

Electrical Engineering Essentials

http://www.springer.com/series/10854

Series Editor

Anantha P. Chandrakasan

For further volumes:

Dejan Markovic Robert W. Brodersen

DSP Architecture Design
Essentials

ISBN 978-1-4419-9659-6 ISBN 978-1-4419-9660-2 (e-Book)
DOI 10.1007/978-1-4419-9660-2
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012938948

©
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically
for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Springer Science+Business Media New York 2012

Please note that additional material for this book can be downloaded from http://extras.springer.com

Dejan Markovi
Associate Professor
Electrical Engineering Department
University of California, Los Angeles
Los Angeles, CA 90095
USA

Robert W. Brodersen
Professor Emeritus

University of California, Berkeley
Berkeley, CA 94704
USA

Berkeley Wireless Research Center

Contents

Preface

Part I: Technology Metrics

1. Energy and Delay Models 3

2. Circuit Optimization 21

3. Architectural Techniques

4. Architecture Flexibility

Part II: DSP Operations and Their Architecture 69

5. Arithmetic for DSP 71

6. CORDIC, Divider, Square Root 91

7. Digital Filters 111

8. Time-Frequency Analysis FFT and Wavelets 145

Part III: Architecture Modeling and Optimized Implementation 171

9. Data-Flow Graph Model 173

10. Wordlength Optimization 181

11. Architectural Optimization 201

12. Simulink-Hardware Flow 225

Part IV: Design Examples: GHz to kHz 2

13. Multi-GHz Radio DSP 255

277

15. MHz-rate Multi-Antenna Decoders Flexible Sphere Decoder Chip Examples 295

16. kHz-Rate Neural Processors 321

Brief Outlook 341

Index 347

vii

1

39

57

53

:

:

14. Dedicated S Chip ExampleMHz-rate Multi-Antenna Decoders VD:

Slide P.1

The advancement of semiconductor
industry over the past few decades
has made significant social and
economic impacts by providing
inexpensive computing and
communication technologies. Our
ability to access and process
increasing amounts of data has
created a major shift in information
technology towards parallel data
processing. Today’s
microprocessors are deploying
multiple processor cores on a single
chip to increase performance;
radios are starting to use multiple

antennas to transmit data faster and farther; new technologies are needed for processing large
records of data in biomedical applications. The fundamental challenge in all these applications is
how to map data processing algorithms onto the underlying hardware while meeting application
constraints for power, performance, and area. Digital signal processing (DSP) architecture design is
the key for successful realization of many diverse applications in hardware.

The tradeoff of various types of architectures to implement DSP algorithms has been a topic of
research since the initial development of the theory. Recently, the application of these DSP
algorithms to systems that require low cost and the lowest possible energy consumption has placed a
new emphasis on defining the most appropriate solutions. The flexibility consideration has become a
new dimension in the algorithm/architecture design. Traditional approach to provide flexibility has
been through software programming a Von Neumann architecture. This approach was based on
technology assumptions that hardware was expensive and the power consumption was not critical so
time multiplexing was used to provide maximum sharing of the hardware resources. The situation
now for highly integrated system-on-a-chip implementations is fundamentally different: hardware is
cheap with potentially 1000’s of multipliers and adders on a chip and the energy consumption is a
critical design constraint in portable applications. Even in the case of applications that have an
unlimited energy source, we have moved into an era of power-constrained performance since heat
removal requires the processor to operate at lower clock rates than dictated by the logic delays.

This book, therefore, addresses DSP architecture design and the application of advanced DSP
algorithms to heavily power-constrained micro-systems.

Preface

Slide P.2

This book addresses the need for
DSP architecture design that maps
advanced DSP algorithms to the
underlying hardware technology in
the most area- and energy-efficient
way. Architecture design is
expensive and architectural changes
have not been able to track the pace
of technology scaling. The ability to
quickly explore many architectural
realizations is essential for selecting
the architecture that best utilizes the
intrinsic computational efficiency of
silicon technology.

In addition to tracking the
advancements in technology, advanced DSP algorithms greatly increase computational complexity.
At the same time, more flexibility to support multiple operation modes and/or multiple standards is
needed in portable devices. Traditionally, algorithms and architectures are developed by different
engineering teams, who also use different tools to describe their designs. Clearly, there is a pressing
need for DSP architecture design that tightly couples into algorithmic and technology parameters, in
order to deliver the most effective solution in power-limited regime.

In response to the above challenges, this book provides systematic methodology for algorithm
modeling, architecture description and mapping, and various hardware optimizations that take into
account algorithm, architecture, and technology layers. This interaction is essential, because
algorithmic simplifications can often far outstrip any energy savings possible in the implementation
step. The outcomes of the proposed approach, generally speaking, are hardware-aware algorithm
development and its optimized hardware implementation.

Why This Book?

 Goal: to address the need for area/energy-efficient mapping of
advanced DSP algorithms to the underlying hardware technology

 Challenges in digital signal processing (DSP) chip design
– Higher computational complexity for advanced DSP algorithms
– More flexibility (multi-mode, multi-standard) required
– Algorithm and hardware design are often separate
– Power-limited performance

 Solution: systematic methodology for algorithm specification,
architecture mapping, and hardware optimizations
– Outcome 1: hardware-friendly algorithm development
– Outcome 2: optimized hardware implementation

P.2

viii DSP Architecture Design Essentials

Preface ix

Slide P.3

The key feature of this book is a
design methodology based on a
high-level design model that leads
to hardware implementation that is
optimized for performance, power,
and area. The methodology
includes algorithm-level
considerations such as automated
wordlength reduction and unique
data properties that can be
leveraged to simplify the arithmetic.
Starting point for architectural
optimizations is a direct-mapped
architecture, because it is well
defined. From a high-level data-

flow graph (DFG) model for the reference architecture, a methodology based on linear

the underlying technology. Once architectural solutions are available, any of the architecture design
points can be mapped through commercial and semi-custom flows to field-programmable gate array
(FPGA) and application-specific integrated circuit (ASIC) hardware platforms. As a final step,
FPGA-based logic analysis is used to verify ASIC chips using the same design environment, which
greatly simplifies the debugging process.

To exemplify the use of the design methodology described above, many examples will be
discussed to demonstrate diverse range of application requirements. Applications ranging from kHz
to GHz rates will be illustrated and results from working ASIC chips will be presented.

The slide material provided in the book is supplemented with additional examples, links to
reference material, CAD tutorials, and custom software. All the supplements are available online.
More detail about the online content is provided in Slide P.11.

Slide P.4

The material in this book is a result
of many years of development and
classroom use. It started as a class
material (Communications Signal
Processing, EE225C) at UC
Berkeley, developed by professors
Bob Brodersen, Jan Rabaey, and
Bora Nikolić in the 1990s and early
2000s. Many concepts were applied
and extended in research projects at
the Berkeley Wireless Research
Center in the early 2000s. These
include automated Simulink-to-
silicon toolflow (by R. Davis, H. So,

Highlights

 A design methodology starting from a high-level description to an
implementation optimized for performance, power and area

 Unified description of algorithm and hardware parameters
– Methodology for automated wordlength reduction
– Automated exploration of many architectural solutions
– Design flow for FPGA and custom hardware including chip

verification

 Examples to show wide throughput range (kS/s to GS/s)
– Outcomes: energy/area optimal design, technology portability

 Online resources: examples, references, tutorials etc.

P.3

Book Development

 Over 15 years of effort and revisions…
– Course material from UC Berkeley (Communication Signal

Processing, EE225C), ~1995-2003
Profs. Robert W. Brodersen, Jan M. Rabaey, Borivoje Nikoli

– The concepts were applied and expanded by researchers from
the Berkeley Wireless Research Center (BWRC), 2000-2006

W. Rhett Davis, Chen Chang, Changchun Shi, Hayden So, Brian Richards,
Dejan Markovi

– UCLA course (VLSI Signal Processing, EE216B), 2006-2008
Prof. Dejan Markovi

– The concepts expanded by researchers from UCLA, 2006-2010
Sarah Gibson, Vaibhav Karkare, Rashmi Nanda, Cheng C. Wang,
Chia-Hsiang Yang

 All of this is integrated into the book
– Lots of practical ideas and working examples

P.4

programming is used to create many different architectural solutions, within constraints dictated by

 DSP Architecture Design Essentials

B. Richards), automated wordlength optimization (by C. Shi), the BEE (Berkeley Emulation Engine)
FPGA platforms (by C. Chang et al.), and the use of this infrastructure in chip design (by D.
Marković and Z. Zhang).

spike analysis (by S. Gibson and V. Karkare), automated architecture transformations (by R. Nanda),
revisions to wordlenght optimization tool (by C. Wang), flexible architectures for multi-mode and
multi-band radio DSP (by C.-H. Yang).

All this knowledge is integrated in this book. The material will be illustrated on working hardware
examples and supplemented with online resources.

Slide P.5

The material is organized into four
parts: (1) technology metrics, (2)
DSP operations and their
architecture, (3) architecture
modeling and optimized
implementation, and (4) design
examples. The first part introduces
technology metrics and their impact
on architecture design. Towards
implementation, the second part
discusses number representation,
fixed-point effects, basic direct and
recursive DSP operations and their
architecture. Putting the technology
metrics and architecture concepts

together, Part 3 provides data-flow graph based model and discusses automated architecture
exploration using linear programming methods. Quantization effects and hardware design flow are
also discussed. Finally, Part 4 demonstrates the use of architecture design methodology and
hardware mapping flow on several examples to show architecture optimization under different
sampling rates and amounts of flexibility. The emphasis is placed on flexibility and parallel data
processing. To get a quick grasp of the book content, visual highlights from each of the parts are
provided in the next few slides.

