-aware algorithm 
selection

 Energy- & area-efficient 
architecture and circuits

 Low-power, multi-channel ASIC 
implementation

16.18



330  Chapter 16 
 

Slide 16.19 

Several algorithms have been 
published in literature for each of 
the spike-sorting steps described 
earlier.  However, there is no 
agreement as to which of these 
algorithms are the best-suited for 
hardware implementation.  To 
elucidate this issue, we analyzed the 
complexity-performance tradeoffs 
of several spike-sorting algorithms 
[8].  Probability of detection, 
probability of false alarm, and 
classification accuracy were used to 
evaluate the algorithm performance.  
The figure on this slide shows the 

signal-processing flow used to calculate the accuracy of each of the detection and feature-extraction 
(FE) algorithms considered.  Algorithm complexity was evaluated in terms of the number of 
operations per second required for the algorithm and the estimated area (for 90-nm CMOS).  These 
two metrics were then combined into a “normalized cost” metric for each algorithm.  

 

 

Slide 16.20 

This figure shows both the 
probability of detection versus SNR 
(left) and the probability of false 
alarm versus SNR (right) for each 
detection method that was 
investigated.  The absolute-value 
method has a low probability of 
false alarm across SNRs, but the 
probability of detection falls off for 
low SNRs.  The probability of 
detection for NEO also falls off for 
low SNRs, but the drop-off occurs 
later and is less drastic. The 
probability of false alarm for NEO, 
however, is slightly higher than that 

of absolute-value for lower SNRs.  The performance of SWTP is generally poorer than that of the 
other two methods. 

 

 

 

Algorithm Evaluation Methodology

 Goal: To identify high-accuracy, low-complexity 
algorithms

 Algorithm metrics
– Accuracy
– NOPS
– Area

 Generated test data sets using neural signal 
simulator
– SNR: 20 dB to 15 dB

 Tested accuracy of the spike-detection and 
feature-extraction methods described in the 
“algorithm overview”

16.19

max
NOPS Area

Normalized Cost
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[8] S. Gibson, J.W. Judy, and D. Markovi , "Technology-Aware Algorithm Design for Neural Spike 
Detection, Feature Extraction, and Dimensionality Reduction," IEEE Trans. Neural Syst. Rehabil. 
Eng., vol. 18, no. 4, pp. 469-478, Oct. 2010.

[8]

Spike Detection Accuracy Results

 Left: Probability of detection vs. SNR for each detection method
 Right: Probability of false alarm vs. SNR for each detection method
 Curves for each of the 96 data sets are shown. For each method, 

the median across all data sets is shown in bold.
16.20
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Receiver Operating Characteristic 
(ROC) curves were used to evaluate 
the performance of the various 
spike-detection algorithms.  For a 
given method, the ROC curve was 
generated by first performing the 
appropriate pre-emphasis and then 
systematically varying the threshold 
on the pre-emphasized signal from 
very low (the minimum value of the 
pre-emphasized signal) to very high 
(the maximum value of the pre-
emphasized signal).  At each 
threshold value, spikes were 
detected and PD and PFA were 

calculated in order to form the ROC curve.  The area under the ROC curve (also called the “choice 
probability”) represents the probability that an ideal observer will correctly classify an event in a two-
alternative forced-choice task.  Thus, a higher choice probability corresponds to a better detection 
method. 

This figure shows the median ROC curve for all data sets and noise levels (N=1632) for each 
spike-detection method.  It is again clear from this figure that the SWTP method is inferior to the 
other two methods.  However, the curves corresponding to the absolute value and NEO methods 
are quite close, so it is necessary to consider the choice probability for each method in order to 
determine which of these methods is better.  Since NEO has the highest choice probability, it is the 
most accurate of the three spike-detection methods. 