Organization

 The material is organized into four parts

Technology Metrics

DSP Operations & Their
Architecture

Architecture Modeling &
Optimized Implementation

Design Examples:
GHz to kHz

1

2

3

4

Performance, area, energy
tradeoffs and their implication
on architecture design

Number representation, fixed-
point, basic operations (direct,
iterative) & their architecture

Data-flow graph model, high-
level scheduling and retiming,
quantization, design flow

Radio baseband DSP, parallel
data processing (MIMO, neural
spikes), architecture flexibility

P.5

x

The material was further developed at UCLA as class material by Prof. D. Marković and EE216B
(VLSI Signal Processing) students. Additional topics include algorithms and architectures for neural-

Preface xi

Slide P.6

Part 1 begins with energy and delay
models of logic gates, which are
discussed in Chap. 1. The models
describe energy and delay as a
function of circuit design variables:
gate size, supply and threshold
voltage. With these models, we
formulate sensitivity-based circuit
optimization in Chap. 2. The
output of the sensitivity framework
is the plot of energy-delay tradeoffs
in digital circuits, which allows for
comparing multiple circuit
realizations of a function. Since
performance range of circuit tuning

is limited, the concept is extended to architecture level in Chap 3. Energy-delay tradeoffs in

pipelining, interleaving and folding. This way, tradeoffs between area and energy for a given
performance can be analyzed. To further understand architectural issues, Chap. 4 compares a set
of representative chips from various categories: microprocessors, general-purpose DSPs, and
dedicated. Energy and area efficiency are analyzed to understand architectural features.

Slide P.7

Part 2 first looks at number
representation and quantization
modes in Chap. 5, which is
required for fixed-point description
of DSP algorithms. Chap. 6 then
presents commonly used iterative
DSP operators such as CORDIC
and Newton-Raphson methods for
square rooting and division.
Convergence analysis with respect
to the number of iterations,
required quantization accuracy and
the choice of initial condition is
presented. Chap. 7 continues with
algorithms for digital filtering.

Direct and recursive filters are considered as well as direct and transposed architectures. The impact
of pipelining on performance is also discussed. As a way of frequency analysis, Chap. 8 discusses
FFT and wavelet transforms. Baseline architecture for the FFT and wavelet transforms is presented.

Part 1: Technology Metrics

time-mux

reference
pipeline,intl,

time-mux

reference

pipelineparallel
parallelfold

intl,
fold

0 DelayArea

Energy VDD scaling

E/ A
D/ A A=A0

SA=

SB

SA

f(A0, B)

f(A, B0)

Delay

En
er

gy

D0

(A0, B0)E0 1

PMOS
network

NMOS
network

..
.

A1

AN

CL

Vout

VDD

E1 0

Microprocessors
General

Purpose DSPs

~3 orders of
magnitude!

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

0.01

0.1

1

10

100

1000

En
er

gy
 E

ff
ic

ie
nc

y
(M

O
PS

/m
W

)

Ch 1: Energy and
Delay Models

Ch 2: Circuit Optimization

Ch 3: Architectural Techniques

Ch 4: Architecture Flexibility

Energy and delay models
of logic gates as a function
of gate size and voltage…

are used to formulate
sensitivity optimization,
result: energy-delay plots

Extension to architecture
tradeoff analysis…

P.6

Part 2: DSP Operations and Their Architecture

Ch 5: Arithmetic for DSP Ch 6: CORDIC, Divider,
Square Root

Ch 7: Digital Filters

Ch 8: Time-Frequency Analysis

Number representation,
quantization modes,
fixed-point arithmetic

Overflow mode Quantization mode

0 0 1 1 0 1 00 0 1

WInt WFrSign

=
45o

0

26.57o

14.04o

7.13o

3.58o

It: 0

It: 1

It: 2

It: 3

It: 4
It: 5

+ +

z 1 z 1

×× ×

x(n)

y(n 1)

z 1

z 1

Pipeline
regs

tcritical = tmult + tadd

h0 h1 h2

Fourier basis functions Wavelet basis functions

Time

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y

Iterative DSP
algorithms for
standard ops,
convergence
analysis, the
choice of initial
condition

Direct and recursive digital filters,
direct and transposed, pipelined…

FFT and wavelets (multi-rate filters)

P.7

.
datapaths are used to navigate architectural transformations such as time-multiplexing, parallelism,

 DSP Architecture Design Essentials

Slide P.8

Having defined technology metrics
in Part 1, algorithm and architecture
techniques in Part 2, we move on to
algorithm models that are
convenient for hardware
optimization. Modeling approach is
based on data-flow graph (DFG)
description of a design, presented in
Chap. 9, which defines the graph
connectivity through incidence and
loop matrices. As a first step in
hardware optimization, Chap. 10
presents a method based on
perturbation theory that is used to
minimize wordlengths subject to

constrained mean-square error (MSE) degradation due to quantization. Upon wordlength reduction,
Chap. 11 discusses high-level scheduling and retiming approach as a basis for automated

Slide P.9

Several practical design examples
are demonstrated in Part 4. Starting
with a GHz-rate sampling speeds,
Chap. 13 discusses digital front-
end architecture for software-
defined radio. It illustrates multi-

high-speed filtering, and fractional
sample-rate conversion down to the
modem frequency. Chap. 14
illustrates multi-antenna (MIMO)
DSP processor that estimates
channel gains in a 4 4 MIMO
system. The algorithm implemented
performs singular value

decomposition (SVD) on a 4 4 matrix and makes use of iterative Newton-Raphson divider and
square root. It also demonstrates adaptive LMS and retiming of multiple nested feedback loops. The
SVD design serves as a reference point for energy and area efficiency and studies of design
flexibility. Based on the SVD reference, Chap. 15 presents multi-mode sphere decoder that can

Part 3: Architecture Model & Opt. Implementation

Ch 9: Data-Flow Graph Model Ch 10: Wordlength Optimization

Ch 11: Architectural
Optimization

Ch 12: Simulink-Hardware Flow
DFG model is used
for architecture
transformations
based on high-
level scheduling
and retiming, an
automated GUI
tool is built…

w(e1) = 0
w(e2) = 0
w(e3) = 1

1 0 0
0 1 0
1 1 1
0 0 1

Matrix A for graph G

Data-flow graph G

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D
+

(16,12)

(12,9)

(16,11)(16,11)

(14,9)

(24,16)
(24,16)

(24,16)
(16,11)(8,4)

(13,8)
(11, 6)

(10,6)
(11,7)

(10,7)

(13,11)

(8,7) (8,7)

Legend:
 red = WL optimal 409 slices
 black = fixed WL 877 slices

Example: 1/sqrt()

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1

Titer Extract Model

Automated wordlength selection

P.8

Part 4: Design Examples: GHz to kHz

Ch 13: Multi-GHz Radio DSP

Ch 14: Dedicated MHz-rate
Decoders

Ch 15: Flexible MHz-
rate Decoders

Ch 16: kHz-rate Neural Processors

Sample-rate
Conversion

fs1 fs1

fs2 fs2

ADC
fs1 > 1 GHz

High speed
digital mixing

I/Q down
conversion

Decimate
b/w arbitrary

fs1 to fs2

High speed
filtering

LO0
90

Theoretical

blind trackingtraining

Samples per sub-carrier

Ei
ge

n
va

lu
es

0 500 1000 1500 2000
0

2

4

6

8

10

12

values

1
2

2
2

3
2

4
2

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

PE
8

PE
9

PE
10

PE
11

PE
12

PE
13

PE
14

PE
15

PE
16

register bank / scheduler

High-speed (GHz+) digital filtering

Adaptive channel
gain tracking,
parallel data
processing (SVD)

Increased number
of antennas, added
flexibility for multi-
mode operation

P.9

×

×

xii

GHz (2.5 3.6 GHz) digital mixing, –

architecture transformations. A custom tool based on integer linear programming is implemented in
a GUI environment (available for download) to demonstrate automated architecture exploration for
several common DSP algorithms. Chapter 12 presents Simulink-to-hardware mapping flow that
includes FPGA-based chip verification. The infrastructure from Part 3 is applied to a range of
examples.

Preface xiii

work with up to 16 16 antennas, involves adaptive QAM modulations from BPSK to 64-QAM,
sequential and parallel search methods, and variable number of sub-carriers. It demonstrates multi-
core architecture achieving better energy efficiency than the SVD chip with less than 2x area cost to
operate the multi-core architecture. Finally, as a demonstration of leakage-limited application,
Chap. 16 discusses architecture design for neural spike sorting. The chip dissipates just 130μW for
simultaneous processing of 64 channels. The chip makes use of architecture folding for area
(leakage) reduction and power gating to minimize the leakage of inactive units.