 

Slide 16.22 

This table shows the estimated 
MOPS, area, and normalized cost 
for each of the spike-detection 
algorithms considered.  The 
absolute-value method is shown to 
have the lowest overall cost of the 
three methods, with NEO in a 
close second.  The figure beneath 
the table shows a plot of median 
choice probability versus the 
normalized cost for each algorithm.  
The best choice for hardware 
implementation would lie in the 
high-accuracy, low-cost (upper, left) 
corner.  Thus, it is clear that NEO 

is best-suited for hardware implementation. 

Spike Detection Accuracy Results

 Median ROC curve for each detection method (N = 1632). The 
areas under the curves (choice probabilities) are as follows: 
Absolute Value, 0.925; NEO, 0.947; SWTP, 0.794

16.21

Spike Detection Complexity Results

 The median choice probability of 
all data sets and noise levels
(N = 1632), versus normalized 
computational cost for each 
spike- detection algorithm

16.22

Algorithm MOPS Area [mm2] Normalized 
Cost

Absolute 
Value 0.4806 0.06104 0.0066

NEO 4.224 0.02950 0.0492
SWTP 86.75 56.70 2
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Slide 16.23 

This table shows the same results as 
before but for the feature-
extraction methods.  The IT 
method is shown to have the lowest 
overall cost of the three methods, 
with DD in a close second.  The 
figure beneath the table shows the 
mean classification accuracy versus 
normalized cost for each feature-
extraction algorithm.  Again, the 
best choice for hardware 
implementation would lie in the 
high-accuracy, low-cost (upper, left) 
corner.  Thus, it is clear that DD is 
best-suited feature-extraction 

algorithm for hardware implementation. 

 

Slide 16.24 

We chose NEO for detection, 
alignment to the maximum 
derivative, and discrete derivatives 
for feature extraction.  This figure 
shows the block diagram of a 
single-channel spike-sorting DSP 
core [9].  The NEO block calculates 
(n) for incoming data samples. In 

the training phase, the threshold 
calculation module calculates the 
threshold as the weighted average 
of (n) for the input data.  This 
threshold is used by the detector to 
signal spike detection.  The 
preamble buffer saves a sliding 

window of the input data samples.  Upon threshold crossing, this preamble is saved along with the 
following samples into the register bank memory as the detected spike.  The maximum derivative 
block calculates the offset required to align the spikes to the point of maximum derivative.  The FE 
block then calculates the uniformly sampled discrete derivative coefficients for the aligned spike.  
The 8-bit input data, which enters the module at a rate of 192kbps, is converted to aligned spikes, 
which have a rate of 38.4kbps.  The extracted features have a data rate of 16.8kbps, thus providing 
a 91.25% reduction in the data rate.  The detection and alignment modules occupy 33% and 47% of 
the total 0.1 mm2 area of a single-channel DSP core.  The FE module occupies the remaining 20%. 
It is interesting to note that the single-channel DSP core is a register-dominated design with 50% of 
the area occupied by registers.  The low operating frequency and register dominance makes the 

Feature Extraction Complexity and Accuracy Results

 Mean classification accuracy, 
averaged over all data sets and 
noise levels (N = 1632), after 
fuzzy c-means clustering versus 
computational cost for each FE 
algorithm. Error bars show 
standard error of the mean.

16.23

Algorithm MOPS Area [mm2] Normalized 
Cost

PCA 1.265 0.2862 1.4048
DWT 3.125 0.06105 1.2133
DD 0.1064 0.04725 0.1991
IT 0.05440 0.03709 0.1470

Single-Channel DSP Kernel

16.24
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[9] V. Karkare, S. Gibson, and D. Markovi , "A 130- W, 64-Channel Spike-Sorting DSP Chip," in Proc. 
IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 289-292.
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design of a spike-sorting DSP different from the conventional DSP ASICs, which tend to be high-
frequency and logic-dominated systems. 
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Now that we are familiar with the 
spike-sorting DSP and its features, 
let us analyze the design from an 
energy-delay perspective.  This plot 
shows the normalized energy per 
channel versus the normalized delay 
for the spike-sorting DSP core [9].  
The DSP has a critical-path delay 
equivalent to 466 FO4 inverters at 
the nominal supply voltage.  This 
implies that the design at the 
minimum-delay point (MDP) is 
2000 times faster than the 
application delay requirement.  The 
E-D curve shown by the red line 

assumes operation at the maximum possible frequency at each voltage.  However, since the 
application delay is fixed, there is no reward for early computation, as the circuit continues to leak 
for the remainder of the clock cycle.  Operating the DSP at the nominal supply voltage would thus 
put us at the high energy point labeled 1.2V, where the DSP is heavily leakage-dominated. In order 
to reduce the energy consumed, we used supply-voltage scaling to bring the design from the high 
energy point at 1.2V to a much lower energy at 0.3V.  However, mere supply-voltage scaling for a 
single-channel DSP puts us at a sub-optimal point beyond the minimum-energy point (MEP) for the 
design.  To bring the DSP to a desirable operating point between the minimum-delay and minimum-
energy points, we chose to interleave the single-channel architecture. 

 

Slide 16.26 

Interleaving allows us to use the 
same logic hardware for multiple 
channels, thereby reducing the logic 
leakage energy consumed per 
channel.  Interleaving also reduces 
the depth of the datapath and 
pushes the MEP to a higher delay, 
thus bringing the MEP closer to the 
application delay requirement.  The 
reduction in the logic leakage 
energy and the shift to a better 
operating point cause the energy 
per channel at application delay to 
decrease with higher degrees of 

Direct-Mapped Architecture

Critical path:
 466 FO4 inverters

Required delay:
 Significantly higher than 

MDP & MEP

E-D curve:
 Solid: optimal
 Dashed: sub-optimal

1-ch arch is sub-opt:
 VDD scaling falls well 

beyond MEP

16.25

Improved Architecture: Interleaving

Reduced logic leakage:
 Datapath logic sharing
 Shorter critical path

Interleaving results:
 MEP at higher delay
 For  8 channels, 

we are back on the 
optimal E-D curve
 Increase in register 

switching energy
 For > 16 channels, 

register switching 
energy dominates

16.26
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interleaving.  Beyond 8-channel interleaving, the design operates between the minimum-delay and 
the minimum-energy points.  However, the number of registers in the design remains constant with 
respect to the number of channels interleaved.  The switching energy of these registers increases 
with interleaving.  Therefore, as more than 16 channels are interleaved, the energy per channel starts 
to increase due to an increase in register switching energy [9]. 
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This curve shows the energy per 
channel at the application delay 
versus the number of channels 
interleaved [9].  It can be seen that 
the energy is at a minimum at 8-
channel interleaving and increases 
significantly beyond 16-channel 
interleaving.  In addition to 
reduction in energy per channel, 
interleaving also allows us to reduce 
area for the DSP, since the logic is 
shared between multiple channels.  
The area occupied by registers, 
however, remains constant.  At 
high degrees of interleaving, the 

register area dominates over the logic area.  This causes the area savings to saturate at 16-channel 
interleaving, which offers an area reduction of 47%.  Since we expect to be well within the power 
density limit, we chose to trade headroom in energy in favor of increased area reduction.  We, 
therefore, chose to implement the 64-channel DSP with a modular architecture consisting of four 
16-channel interleaved cores. 
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The modularity in the architecture 
allows us to power gate the inactive 
cores to reduce the leakage. In 
conventional designs, we need a 
PMOS header at the VDD, since the 
source voltage of an NMOS can 
only go up to VDD  VTN.  
However, in our design the supply 
voltage is 0.3V, but the voltage on 
the sleep signal at the gate can be 
pushed up to 1.2V.  Therefore it is 
possible to use an NMOS header 
for gating the VDD rail.  The NMOS 
sleep transistor has a VGS greater 
than the core VDD in the active 

Choosing the Degree of Interleaving

 Energy per channel
– Minimum for 

8 channels
– Rapidly increases for 

> 16 channels

 Area savings
– Saturate at 

16 channels
– 47% area reduction

for 16 channels

 We chose 16-channel interleaving
– Headroom in energy traded for larger area reduction