Slide P.10

The framework presented in Part 4
has also been applied to many other
chips, which range about 4 orders
of magnitude in sampling speed and
3 orders of magnitude in power
density. Some of interesting
applications include wideband
cognitive-radio spectrum sensing
that demonstrates sensing of
200MHz with 200 kHz spectral
resolution. The chip dissipates
7.4mW and achieves probability of
detection >0.9, probability of false-
alarm <0.1, for −5dB SNR and

It shows the use of multitap-windowed FFT, adaptive decision threshold and sensing times. Further
extending the flexibility of MIMO processors to multiple signal bands, an 8 8 sphere decoder
featuring programmable FFT processor with 128 2048 points, multi-core hard decision, and soft
output unit is integrated in 13.8mW for a 20MHz bandwidth. The chip meets the LTE standard
specifications with power consumption of 5.8 mW. Finally, we show online spike clustering
algorithm in 75μW for 16 channels. The clustering chip exemplifies optimization of memory-
intensive design. These and many other examples can be effectively optimized for low power and
area using the techniques presented in this book.

Additional Design Examples

 Integrated circuits for future radio and healthcare devices
– 4 orders of magnitude in speed: kHz (neural) to GHz (radio)
– 3 orders of magnitude in power: W/mm2 to mW/mm2

Action
Potentials

00

#1

#2

#3

Recorded
Signal

Spike
Sorting

#1

#2

#3

Sorted
Spikes

#1 #2 #3

Analog
Front End Detection Clustering

Spike sorting process

Reg. File Bank

128-2048 pt
FFT

Hard-output
Sphere

Decoder So
ft

-o
ut

pu
t B

an
k

k

Pr
e-

pr
oc

.

200MHz Cognitive Radio Spectrum Sensing

..
.

. . .

. . .

...

...
...

... ...
...

trace-back

radius
shrinking

Multi-core 8x8 MIMO Sphere Decoder

16-ch Neural-spike Clustering

4 mW/mm2

65 W/mm2

75 W

7.4
mW

128-2048 pt
FFTFFT

PP

HardHard-outputoutput
Sphere ftft

-o
ut

pt

FFTFT

pu
t B

an
kk13.8

mW

LTE compliant

Online
Clust.

P.10

×

×
–

adjacent-band interferer of 30 dB.

 DSP Architecture Design Essentials

Online Material

 Online content
– References (papers, books, links, etc.)
– Design examples (mini projects)
– Custom software (architecture transformations)
– CAD tutorials (hardware mapping flow)

 Web sites
– Official public release: http://extras.springer.com

Updates will be uploaded as frequently as needed
– Development wiki: http://icslwebs.ee.ucla.edu/dejan/dspwiki

Pre-release material will be developed on the book wiki page
Your contributions would be greatly appreciated and acknowledged

P.11

Slide P.11

The book is supplemented with
online content that will be regularly
updated. This includes references
(papers, textbooks, online links,
etc.), design examples, CAD
tutorials and custom software. There
are two places you should check for
online material.

The official publisher website will
contain release material, the
development wiki page will contain
pre-release content. Your
contributions to the wiki are most
welcome. Please contact us for an
account and contribute with your

own examples and suggestions. Your contributions will be greatly appreciated and also
acknowledged in the next edition.

Slide P.12

Many people contributed to the
development of the material.
Special thanks go to UC Berkeley/
BWRC researchers for the
development of advanced DSP
algorithms (A. Poon), hardware
platforms (C. Chen, H. Chen, H.
So, K. Kuusilinna, B. Richards, D.
Wertheimer), hardware flows (R.
Davis, H. So, B. Nikolić),
wordlength tool (C. Shi). EE225C
students at UC Berkeley and
EE216B students at UCLA are
acknowledged for testing the
material and valuable suggestions

for improvement. UCLA researchers are acknowledged for the development of algorithms and
architectures for neural-spike processing (S. Gibson, V. Karkare, J. Judy) and test data (R. Staba),
revisions of the wordlength optimizer (C. Wang), development of architecture optimization tool (R.
Nanda), and application of the methodology in chip design (V. Karkare, C.-H. Yang, T.-H. Yu).
Students from DM group and ASL group are acknowledged for proofreading the manuscript. We
also acknowledge hardware support from Xilinx (chips for BEE boards), BWRC (BEE boards),
FPGA mapping tool flow development (BEEcube), chip fabrication by IBM and ST
Microelectronics, and software support from Cadence, Mathworks, Synopsys and Synplicity.

Acknowledgments

 UC Berkeley / Berkeley Wireless Research Center
– Chen Chang, Henry Chen, Rhett Davis, Hayden So, Kimmo

Kuusilinna, Borivoje Nikoli , Ada Poon, Brian Richards,
Changcun Shi, Dan Wertheimer, EE225C students

 UCLA
– Henry Chen, Jack Judy, Vaibhav Karkare, Sarah Gibson,

Rashmi Nanda, Richard Staba, Cheng Wang, Chia-Hsiang Yang,
Tsung-Han Yu, EE216B students, DM Group

 Infrastructure support
– FPGA hardware: Xilinx, BWRC, BEEcube
– Chip fabrication: IBM, ST Microelectronics
– Software: Cadence, Mathworks, Synopsys, Synplicity

P.12

xiv

Part I

Technology Metrics

Slide 1.1
This chapter introduces energy and
delay metrics of digital circuits used
to implement DSP algorithms. The
discussion begins with energy and
delay definitions for logic gates,
including the analysis of various
factors that contribute to energy
consumption and propagation
delay. Design tradeoffs with
respect to tuning gate size, supply
and threshold voltages are analyzed
next, followed by setting up an
energy-delay tradeoff analysis for
use in circuit-level optimizations.
The discussion of energy and delay

metrics in this chapter aims to give DSP architecture designers an understanding of hardware cost
for implementing their algorithms.

Slide 1.2
The goal is to bring parameters of
the underlying technology into the
algorithm space – to bring together
two areas that are traditionally kept
separate.

Technology characterization
(energy, delay) is required to gain
insight into circuit tuning variables
that are used to adjust the delay and
energy. It is important to establish
technology models that can be used
in the algorithms space. This model
propagation will allow designers to
make tradeoff analyses in the
energy-delay-area space as a

function of circuit, architecture, and algorithm parameters. Going from the device level and up,
circuit-level analysis will mostly consider the effects of logic depth and activity since these properties
strongly influence architecture design.

The analysis of circuit-level tradeoffs is important to ensure that the implemented algorithms
fully utilize the performance capabilities of the underlying technology.

Chapter Overview

 Goal: tie-in parameters of the underlying implementation
technology together with algorithm-level specifications

 Strategy
– Technology characterization (energy, delay)
– Circuit-level tuning (gate size, supply voltage)
– Tradeoff analysis (E-D space, logic depth, activity)

 Remember
– We will go all the way down to these low-level results to match

algorithm specs with technology characteristics

1.2

Energy and Delay Models

Chapter 1

3
 DOI 10.1007/978-1-4419-9660-2_1, © Springer Science+Business Media New York 2012

D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 1.3

Let’s start with power and energy
metrics.

Power is the rate at which
energy is delivered or exchanged;
power dissipation is the rate at
which energy is taken from the
source (VDD) and converted into
heat (electrical energy is converted
into heat energy during circuit
operation). Power is expressed in
watts and determines battery life in
hours (instantaneously measures
how much energy is taken out of
energy source over time). We must
design for peak power to ensure

proper design robustness.

Energy is the rate over which power is consumed over time. It is also equal to the power-delay
product. Lower energy means less power to perform the computation at the same frequency. (We
will show in Chap. 4 that power efficiency is the same as energy efficiency.)

Delivering power or energy into a chip is not an easy task. For example, a 30 W mobile
processor requires 30 A of current to be provided from a 1 V supply. Careful analysis of power
must also include units for power delivery and conversion, not just computations. In Chap. 4, we
will focus on the analysis of power required for computation.

Slide 1.4
Power and energy can be graphically
illustrated as shown in this slide.

consumption alone, we are looking
at the height of the waveform.
Note that Approach 1 and
Approach 2 start from the same
absolute level on the vertical axis,
but are shown separately for
improved visual clarity. The
Approach 1 requires more power
while Approach 2 has lower power,
but takes longer to perform a task –
it is a performance-power tradeoff.

If we look at the energy consumption for these two examples, we are looking at the product of
power and delay (area under the waveforms). The two approaches use the same amount of energy.
The same amount of energy can be spent to operate fast with a higher power or operate slow with a

Power and Energy Figures of Merit

 Power consumption in Watts
– Determines battery life in hours

 Peak power
– Determines power ground wiring designs
– Sets packaging limits
– Impacts signal noise margin and reliability analysis

 Energy efficiency in Joules
– Rate at which power is consumed over time

 Energy = Power * Delay
– Joules = Watts * seconds
– Lower energy number means less power to perform a

computation at the same frequency

1.3

Power versus Energy

Watts

time

Power is the height of the waveform

Watts

time

Approach 1

Approach 2

Approach 2

Approach 1

Energy is the area under the waveform

Lower power design could simply be slower

Two approaches require the same energy

1.4

4 Chapter 1

If we look at the power

Energy and Delay Models 5

lower power. So, changing the operating frequency does not necessarily change the energy
consumption. In other words, we consume the same amount of energy to perform a task whether
we do it fast or we do it slow.