16.27

NMOS Header for Power Gating

 NMOS header switch
– Lower leakage than PMOS for the same delay increase
– Impact on our design: 70% reduction in leakage

16.28
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mode, while maintaining negative VGS in the sleep mode.  The high overdrive in the active mode 
implies that we need a much narrower NMOS device for a given on-state current requirement than 
the corresponding PMOS.  The narrow NMOS device leads to a lower leakage in the sleep mode.  
This plot shows the ratio of the maximum on-state versus off-state current for the NMOS and 
PMOS headers at different supply voltages. It is seen that for voltages lower than 0.7V, the NMOS 
header has a better ION/IOFF ratio than has the PMOS header. In this chip, we used NMOS devices 
for gating the VDD and the GND rail [9]. 
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We also used logic restructuring 
and wordlength optimization to 
further reduce the power and area 

designed so as to avoid redundant 
signal switching. For instance, 
consider the circuit shown here for 
the accumulation of (n) for the 
threshold calculation in the training 
phase. The output of the 
accumulation node is gated such 
that the required division for 
averaging only happens once at the 
end of the training period, thereby 
avoiding the redundant switching as 

(n) is being accumulated.  We also exploited opportunities for hardware sharing.  For example, the 
circuit for the calculation of (n) is shared between the training and detection phases.  Wordlength 
optimization was performed using an automated wordlength optimization tool [10].  Iteratively 
increasing constraints were specified on the mean squared error (MSE) at the signal of interest until 
detection or classification errors occur.  For instance, it was determined that a wordlength of 31 bits 
is needed at the accumulation node for (n) to avoid detection errors.  Wordlength optimization 
offers 15% area reduction compared to a design with a fixed MSE of 5 10 6 (which is equal to the 
input MSE). 

 

 

 

 

 

 

 

 

Power and Area Minimization

 Logic restructuring
– Reduce switching activity 
– Reuse hardware

 Wordlength optimization
– Specify iterative MSE constraints [10]

– 15% area reduction compared to design with MSE 5×10 6 

[10] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley, 
2004.

Accumulator
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Slide 16.30 

We used a MATLAB/Simulink-
based graphical environment to 
design the spike-sorting DSP core.  
The algorithm was implemented in 
Simulink, which provided a bit-true, 
cycle-accurate representation of the 
design.  The Synplify DSP blockset 
was used to auto-generate the HDL 
from the Simulink model.  The 
HDL was synthesized and the 
output of the delay-annotated 
netlist was verified with respect to 
the output of the Simulink model.  
The netlist was also used for place-
and-route to obtain the final layout 

for the DSP core.  Since synthesis estimates were obtained with an automated flow from the 

avoided the design re-entry that is common in traditional design methods.  Also, numbers from 
technology characterization could be used with the Simulink model to obtain area and performance 
estimates early in design phase. 

 

Slide 16.31 

This slide shows the die photo of 

mentioned earlier, the 64-channel 
DSP has a modular architecture 
consisting of four cores that 
process 16 channels each.  All cores 
except core 1 are power-gated.  The 
modularity in the architecture 
allows for easy extension of the 
design to support a higher number 
of channels.  Input data for 64 
channels arrives at a clock rate of 
1.6MHz and is split into four 
streams of 400kHz each using a 
serial-parallel (S/P) converter.  At 

the output, the data streams from the four cores are combined by the parallel-serial (P/S) converter 
to form a 64-channel-interleaved output stream.  Since we use a reduced voltage at the core, a level 
converter with cross-coupled PMOS devices was designed to provide a 1.2-V swing at the I/O pads.  
The chip supports three output modes to output raw data, aligned spikes, or spike features.  The 
detection thresholds are calculated on-chip, as opposed to many previous spike-sorting DSPs that 
require the detection threshold to be specified by the user.  The training phase for threshold 

Spike-Sorting DSP Chip

 Modular architecture 
– 4 cores process

16 channels each
– S/P and P/S conversion
– Voltage-level conversion

 Modes of operation
– Raw data
– Aligned spikes
– Spike features

 Detection thresholds
– Calculated on-chip
– Independent training for 

each channel 1P8M Std-VT 90-nm CMOS

16.31

[11] R. Nanda, C.-H. Yang, and D. Markovi , “DSP Architecture Optimization in MATLAB/Simulink
Environment,” in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193.

MATLAB-based Chip Design Flow

 MATLAB/Simulink-based 
graphical design 
environment
– Bit-true, cycle-accurate 

algorithm model
– Automated architecture 

exploration [11]

– Avoids design entry 
iterations

 Provides early area and 
performance estimates for 
algorithm design

16.30

Simulink model, various architecture options could be evaluated [11].  The algorithm needed to be 
entered only once in the design flow in the form of a Simulink model.  This methodology thus 

the spike-sorting DSP chip. As 
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calculation can be initiated independently for each channel.  Hence, a subset of noisy channels can 
be trained more often than the rest without affecting the detection output on the other channels. 

 

Slide 16.32 

This figure shows a sample output 
for simulated neural data having an 

a snapshot of the raw data, part (b) 
the aligned spikes, and part (c) the 
uniformly sampled DD coefficients.  
In parts (b) and (c), samples have 
been color-coded according to the 
correct classification of that sample.  
That is, for every spike in the time-
domain (b) and for every DD 
coefficient in the feature domain 
(c), the sample is colored green if it 
originates from neuron 1 or purple 
if it originates from neuron 2.  It is 

known a priori that the simulated neural data has two neurons which, as seen in (b), are difficult to 
distinguish in the time domain. However, these classes separate nicely in the discrete-derivative 
domain (c).  The classification accuracy of this example is 77% when time-domain spikes are 
clustered.  When discrete derivative coefficients are used instead, the classification accuracy is 
improved to 92%. 

 

Slide 16.33 

This figure shows a sample output 
of the chip when human data is 
processed.  The raw data is 
recorded using one of the nine 40-
m-diameter electrodes positioned 

in the hippocampal formation of a 
human epilepsy patient at UCLA.  
Part (a) shows the raw data, part (b) 
the aligned spikes, and part (c) the 
FE coefficients.  In this case, the 
samples in (b) and (c) have been 
colored according to the results of 
clustering. 

 

 

 

Sample Output (Simulated Data)

16.32

SNR = 2.2 dB

CA = 77 % CA = 92 %

( )x n

( )s n ( )dd n

Sample Output (Human Data)

16.33

( )x n

( )s n ( )dd n

SNR of −2.2dB. Part (a) shows 



338  Chapter 16 
 

Slide 16.34 

core voltage of 0.55V.  The chip 
consists of 650k gates and uses two 
clocks of 0.4MHz and 1.6MHz.  
The slower clock is derived on-chip 
from the faster clock.  The power 
consumption of the chip is 
2 W/channel when processing all 
64 channels.  Data-rate reduction of 
91.25% is obtained as input data at 
a rate of 11.71Mbps is converted 

to spike features at 1.02Mbps.  The chip can be used to process 16, 32, 48, or 64 channels at a time.  
The accuracy of the chip for the simulated neural data illustrated earlier is given by a probability of 
detection of 86%, a probability of false alarm of 1%, and a classification accuracy of 92%.  The 
corresponding median numbers calculated for the SNR range of 15dB to 20dB are 87%, 5%, and 
77%, respectively.  The total power consumption is 130 W for 64-channel operation.  When only 
one core is active, the chip consumes 52 W for processing 16 channels.  The die occupies an area 
of 7.07mm2 with a core area of 4mm2.  A classification accuracy of over 90% is obtained for all 
simulated data sets with positive SNRs.  The average power density of the cores is 30 W/mm2. 