Slide 1.5
Here, we review the components of
energy (power). We consider three
main components of power:
switching, short-circuit, and
leakage. The two dominant
components are switching and
leakage. Switching (dynamic)
power can be calculated using the
well-known f0 1·CL·VDD

2 formula,
where f0 1 represents the frequency
of 0 1 transition at the gate
output, CL is the output capacitance
of a gate, and VDD is supply voltage.
Leakage power is proportional to
the leakage current (during idle

periods) and VDD. Short-circuit power can be neglected in most circuits – it typically contributes to
about 5 % of the total power.

As we scale technology, the short-circuit power is decreasing relatively due to supply and
threshold scaling (supply scales down faster). However, threshold voltage reduction results in an
exponential increase in the leakage component. Therefore, we must balance dynamic and leakage
energy in order to minimize the total energy of a design. A simple relationship that allows us to
convert between energy and power is Energy = Power / fclk, where fclk represents the clock frequency of
a chip.

Dynamic
(~75% today,
decreasing)

Short-circuit
(~5% today,
decreasing)

Leakage
(~20% today,

slowly increasing)

Review: Energy and Power Equations

E = 01· CL· VDD
2 + 01 ·tsc · VDD · Ipeak + VDD · Ileakage /fclock

P = f01 · CL· VDD
2 + f01 · tsc· VDD· Ipeak + VDD · Ileakage

f01 = 01 · fclk

Energy = Power / fclk

1.5

Chapter 1

Slide 1.6
We need to model two primary
components of energy: switching
component, and leakage
component. The switching
component relates to the energy
consumption during active circuit
operation, when internal nodes are
switched between logic levels “0”
and “1”. The leakage component is
primarily related to the energy
consumption during periods of time
when the circuit is inactive.

With the scaling of CMOS
technology, relative contributions of
these two components have been

changing over time. If the technology scaling were to continue in the direction of reduced VDD and
VTH, the leakage component would have quickly become the dominant component of energy. To
keep the energy balanced, general scaling of technology dictates nearly constant VTH and slow VDD
reduction in sub-100 nm process nodes. Another reason for the reduced pace in voltage scaling is
increase in process variations. ub-100 nm technologies mainly benefit from increased integration
density and reduced gate capacitance, not so much from raw performance improvements.

In the past, when leakage energy was negligible, minimization of energy could be simplified to
minimization of switching energy. Today, leakage energy also needs full attention in the overall
energy minimization.

Slide 1.7
The switching energy can be
explained by looking at transistor-
level representation of a logic gate.
For every 0 1 transition at the
output we must charge the
capacitance CL and an amount of
energy equal to E0 1 is taken out of
the supply. For CMOS gates (VOL
= 0, VOH = VDD), the energy-per-
transition formula evaluates to the
well-known result: E0 1 = CL·VDD

2.
Thus the switching energy is
quadratically impacted by the
supply voltage, and is proportional
to the total capacitance at the

output of a gate.

Dominant Energy Components

Dramatic increase in Leakage Energy

0

1

2

3

4

5

0.25 m 0.18 m 0.13 m 90 nm 65 nm

Technology Generation

En
er

gy
 (n

or
m

.)

leakage
switching

W

VDD Switching: charges the load capacitance
 Leakage: parasitic component

1.6

Switching Energy

 Every 0 1 transition at the output, an amount of energy is taken
out of supply (energy source)

CL

VDD

Vin Vout

1.7

0 1 · ·OH

OL

V

L out outV
E C V dV  

2
0 1 ·L DDE C V 

S

6

Energy and Delay Models

Slide 1.8
What happens to the energy taken
out of the supply? Where does it
go to?

Consider a CMOS gate as shown
on this slide. PMOS and NMOS
networks are responsible for
establishing a logic “1” and “0” at
Vout, respectively, when inputs A1 –
AN are applied. During the pull-up,
when logic output undergoes a
0 1 transition, E0 1 is taken out of
the supply. One half of the energy
is stored on the load capacitance
(EC) and the other half is dissipated
as heat by transistors in the PMOS

network (ER). During the pull-down, when logic output makes a 1 0 transition, the charge from
CL is dissipated as heat by transistors in the NMOS network.

Therefore, in a complete charge-discharge cycle at the output, E0 1 is consumed as heat. Half of
the energy is temporarily stored on the output capacitance to hold logic “1”. The next question is
how often does the output of a gate switch?

Slide 1.9
This slide introduces the concept of
switching activity. If we observe a
logic gate over N switching cycles
and count the number of 0 1
transitions n(N), then we can count
the average number of transitions
by taking the limit for large N. The
limit of n(N)/N as N approaches
infinity is the switching probability

0 1, also known as the activity
factor. The average energy Eavg
dissipated over N cycles is directly
proportional to the switching
activity: Eavg = 0 1·E0 1. The
switching activity becomes the third

factor, in addition to CL and VDD, impacting the switching energy. The activity factor is best
extracted from the input data and helps accurately predict the energy consumption.

Energy Balance

 One half of the energy from supply is consumed in the
pull-up network and one half is stored on CL

 Charge from CL is discharged to Gnd during the 1 0 transition

E0 1

PMOS
network

NMOS
network

..
.

A1

AN

CL

Vout

VDD

E1 0

E0 1 = CL · VDD
2

E1 0 = 0.5 · CL · VDD
2

ER = E1 0

ER = 0.5 · E0 1

EC = 0.5 · E0 1

Energy from supply

heat

heat

1.8

 Consider switching a CMOS gate for N clock cycles

EN : the energy consumed for N clock cycles
n(N) : the number of 0 1 transitions in N clock cycles

Node Transition Activity and Energy

1.9

2· · ()N L DDE C V n N

2()
lim lim · ·N

avg L DDN N

E n N
E C V

N N 

    
 

0 1
()

lim
N

n N
N 



2
0 1· ·avg L DDE C V

7

 Chapter 1

Slide 1.10
How can we control switching
energy? The most obvious way is
to control each of the terms in the
expression. Supply voltage has the
largest impact, but it is no longer
scaling down with technology at a
rate of 0.7x per technology
generation, as already discussed.
Activity factor depends on how
often the data switches and it also
depends on the particular
realization of a logic function
(internal node switching matters).
Switching capacitance is a function
of gate size and topology. Some

design guidelines for energy reduction are outlined below.

Lowering CL improves performance. CL is minimized simply by minimizing transistor width
(keeps intrinsic capacitance, gate and diffusion, small). We also need to consider performance and
the impact of interconnect. A simple heuristic is to upsize transistors only when CL is dominated by
extrinsic capacitance (fanout and wires).

Reducing VDD has a quadratic effect! At the same time, VDD reduction degrades performance
especially as VDD approaches 2VTH. The energy-performance tradeoff, again, has to be carefully
analyzed.

Reducing the switching activity, f0 1 = p0 1 · fclk, is another way to reduce energy. Switching
activity is a function of signal statistics and clock rate. It is impacted by the logic and architecture
design decisions.

Focusing only on VDD and CL (via gate sizing), a good heuristic is to lower the supply voltage as
much as possible and to compensate for the loss in performance by increasing the transistor size.
This strategy has limited benefit at very low VDD. As we approach the sub-threshold region, leakage
energy grows exponentially and there is a well-defined minimum energy point (beyond which further
scaling of voltage results in higher energy).

8

Lowering Switching Energy

Esw = a01 · CL · VDD
2

Capacitance:
Function of fan-out, wire
length, transistor sizes

Supply Voltage:
Has been dropping*
with CMOS scaling

Activity factor:
How often, on average, do
nodes switch?

1.10

[J. M. Rabaey, UCB]

Energy and Delay Models 9

Slide 1.11
Let’s further analyze the switched
capacitance. Consider two stages of
logic, stages i and i + 1. We assume
that each stage has its own supply
voltage in ideal case. Each logic
gate has two capacitances: intrinsic
parasitic capacitance of the drain
diffusion (Cparasitic), and input
capacitance of the gate electrode
(Cgate). Additionally, there is an
interconnect connecting the gates
that also contributes to capacitive
loading.

At the output of the logic gate in

capacitances: intrinsic parasitic capacitance Cparasitic,i of the gate in stage i, external wire capacitance
Cwire, and input capacitance of the next stage, Cgate,i+1. These three components combined are CL from
the previous slides.

Changing the size of the gate in stage i affects only the energy stored on the gate, at its input and
parasitic capacitance. Logic gates typically have large fanouts (e.g. 4 or higher), so the total external
capacitance Cout = Cwire + Cgate ,i+1 is a dominant component of CL. For large fanouts (large Cout), we
may thus neglect Cparasitic,i. Let’s discuss the origin of Cparasitic and Cgate.