 

Slide 16.35 

Neural spike sorting is an example 
of a kHz-rate application where the 
speed of technology far exceeds 
application requirements. This 
necessitates different architectural 

based on heavy interleaving is used 
to reduce area and leakage. At the 
circuit level, supply voltage scaling 
down to the sub-threshold regime 
and additional power gating can be 
used to reduce leakage power.  

 

 

 

 

 

Chip Performance

 Power
– 130 W for

64 channels
– 52 W for 

16 channels

 Area
– Die: 7.07 mm2

– Core: 4 mm2

 Classification 
accuracy
– Over 90 %

for SNR > 0 dB

Technology 1P8M 90-nm CMOS
Core VDD 0.55 V
Gate count 650 k
Clock domains 0.4 MHz, 1.6 MHz
Power 2 W/channel
Data reduction 91.25 %
No. of channels 16, 32, 48, 64

Power density: 30 W/mm2

SNR 2.2 dB Median
PD 86 % 87 %
PFA 1 % 5 %
Class. accuracy 92 % 77 %

16.34

Summary

 Spike sorting classifies spikes to their putative neurons
– It involves detection, alignment, feature extraction, and 

classification steps, starting with a 20-30kS/s data
– Each step reduces data rate for wireless transmission

Feature extraction reduces data rate by 11x
– Using spike features instead of aligned spikes improves 

classification accuracy

 Real-time neural spike sorting works at speeds (30 kHz) far below 
the speed of GHz-rate CMOS technology
– Low data rates result in leakage-dominated designs
– Extensive power gating is required to reduce power

16.35

This table shows a summary of the 
chip, built in a 90-nm CMOS 
process.  The DSP core designed 
for 0.3 V operation could be 
verified in silicon for a minimum 

and circuit solutions. Architecture 
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Slide 17.1 

The material in this book shows 
core ideas of DSP architecture 
design.  Techniques presented can 
aid in extracting performance, 
energy and area efficiency in future 
applications.  New ideas will also 
have to emerge to solve future 
problems.  In the future, we feel, 
the main design problem will be 
how to achieve hardware flexibility 
and energy efficiency 
simultaneously. 

 

 

 

 

Slide 17.2 

We can no longer rely on 
technology scaling to improve 
energy efficiency.  The plot on the 
slide shows energy efficiency in 
GOPS/mW, which is how many 
billion operations per second you 
can do in one milliwat of power, 
versus technology generation.  Such 
energy efficiency represents the 
intrinsic computational capability of 
silicon technology.  The numbers 
on the horizontal axis represent 
channel length (L). 

In the past (e.g. 1990s), the 
number of digital computations per 

unit energy greatly improved with smaller transistors and lower operating voltage (VDD).  Things are 
now different.  Energy efficiency is tapering off with scaling.  Scaling of voltage has to slow down 
due to increased leakage and process variation, which results in reduced energy efficiency according 
to the formula.  In the future, the rate of shrinking the channel length will be delayed due to 
increased development and manufacturing cost. 

Technology scaling, overall, is no longer providing benefits in energy efficiency as in the past.  
This change in technology greatly emphasizes the need for energy-efficient design. 

 

 

CMOS Scaling Has Changed

 1990’s: both VDD and L scaling
 2000’s: VDD scaling slowing down, L scaling
 2010’s: rate of L scaling slowing down

17.2
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Slide 17.3 

Applications are getting more 
complex.  Increased functional 
diversity has to be supported on the 
same device.  The amount of data 
processing for adding new features 
is exploding.  Let’s take a recent 
(2010) example of an iPad.  When 
Apple decided to put H.264 
decoder on iPad, they had to use 
specialized hardware to meet the 
energy efficiency requirements.  
Software was not an option, 
because it would have consumed 
too much power.  Future 
applications will be even more 

constraining.  In applications such as high-speed wireless, multi-antenna and cognitive radio or mm-
wave beamforming, software solutions wouldn’t even meet real-time requirement regardless of 
power.  Software solutions wouldn’t even be an option.  There are numerous other applications 
where real-time throughput and energy efficiency have to come from specialized hardware. 