Slide 1.12
Going another level down to device
and circuit parameters, we see that
all capacitances are geometric
capacitances and can be abstracted
as some capacitance per unit width.
Transistor width (W) is the main
design variable in digital design
(transistor length L is typically set at
Lmin as given by the process and
rarely used as a variable). There are
two physical components of the
gate capacitance: gate-to-channel
and gate-to-source/drain overlap
capacitances. For circuit design, we
want a lumped model for Cgate to be

able to look into macroscopic gate and parasitic capacitances as defined on the previous slide. Since
components of Cgate are proportional to W, we can easily derive a macro model for Cgate. A typical
value of Cgate per unit width is 2.5 fF/ m in a 90-nm technology. The same W dependency can be
observed in the parasitic diffusion capacitance. The Cpar/Cgate ratio is typically less than 1. This ratio
is usually labeled as . For a 90-nm general process design kit, the value of is about 0.6. Starting

Switched Capacitance

i i+1

CwireCparasitic,i Cgate,i+1

For large fanouts, we may neglect the parasitic component

VDD,i VDD,i+1

1.11

L sw par outCC C C 

, 1sw out wire gate iC C C C   

MOS Capacitances

 Gate-Channel Capacitance
– CGC = Cox·W·Leff (Off, Linear)
– CGC = (2/3)·Cox·W·Leff (Saturation)

 Gate Overlap Capacitance
– CGSO = CGDO = CO·W (Always)

 Junction/Diffusion Capacitance
– Cdiff = Cj·LS·W + Cjsw·(2LS + W) (Always)

Circuit design

Cgate

Cparasitic

 Simple linear models
– Designers typically use

C / unit width (fF/m)

 = Cpar / Cgate (typically < 1)
– 90 nm gpdk: = 0.61

90 nm gpdk
2.5 fF/m

1.12

C W

the i
th stage, there are three

10 Chapter 1

from the values given here, and using C(W) relationship, we can derive typical capacitance values in
scaled technology nodes.

Slide 1.13
Leakage energy is the second most
dominant component of energy and
is dissipated when the gate is idling
(red lines on the slide). There is
also active leakage that flows
between VDD and Gnd during
switching, but we neglect it because
in the active mode switching energy
dominates. Leakage current/energy
is input-state dependent, because
states correspond to different
transistor topologies for pull-up
and pull-down. We have to analyze
leakage for all combinations of
fixed inputs since the amounts of

leakage can easily vary by an order of magnitude across the states. As indicated in Slide 1.5, leakage
energy can be calculated as the leakage power divided by the clock frequency.

In today’s processes, sub-threshold leakage is the main contributor to leakage current. Gate
leakage used to be a threat until high-K gate technology got introduced (at the 45 nm node). So,
modeling sub-threshold source-to-drain leakage current is of interest for circuit designers.

Slide 1.14
We can use two models for sub-
threshold leakage current. One
approach is physics-based, which is
close to what SPICE uses, but is
not convenient for hand
calculations or quick intuitive
reasoning because of the exponent
terms. Instead of working with
natural logarithm, we prefer to
work with decimal system and
discuss by how much we have to
tune VGS to get an order of
magnitude reduction in leakage
current. It is much easier to work
in decades, so we derive an

empirical model. The empirical model shown on the slide also exposes gate size and transistor
terminal voltages as variables that designers can control. It is also useful to normalize the number to
a unit device. So, in the formula shown on the slide, W/W0 is the ratio of actual with to a unit

Leakage Energy

 When the gate is idle (keeping the state), an amount of energy is
taken out of supply (energy source)

CL

VDD

Vin Vout

Sin = 1

Sin = 0

The sub-threshold leakage current is the dominant component

1.13

()· /Leak Leak in DD clockE I S V f

Sub-Threshold ID vs. VGS

Physical model

Empirical model

[mV/dec]

DIBL

1.14

· /
0· ·(1)

DSGS
VV

k T qS
DSI I e e



 
2

· · /
0

·
· · ·

TV
n k T qk TW

I e
L q


 

  
 

·

0
0

· ·10
GS T DSV V V

S
DS

W
I I

W

 



· · (10)
kT

S n ln
q



Energy and Delay Models 11

width, or the relative size of a device with respect to the unit device. Notice the exponential impact
of VGS and VTH, and also DIBL effect on VDS.

The parameter S represents the amount of VGS tuning for an order of magnitude change in
leakage current. In CMOS, S is typically 80–90m V/dec. Device research is focused on improving
the slope, which would mean better Ion/Ioff ratio and less leakage current. In the ideal case of zero
diffusion capacitance, S is lower-bounded to 60 mV (n = 1).

Slide 1.15
It is interesting to see how
threshold or VGS impact the sub-
threshold leakage current. If we
look at the formula, the slope of the
log(IDS) versus VGS line simply
represents the sub-threshold slope
parameter S. In sub-threshold for
this 0.25 m technology, we can see
that the current can be reduced by
10x for a 90 mV decrease in VGS (n
= 1.5). If we scale technology, the
leakage current starts to roll down
at lower values of VGS (lower VTH),
so the amount of current at a
particular VGS is exponentially

larger in a scaled technology. This exponential dependence presents a problem, because it is hard to
control.

An important question is: with scaling of technology and relatively increasing leakage, what is the
relative relationship between the switching and leakage energy when the total energy is minimized?

Slide 1.16

The most common way to reduce
energy is through supply voltage
scaling. VDD has a large impact on
energy, especially switching. It is
also a global variable, so it affects
the whole design (as opposed to
tweaking size of individual gates).

The plot on this slide shows
simulations from a typical 65-nm
technology with nominal VDD of
1.2 V. We can see that the
switching energy drops
quadratically with VDD. The red
line shows leakage energy which is

Balancing Switching and Leakage Energy

 Switching energy drops quadratically with VDD

 Leakage energy reaches a minimum, then increases
– This is because fclock drops exponentially at low VDD

Switching
Leakage

Esw = 01 · CL · VDD
2

Elk = Ilk(Sin) · VDD / fclock

0 0.2 0.4 0.6 0.8 1 1.2
VDD (V)

0.001

0.01

0.1

1

En
er

gy
 (n

or
m

.)

Energy-VDD

1.16

VDS : 0 to 0.5V

Sub-Threshold ID vs. VGS

I D
 (A

)

VGS (V)

10x

90 mV

90 mV/dec

lower VT

Exp.
increase

1.15

0 0.2 0.4 0.6 0.8 1

·

0

0

· ·10
GS T DSV V γ V

S
DS

W
I I

W

 

 · · (10)
kT

S n ln
q



10−12

10−10

10−8

10−6

10−4

[J. M. Rabaey, UCB]

Chapter 1

the current multiplied by VDD and divided by fclk. It is interesting that the leakage energy has a
minimum around 0.7 V for a 65 nm technology. With further reduction of VDD leakage current is
relatively constant, but exponential delay increase (fclk reduction) causes leakage energy to increase in
the same exponential manner. How does this affect total energy?

Slide 1.17
The total energy has a minimum
and happens to be around 0.3 V,
slightly higher than the device
threshold. This voltage varies as a
function of logic depth (cycle time)
and switching activity. The result
presented in this slide assumes logic
depth of 10 and activity factor of
10 % for a chain of CMOS
inverters. The total energy is limited
by sub-threshold conduction when
the increase in leakage energy
offsets savings in switching energy.
Thus, we can only reduce energy
down to the minimum-energy

point. A very interesting result is that only about one order of magnitude energy reduction is
possible by VDD scaling. This means that at the circuit level there is not much energy to be gained
due to this limitation. More improvements can be obtained in finding algorithms that minimize the
number of operations in each task.

Slide 1.18
As a basis for delay calculation, we
consider the alpha-power model of
the drain current [1]. This model
works quite well in velocity
saturated devices (e.g. gate lengths
below 100 nm). The expression on
the slide departs from the long-
channel quadratic model to include
parameter that measures the
degree of velocity saturation.
Values closer to 1 correspond to a
higher degree of velocity saturation.
This value is obtained by minimum
mean square error (MMSE) curve
fitting of simulation data. A typical

value for is around 1.4 in a 90 nm technology and largely depends on fitting accuracy and the value
of transistor threshold VTH. Considering VTH as another fitting parameter, one can find an array of

Total Energy has a Minimum

 Total energy is limited by sub-threshold conduction
– Current doesn’t decrease, but delay increases rapidly

Total
Switching
Leakage

0 0.2 0.4 0.6 0.8 1 1.2
VDD (V)

0.001

0.01

0.1

1

En
er

gy
 (n

or
m

.)

0.3 V

Energy-VDD

12x

 Interesting result: only an
order of magnitude in energy
reduction is possible by VDD
scaling!

Simulation parameters:
65 nm CMOS
Activity = 0.1
Logic depth = 10

1.17

Alpha-Power Model of the Drain Current

 Basis for delay calculation, also useful for hand analysis [1]

 Empirical model
– Curve fitting (MMSE)
– is between 1 and 2
– In 90 nm, it is ~1.4

(it depends on VTH)
● Can fit to = 1, but with

what VTH?

1.18

1
· · ·()

2DS ox GS TH
W

I C V V
L

 

[1] T. Sakurai and R. Newton, “Alpha-Power Law MOSFET Model and its Applications to CMOS
Inverter Delay and Other Formulas,” IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 584-594,
Apr. 1990.

I D
(n

or
m

al
iz

ed
)

VDS / VDD

VGS

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6
simulation model

1 2

Energy and Delay Models 13

(, VTH) values for a given accuracy. A good practice is to set an initial value of VTH to VT0 from the
transistor-level (Spectre, SPICE) model.

Designers often use the alpha-power law model for current to approximate the average current
during logic transitions from {0, VDD} to VDD/2 in order to calculate logic delay.

Slide 1.19
A very simple delay model that
includes the effects of changes in
supply, threshold and transistor
sizes is shown in this slide. In the
formula, Wout is the size of the
fanout gates, Win is the size of the
input gate, and Wpar corresponds to
the parasitic capacitance of the
input gate. The ratio Wpar/Win is the
ratio of parasitic capacitance to gate
capacitance.

This is a curve-fitting expression
based on the alpha-power law
model for the drain current, with
parameters Von and d related to,

but not equal to the transistor threshold and the velocity saturation index from the current model
[2]. Due to the curve-fitting approach, VTH is used as a parameter (VTH = 0 for nominal VTH) in
order to capture the effect of threshold adjustment on the delay.

As shown on the plot, the delay model fits SPICE simulated data quite nicely, across a range of
supply voltages, with a nominal supply voltage of 1.2 V for a 0.13- m CMOS process. This model
will be later used for gate sizing and supply and threshold voltage adjustment in order to obtain the
energy-delay tradeoff for logic computations.

Alpha-Power-Based Delay Model

 Fitting parameters [2]
Von , d , Kd

1.19

·
·

() d

pard DD out

DD on TH in in

WK V W
Delay

V V V W W
 

     

Inv
NAND2
model

0.5
0

0.5

0.6 0.7 0.8 0.9 1
VDD / VDD

ref

1

1.5

2

2.5

3

3.5

De
la

y
/

De
la

yre
f

[2] V. Stojanovi et al., “Energy-Delay
Tradeoffs in Combinational Logic using
Gate Sizing and Supply Voltage
Optimization,” in Proc. Eur. Solid-State
Circuits Conf., Sept. 2002, pp. 211-214.

Slide 1.20
The impact of gate size and supply
voltage can be lumped together in
the effective fanout parameter heff as
defined on this slide. In logical
effort terms, this parameter is
g(VDD, VTH)·h, where g is the
logical effort and h is the electrical
effort (fanout). Such a formulation
allows for consideration of voltage
effects together with the sizing
problem typically considered in the
logical effort delay model. Chapter
2 will make use of heff in energy-
delay sensitivity analysis.

Slide 1.21
As discussed in Slide 1.10, supply
voltage reduction is the most
attractive approach for energy
reduction. A plot of delay as a
function of VDD is shown in this
slide for a 90-nm technology.
Starting from the nominal voltage
of 1.2V the delay increases by
about an order of magnitude when
the supply is reduced by half.
Further VDD reduction towards VTH
results in exponential delay increase,
as predicted by the alpha-power
model. It is important to remember
this result as we move on to energy-

delay optimization in Chap. 2.

Alpha-Power-Based Delay Model

heff

 Fitting parameters
Von , d , Kd

 Effective fanout, heff
heff = g · (VDD, VTH) · h

1.20

·
·

() d

pard DD out

DD on TH in in

WK V W
Delay

V V V W W
 

     

Inv
NAND2
model

0.5
0

0.5

0.6 0.7 0.8 0.9 1
VDD / VDD

ref

1

1.5

2

2.5

3

3.5

De
la

y
/

De
la

yre
f

Gate Delay as a Function of VDD

 Delay increases exponentially in sub-threshold

0 0.2 0.4 0.6 0.8 1 1.2
VDD (V)

1

100

10,000

100,000

D
el

ay
 (n

or
m

.)

Delay-VDD

10

1,000

1.21

14 Chapter 1

Energy and Delay Models

Slide 1.22
Putting the energy and delay
models together, we can plot the
energy-delay tradeoff due to voltage
scaling. There is a minimum energy
point, when taking into account the
tradeoff between switching and
leakage currents. A simple way to
minimize energy in a digital system
is to perform all operations at the
minimum-energy point. However,
the delay penalty at the minimum-
energy point is enormous: a 1000x
increase in delay is needed for
around a 10x reduction in energy as
compared to the minimum-delay

point obtained for design operating at nominal supply voltage. This is hardly a tradeoff considering
the delay cost.

The question is which operating point to choose from the energy-delay line? The table shows
energy reduction and corresponding delay increase for several points along the green line for a 65-
nm technology assuming logic activity of 0.1 and 10 logic stages between the pipeline registers. The
data shows a good energy-delay tradeoff, up to about 3–5x increase in delay. For delays longer than
5x, the relative delay increase is much higher than the relative energy reduction, making the tradeoff
less favorable. The energy-delay tradeoff is the essence of design optimization and will be discussed
in more detail in Chap. 2.

The important message from this slide is the significance of algorithm-level optimizations. Once
an algorithm is fixed, we only have an order of magnitude margin for further energy reduction (not
considering special effects such as stacking or power gating, but even with these, the energy
reduction will be limited). Therefore, it is very important to consider algorithmic simplifications
together with gate-level design.

Energy-Delay Tradeoff

 Assumptions: 65 nm technology, datapath activity = 0.1, logic depth = 10

Energy 10% 25% 2x 3x 5x 10x
Delay 7% 27% 2x 4x 10x 130x

En
er

gy
 (n

or
m

.)

Total
Switching
Leakage

1 100 1000 104 105

Delay (norm.)

0.001

0.01

0.1

1

10

Energy-delay

12x1000x Hardly a tradeoff:
a 1000x delay increase for a
12x energy reduction

 Which operating point to
choose?

1.22

15

 Chapter 1

Slide 1.23
To measure the compromise
between energy and delay, several
synthetic metrics are used. Power-
delay product (PDP) and energy-
delay product (EDP) are the most
common of such metrics. Power-
delay product is the average energy
consumed per switching event and
it evaluates to CL·VDD

2 / 2. Each
switching cycle contains a 0 1 and
a 1 0 transition, so Eavg is twice
the PDP. PDP is the energy metric
and does not tell us about the speed
of computation. For a given circuit,
PDP may be made arbitrarily low

by reducing the supply voltage that comes at the expense of performance.

Energy-delay product, or power-delay-squared product, is the average energy multiplied by the
time it takes to do the computation. EDP, thus, takes performance into account and is the preferred
metric. The graph on this slide plots energy and delay metrics on the vertical axis versus supply
voltage (normalized to the reference VDD for the technology) on the horizontal axis. As VDD is
scaled down, EDP (the green line) reaches a minimum before PDP (energy) reaches its own
minimum. Thus, EDP is minimized somewhere between the minimum-delay and minimum-energy
points and generally represents a good energy-delay tradeoff.

Slide 1.24
The supply voltage corresponding
to minimum EDP is roughly
VDD(min-EDP) = 3/2 VTE where
VTE = VTH + VDSAT/2. This value
of VDD optimizes both
performance and energy
simultaneously and is roughly 0.4 to
0.5 VDD and corresponds to the
onset of strong inversion (VDSAT/2
above VTH). This value is between
VDD corresponding to minimum
energy (lowest) and minimum delay
(highest). Minimum EDP, to a first
order, is independent of supply
voltage and could be used for

architecture comparison across technology. EDP, however, is just one of the points on the energy-
delay tradeoff line and, as such, is rarely optimal (for actual designs). The optimal point in the
energy-delay space depends on the required level of performance, as well as design architecture.

Choosing Optimal VDD

 Optimal VDD depends on the optimization goal
– VDD increases as we put more emphasis on delay

VDD|minE < VDD|minEDP < … < VDD|minD

Energy*Delay
(EDP)

Energy
(PDP)

Delay

0 0.4 0.6 0.8 1
VDD (norm.)

0

0.5

1

1.5

En
er

gy
-d

el
ay

 (n
or

m
.)

1.24

16

PDP and EDP

 Power-delay product (PDP) = Pavg · tp = (CL · VDD
2)/2

– PDP is the average energy consumed per switching event
(Watts * sec = Joule)

– Lower power design could simply be a slower design

 Energy-delay product (EDP)

– EDP = PDP · tp = Pavg · tp
2

– EDP = average energy *
the computation time
required

– One can trade increased
delay for lower E/op
(e.g. via VDD scaling)

Energy*Delay
(EDP)

Energy
(PDP)

Delay

0 0.4 0.6 0.8 1

VDD (norm.)

0

0.5

1

1.5

En
e

rg
y-

d
e

la
y

(n
o

rm
.)

1.23

[J. M. Rabaey, UCB]

Energy and Delay Models 17

Slide 1.25
The energy-delay tradeoff plot is
essential for evaluating energy
efficiency of a design. It gives a
unified description of all achievable
energy and delay targets. As such,
the tradeoff curve can also be
viewed as a continuous set of (,)
values that model a synthetic metric
E ·D . This includes minimum
energy-delay product (= = 1) as
well as points that put more
emphasis on delay (= 1, > 1) or
energy (>1, =1). The two
boundary points are the point of
minimum delay and the point of

minimum energy. The separation between these two points is about three orders of magnitude in
energy and about one order of magnitude in delay. These points define the range of energy and
delay tuning at the circuit level. It also allows us to formulate optimization problems under energy
or delay constraints.

Slide 1.26
The goal of energy-delay
optimization is to find the best
energy-delay tradeoff by tuning
various design variables. The plot
shows the energy-delay tradeoff in
CMOS circuits obtained by the
adjustment of gate size and
threshold and supply voltages.
When limited by energy (Emax) or
delay (Dmax), designers have to be
able to quickly find solutions that
meet the requirements of their
designs.

Local optimizations focusing on
one variable are the easiest to

perform, but may not meet the specs (e.g. tuning gate sizing as shown on the plot). Some variables
are more effective. Tuning VDD, for example, results in a design that meets the energy and delay
targets. However, we can do better. A combined effort from sizing and VDD gives a better solution
than what is achievable by individual variables. Clearly, the best energy-delay tradeoff is obtained by
jointly tuning all variables in the design. The green curve represents this global optimum, because all
other points have longer delay for the same energy or higher energy for the same delay. The next
step is to formulate an optimization problem, based on energy and delay models presented in this
chapter, in order to quickly generate this optimal tradeoff.