Adding too many pieces of specialized hardware, however, to support a diverse set of features 

 

Slide 17.4 

There are two ways to provide 

programmable DSP processor and 
develop application-specific 
software.  People have been doing 
that for a long time.  This approach 
works well for low-throughput and 
ad-hoc operations, but falls short 
on delivering the performance and 
energy efficiency required from 
high-throughput applications such 
as high-sped wireless. 

Alternatively, we could use an 
FPGA, which is a reconfigurable 
hardware that you customize each 

time you need to execute a new algorithm.  Unlike programmable DSP where your hardware is 
fixed, now you have uncommitted resources, which you can configure to support large degrees of 
parallelism and provide very high throughput. 

 

 

Applications Have Changed

 Signal processing content increasing
– Increasing functional diversity

Communications, multimedia, gaming, etc.
Hardware accelerators

– Increasing complexity
High-speed WiFi: multi-antenna, cognitive radio, mm-wave, etc.
Healthcare, neuroscience

 Apple iPad example
– Support for H.264 decoder was done in hardware
– Software solution was too much power

 Specialized hardware is not the answer for future problems
– Chips that are energy efficient and flexible are needed

17.3

Software

17.4

Programmable DSP FPGA (Flexible DSP)

Specialized Proc. Reconfigurable hardware

Conditional ops, floating point Repetitive operations

Multi-core programming is difficult Implicitly parallel hardware

Low throughput (~10MS/s apps) High throughput (10-100x  GOPS)

Hardwarevs.

would not be effective.  Future designs must be energy efficient and flexible at the same time. 

Ways to Provide Flexibility

flexibility.  We can use a 
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Slide 17.5 

slide shows energy and area 
efficiency comparisons for different 
types of processors.  We took data 
from the top two international 
conferences in chip design over the 
past 12 years and averaged the 
numbers to observe general 
ranking.  FPGA companies don’t 
publish their data, but it is widely 
believed that FPGAs are at least 
15x less efficient in both energy and 
area than dedicated chips. 

Since programmable DSPs can’t 
deliver the performance and efficiency for high-throughput applications, as we’ve discussed, we 
need to drive up efficiency of reconfigurable hardware towards the upper-right corner.  It would be 
great if we could possibly eliminate the need for dedicated chips. 

 

Slide 17.6 

Apart from technical reasons, we 
need to take a quick look into the 
economic implications.  Here, we 
see which technologies have been 
used by dedicated designs in the 
past 10 years.  Entries in the table 
indicate percentage of new designs 
in respective technologies.  Good 
news is on the left: scaling improves 
performance and lowers cost for 
high-volume chips.  Bad news on 
the right is that the cost of design 
development is inversely 
proportional to feature size.  We 
need over $100 million to develop a 

chip in 28-nm technology. 

That’s why dedicated chips still use 90nm as the preferred technology.  On the other hand, 
FPGA companies exploit the most advanced technology available.  Due to their regularity, the 
development cost is not as high.  So, if we retain the efficiency benefits of dedicated chips without 
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In both cases, the cost of 
flexibility is quite high.  This 

Efficiency and Flexibility in One Chip?

giving up the flexibility benefits of FPGAs, that would be a revolutionary change. 
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Slide 17.7 

FPGAs are energy inefficient, 
because of their interconnect 
architecture.  This slide shows a 
small section of an FPGA chip 
representing key FPGA building 
blocks.  The configurable logic 
block (CLB) consists of look-up 
table (LUT) elements that can be 
configured to do arbitrary logic.  
The switch-box array consists of bi-
directional switches that can be 
configured to establish connections 
between CLBs. 

The architecture shown on the 
slide is derived from O(N2) 

complexity, where N represents the number of logic blocks.  Clearly, full connectivity cannot be 
supported, because the number of switches would outpace Moore’s law.  In other words, if the 
number of logic elements N were to double, the number of switches N2 would quadruple.  This is 
why FPGAs never have full connectivity. 