Energy-Delay Tradeoff

 Unified description of wide range of E and D targets
– Choose the operating point that best meets E-D constraints

Delay

VDD scaling

Energy
Emax

DmaxDmin

Emin

E · D

1

E · D 2

2

E · D 3

3

E · D n
n

E 2 · D

1/2

E 3 · D

1/3
E n · D

1/n

Slope of the line indicates
the emphasis on E or D

1.25

Energy-Delay Optimization

 Equivalent formulations
– Achieve the lowest energy under delay constraint
– Achieve the best performance under energy constraint

Delay

Unoptimized
design

sizing

VDD

sizing & VDD

sizing & VDD & VTH

Energy

Emax

DmaxDmin

Emin

(fclk
max) (fclk

min)
1.26

Slide 1.27
Generating the optimal energy-
delay tradeoff is done in the circuit
optimization routine that minimizes
energy subject to a delay constraint.
Notice that energy minimization
subject to a delay constraint is dual
to delay minimization subject to an
energy constraint, since both
optimizations result in the same
tradeoff curve.

We choose to perform a delay-
constrained energy minimization,
because the delay constraint can be
simply derived from the required
cycle time. The optimization is

performed using gate size (W), supply (VDD) and threshold (VTH) voltages. Design variables can be
tuned within various operational constraints that define the lower and upper bounds. The circuit
optimization problem can be defined on a fixed circuit topology, for a selected number of bits, and
for a range of delay constraints that allow us to generate the entire tradeoff curve as defined in Slide
1.25. The output of the circuit optimization is the optimal energy-delay tradeoff and the values of
tuning variables at each point along the curve. The optimal curve can then be used in a macro
model to assist in the architectural selection (topic of Chap. 3). The ability to quickly generate
energy-delay tradeoff curves for various circuit topologies allows us to compare many possible
circuit topologies (A and B shown on the slide) used to implement a logic function.

Slide 1.28
This chapter discussed energy and
delay models in CMOS circuits.
There is a well-defined minimum-
energy point in CMOS circuits due
to leakage currents. This minimum
energy places a lower limit on
energy-per-operation (E/op) that
can be practically achieved. Limited
energy reduction in circuits
underscores the importance of
algorithm-level reduction in the
number of operations required to
perform a task. Energy and delay
models as a function of gate size,
supply and threshold voltage will be

used for circuit optimizations in Chap. 2.

Circuit-Level Optimization

VDD , VTH , W
Circuit topology

A
B

Delay

En
er

gy

A
B

A
B

Delay

En
er

gy

Circuit Optimization

Objective: minimize E
E = E(VDD , VTH , W)

Constraint: Delay
D = D(VDD , VTH , W)

Energy-Delay

Tuning variables
VDD , VTH , W

Constraints
VDD

min < VDD < VDD
max

VTH
min < VTH < VTH

max

Wmin < W

Number of bits

Delay

1.27

Summary

 The goal in algorithm design is to minimize the number of
operations required to perform a task
– Once the number of operations is minimized, circuit-level

implementation can further reduce energy by lowering supply
voltage, switching activity, or gate capacitance

– There exists a well-defined minimum-energy point in CMOS
technology due to parasitic leakage currents

– Considering energy alone is insufficient, energy-performance
tradeoff reveals how much energy reduction is possible given a
performance constraint

– Energy and performance models with respect to gate size,
supply and threshold voltage provide basis for circuit
optimization (finding the best energy-delay tradeoff)

1.28

18 Chapter 1

Energy and Delay Models 19

References

 T. Sakurai and A.R. Newton, "Alpha-Power Law MOSFET Model and its Applications to
CMOS Inverter Delay and Other Formulas," IEEE J. Solid-State Circuits, vol. 25, no.2, pp.
584-594, Apr. 1990.

 V. Stojanovi et al., "Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and
Supply Voltage Optimization," in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 211-214.

Additional References

 Predictive Technology Models from ASU,
[Online]. Available: http://www.eas.asu.edu/~ptm

 J. Rabaey, A. Chandrakasan, and B. Nikoli , Digital Integrated Circuits: A Design
Perspective, (2nd Ed), Prentice Hall, 2003.

Slide 2.1
This chapter discusses methods for
circuit-level optimization. We
discuss a methodology for
generating the optimal energy-delay
tradeoff by tuning gate size and
supply and threshold voltages. The
methodology is based on the
sensitivity approach to measure and
balance the benefits of all the
tuning variables. The analysis will
be illustrated on datapath logic, and
the results will serve as a guideline
for architecture-level design in later
chapters.

Slide 2.2
As introduced in Chap. 1, circuit-
level optimization can be viewed as
an energy minimization problem
subject to a delay constraint. Key
variables at the circuit level are
supply (VDD) and threshold (VTH)
voltages, and gate size (W). Gate
size is typically normalized to a unit
inverter, according to the logical
effort theory. Variables are
bounded by technology and
operation constraints. For example,
VDD cannot exceed VDD

max as
dictated by the oxide reliability limit
and cannot be lower than VDD

min as
mandated by noise margins or the minimum energy point. The threshold voltage cannot be lower
than VTH

min due to leakage and variability constraints, and cannot be larger than VTH
max for

performance reasons. Gate size W is limited by the minimum gate size W min as defined by
manufacturing constraints or noise, while the upper limit is derived from fanout and signal integrity
constraints (increasing W to be arbitrarily large would result in self-loading and the effects of fanout
would be negligible – W increase has to stop well before that point).

Circuit optimization is defined as a problem of finding the optimal energy-delay tradeoff curve
for a given circuit topology and a given number of bits. This is accomplished by varying delay
constraint and minimizing energy at each point, starting from a design sized for minimum delay at
nominal supply and threshold voltages. Energy minimization is accomplished by tuning VDD, VTH,
and W. The result of the optimization is the optimal energy-delay tradeoff line, and the values of
the tuning variables at each point along the tradeoff line.

Circuit-Level Optimization

VDD , VTH , W
Circuit topology

A
B

Delay

En
er

gy

A
B

A
B

Delay

En
er

gy

Circuit Optimization

Objective: minimize E
E = E(VDD , VTH , W)

Constraint: Delay
D = D(VDD , VTH , W)

Energy-Delay

Tuning variables
VDD , VTH , W

Constraints
VDD

min < VDD < VDD
max

VTH
min < VTH < VTH

max

Wmin < W

Number of bits

Delay

2.2

Circuit Optimization

Chapter 2

with Borivoje Nikoli
University of California, Berkeley

21
 DOI 10.1007/978-1-4419-9660-2_2, © Springer Science+Business Media New York 2012

D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 2.3
Based on energy and delay models
from Chap. 1, we model energy
as shown in this slide. Switching
and leakage components are
considered as they dominate energy
consumption, while the short-
circuit component is safely ignored.
The switching energy model
depends on the switching
probability 0 1, parasitic and
output load capacitances, and
supply voltage. The leakage energy
is modeled using the standard
input-state-dependent exponential
leakage current model with the

DIBL effect. Delay represents cycle time. Circuit variables (W, VDD, VTH) are made explicit for the
purpose of providing insight into tuning variables and for energy-delay sensitivity analysis.

Slide 2.4
The switching component of
energy, for example, affects only
the energy stored on the gate, at its
input and parasitic capacitances. As
shown on the slide, eci is the energy
that the gate in stage i contributes
to the overall energy. This
parameter will be used in sensitivity
analysis. Supply voltage affects the
energy due to total load at the
output, including wire and gate
loads, and the self-loading of the
gate. The total energy stored on
these three capacitances is the
energy taken out of the supply

voltage in stage i.

Energy Model for Circuit Optimization

 Switching Energy

 Leakage Energy

2.3

2
0 1·(() ())·sw out par DDE C W CW V

·

0
0

· ()·10 · ·
TH DDV V

in S
lk in DD

W
E I S V Delay

W

Switching Component of Energy

Wi

Wpar,i

Wout

Si
zi

ng

Su
pp

ly

(energy stored on the logic gate i)

i i+1

CwireCparasitic,i Cgate,i+1

VDD,i VDD,i+1

Impact of opt
variables

2.4

E = Ke · (Wpar + Wout) · VDD
2

22 Chapter 2

eci = Ke · Wi · (VDD,i
2 + gi · VDD,i

2)

Circuit Optimization 23

Slide 2.5
Energy-delay sensitivity is a formal
way to evaluate the effectiveness of
various variables in the design [1].
This is the core of circuit-level
optimization infrastructure. It relies
on simple gradient expressions that
describe the rate of change in
energy and delay by tuning a design
variable; for example by tuning
design variable A at point A0. At
point (A0, B0) illustrated in the
graph, the sensitivity to the variable
is simply the slope of the curve with
respect to the variable. Observe
that sensitivities are negative due to

the nature of energy-delay tradeoff. We will compare their absolute values, where the larger absolute
values indicate higher potential for energy reduction. For example, variable B has higher energy-
delay sensitivity (|SB|>|SA|) at point (A0, B0) than variable A.