Depopulation and segmentation are two techniques that are used to manage connectivity.  The 
switch-box array shown on the slide would have 12 12 switches for full connectivity, but only a few 
diagonal switches are provided.  This is called depopulation.  When two blocks that are physically 
close are connected, there is no reason to propagate electricity down the rest of the wire, so the wire 
is then split into segments.  This technique is called segmentation.  Both of the techniques are used 
heuristically to control connectivity.  As a result, it is nearly impossible to fully utilize an FPGA chip 
without routing congestion and/or performance degradation. 

Despite reduced connectivity, FPGA chips still have more than 75 % of chip area allocated for 
the interconnect switches.  The impact on power is also quite significant: interconnect takes up 
about 60 % of the total chip power. 

 

 

 

 

 

 

 

 

 

 

Inefficiency Comes from 2D-Mesh Interconnect

17.7

From O(N2) complexity

Full connectivity 
is impractical

(10k LUTs = 1M SBs)

CLB

LUT LUT
LUT LUT

Switch-box
Array

I/O 
Connection 

Box

Bi-directional 
Switch Box

 Called a “gate array”, 
interconnect occupies 
3-4x the logic area!

58%

22% 19%

Interconnect

 Virtex-4 power breakdown

Sheng, FPGA 2002, Tuan TVLSI 2/2007.

×
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Slide 17.8 

To improve energy efficiency, 
hierarchical networks have been 
considered.  Two representative 
approaches, tree of meshes and 
butterfly fat tree, are shown on the 
slide.  Both networks have limited 
connectivity even at local levels and 
also result in some form of a mesh. 

Consider the tree of meshes, for 
example.  Locally connected groups 
of 4 PEs are arranged in a network.  
As you can see, each PE has 3 
wires.  We would then need 4*3 =  
12 switches, while only 6 are 
available.  This means 50% of 

connectivity even at the lowest level.  Also, the complexity of the centralized mesh grows quickly. 

Butterfly fat tree attempts to provide more dedicated connectivity at each level of hierarchy, but 
still results in a large central switch.  We, again, have very similar problem as in 2D mesh: new levels 
of hierarchy use centralized global resources for routing.  Dedicated resources would be more 
desirable for new levels of hierarchy.  This is a critical problem to address in the future in order to 
provide energy efficiency without giving up the benefits of flexibility. 

 

Slide 17.9 

In summary, we are near the end of 
CMOS scaling for both technical 
and economic reasons.  Energy 
efficiency is tapering off, design 
cost is going up.  We must 
investigate architecture efficiency in 
light of these challenges. 

Applications are getting more 
complex and the amount of digital 
signal processing is growing rapidly.  
Future applications, therefore, 
require energy efficient flexible 
hardware.  Architecture of the 
interconnect network is crucial for 
providing energy efficiency. 

 

 

Hierarchical Networks

 Limited bisection networks
 Limited connectivity (even at local levels)
 Centralized switches (congestion)

17.8

Tree of Meshes Butterfly Fat Tree

A. DeHon, VLSI 10/2004.

Summary

 Technology has gone through a change
– Energy efficiency tapering off
– Design cost going up

 Applications require functional diversity and flexible hardware
– New design criteria: hardware flexibility and efficiency
– Emphasis on architecture efficiency

 Architecture of interconnect network is crucial for achieving 
flexibility and energy efficiency

 Design problem of the future: hardware flexibility and efficiency

17.9

Design problem of the future, therefore, is how to simultaneously achieve hardware flexibility 
and energy efficiency. 
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Pre-processed retiming   11.41 
Principal component analysis   16.11 
Probability of detection   16.19 
Probability of false alarm   16.19 
Programmable DSP   2.23, 4.8 
 
QAM modulation   15.22 
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Time multiplexing   3.2, 3.16, 3.25, 12.15,  
   12.21 
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