Slide 2.6
The key concept is that at the
solution point, the sensitivities for
all design variables should be equal.
If the sensitivities are not equal, we
can utilize a low-energy cost
variable (variable A) to create
timing slack D and increase
energy by E, proportional to
sensitivity SA. Now we are at point
(A1, B0), so we can use a higher-
energy-cost variable B and reduce
energy by SB· D. Since |SB| >
|SA|, the overall energy is reduced
by E = (|SB| |SA|)· D. A
fixed point in the optimization is

reached, therefore, when all sensitivities are equal.

Energy-Delay Sensitivity

 Sensitivity: Energy / Delay gradient [1]

E/ A
D/ A A=A0

SA=

SB

SA

f (A0, B)

f (A, B0)

Delay

En
er

gy

D0

(A0, B0)

2.5

[1] V. Stojanovi et al., “Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply
Voltage Optimization, in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 211-214.

Solution: Equal Sensitivities

 Idea: trade energy via timing slack

E = SA · (D) + SB · D

At the solution point all sensitivities should be equal

Delay

En
er

gy

D0

D

f (A1, B)

2.6

f (A0, B)

f (A, B0)

(A0, B0)

Slide 2.7
Based on the presented energy and
delay models we can define the
sensitivity of each of the tuning
variables [2].

The formulas for sizing indicate
that the largest potential for energy
savings is at the point where the
design is optimized for minimum
delay. The design that is sized for
minimum delay has equal effective
fanouts, which means infinite
sensitivity to sizing. This makes
sense because at minimum delay no
amount of energy added through
sizing can further improve the

delay.

The power supply sensitivity is finite at the nominal point but decreases to zero when VDD
approaches VTH, because the delay approaches infinity.

Slide 2.8
The last parameter we would like to
explore is threshold voltage. Here,
the sensitivity is opposite to that of
supply voltage. At the reference
point it starts off low with very low
sensitivity and increases
exponentially as the threshold gets
reduced to zero.

The performance improves as
we decrease VTH, but the leakage
increases. If the leakage power is
nominally very small, we get the
speedup almost for “free”. The
problem is that the leakage power is
exponential in threshold and after a

while decreasing threshold becomes very expensive in energy.

Sensitivity to Sizing and Supply

 Gate Sizing (Wi) [2]

 Supply voltage (VDD) [2]

VTH VDD

VDD
ref

Sens(VDD)

0

for equal heff
(Dmin)

2.7

, , 1

/
/ ·

Sw i i

i ref eff i eff i

E W ec
D W h h

/ 1
2· ·

/ 1
Sw DD Sw v

DD d v

E V E x
D V D x

on TH
v

DD

V V
x

V

[2] D. Markovi et al., “Methods for True Energy-Performance Optimization,” IEEE J. Solid-State
Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

Sensitivity to Threshold Voltage

 Threshold voltage (VTH) [2]

Low initial leakage
speedup comes for “free”

0 VTH

VTH
ref

Sens(VTH)

2.8

0

/ ()
· 1

/ () ·
DD on THTH

Lk
TH d

V V VE V
P

D V V

[2] D. Markovi et al., “Methods for True Energy-Performance Optimization,” IEEE J. Solid-State
Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

24 Chapter 2

Circuit Optimization 25

Slide 2.9
We initialize our optimization
starting from a design which, for a
given delay, is the most energy-
efficient, and then trade off energy
and delay from that point. The
minimum delay point is one of the
points on the energy-efficient curve
and is convenient because it is well
defined.

We start from the minimum
delay achieved at the reference
supply and threshold voltages
provided by the technology. Then
we define a delay constraint, Dcon, by
specifying some incremental

increase in delay dinc with respect to the minimum delay Dmin. Under this delay constraint, the
minimum energy is found using supply and threshold voltages, gate sizing, and optional buffering.

Supply optimizations we investigate include global supply reduction, two discrete supplies, and
per-stage supplies. We limit supply voltage to only decrease from input to output of a block
assuming that low-to-high level conversion is done in registers. Sizing is allowed to change
continuously, and buffering preserves the logic polarity.

Slide 2.10
To illustrate circuit optimization,
we look at a few examples. In re-
examining circuit examples
representing common topologies,
we realize that they differ in the
amount of off-path loading and
path reconvergence. By analyzing
how these properties affect a circuit
energy profile, we can better define
principles for energy reduction
relating to logic blocks. We analyze
examples of an inverter chain,
memory decoder and tree adder
that illustrate all of these properties.

The inverter chain is a simple
topology with single path and geometrically increasing energy profile. The memory decoder is
another topology where the total number of gates increases geometrically. The memory decoder has
branching and inactive gates toward the output, which results in an energy peak in the middle of the
structure. Finally, we analyze the tree adder that has long wires, reconvergent fanout and multiple
active outputs qualified by paths of various logic depth.

Optimization Setup

 Reference circuit
– Sized for Dmin @ VDD

max, VTH
ref

– Known average activity

 Set delay constraint
– Dcon = Dmin · (1 + dinc / 100)

 Minimize energy under delay constraint
– Gate sizing, optional buffering
– VDD, VTH scaling

Dmin

2.9

Delay

En
er

gy

Circuit Optimization Examples

 Inverter chain

 Memory decoder
– Branching
– Inactive gates

 Tree adder
– Long wires
– Re-convergent paths
– Multiple active outputs

CL

3 15

CWm = 16 m = 4
m = 2

m = 1
n = 0 n = 12 n = 30 n = 255

S0

S15

(A0, B0)

(A15, B15)

Cin

2.10

(A15, B15)

Cin

(A0, B0)

S15

S0

addr
input

word
line

predecoder word driver

CL

Slide 2.11
The inverter chain is the most
commonly used example in sizing
optimizations. Because of its
widespread use the inverter chain
has been the focus of many studies.
When sized for minimum delay, the
inverter chain’s topology dictates
geometrically increasing energy
towards the output. Most of the
energy is stored in the last few
stages, with the largest energy in the
final load.

The plot shows the effective
fanout going over various stages
through the chain, for a family of

curves that correspond to various delay increments (0–50%). General result for the optimal
stage size, derived by Ma and Franzon [3], will be explained here by using the sensitivity analysis.
Recall the result from Slide 2.7: the sensitivity to gate sizing is proportional to the energy stored on
the gate, and is inversely proportional to the difference in effective fanouts. What this means is that,
for equal sensitivity in all stages, the difference in the effective fanouts must increase in proportion
to the energy of the gate. This indicates that the difference in the effective fanouts ends in an
exponential increase towards the output.

An energy-efficient solution may sometimes require a reduced number of stages. In this example,
the reduction in the number of stages is beneficial at large delay increments.

Slide 2.12
To further analyze energy-delay
optimization, this slide shows the
result of various optimizations
performed on the inverter chain:
sizing, global VDD, two discrete
VDD’s, and per-stage VDD (“c-VDD”
in the slide). The graphs show
energy reduction and sensitivity
versus delay increment. The key
concept to realize is that the
parameter with the largest
sensitivity has the largest potential
for energy reduction. For example,
at small delay increments sizing has
the largest sensitivity, so it offers
the largest energy reduction, but the

Inverter Chain: Sizing Optimization

 Variable taper achieves minimum energy
 Reduce the number of stages at large dinc

[3]

1 2 3 4 5 6 7
0

5

10

15

20

25

stage

ef
fe

ct
iv

e
fa

no
ut

, h
ef

f

0%

1%

10%

30%

dinc= 50%
nom
opt

2.11

ref
opt

2 1 1

1

·
1 ·

i i
i

i

W W
W

W

22· ·
·

e DD

ref W

K V
S

, , 1

i
W

eff i eff i

ec
S

h h

[3] S. Ma and P. Franzon, “Energy Control and Accurate Delay Estimation in the Design of CMOS
Buffers,” IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1150-1153, Sept. 1994.

Inverter Chain: Optimization Results

 Parameter with the largest sensitivity has the largest potential
for energy reduction
 Two discrete supplies closely approximate per-stage VDD

0 10 20 30 40 50
0

20

40

60

80

100

dinc (%)

en
er

gy
 re

du
ct

io
n

(%
) cW

gVdd
2Vdd
cVdd

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1.0

dinc (%)

S
en

si
tiv

ity
 (n

or
m

)

cW
gVdd
2Vdd

2.12

c-W
g-VDD
2-VDD

c-W
g-VDD
2-VDD
c-VDD

26 Chapter 2

Circuit Optimization 27

potential for energy reduction from sizing quickly falls off. At large delay increments, it pays to scale
the supply voltage of the entire circuit, achieving the sensitivity equal to that of sizing at around 25%
excess delay.

We also see from the graph on the left that dual supply voltage closely approximates optimal per-
stage supply reduction, meaning that there is almost no additional benefit of having more than two
discrete supplies for improving energy in this topology.

The inverter chain has a particularly simple energy distribution, which grows geometrically until
the final stage. This type of profile drives the optimization over sizing and VDD to focus on the final
stages first. However, most practical circuits like adders have a more complex energy profile.

Slide 2.13
The adder is an interesting
arithmetic block for DSP
applications, so let’s take a closer
look at this example. This slide
shows energy-delay tradeoff in a
64-bit Kogge-Stone tree adder.
Energy and delay are normalized to
the reference point, which is the
design sized for minimum delay at
nominal supply and threshold
voltage. Starting from the
reference point, by equalizing
sensitivity to W, VDD, and VTH we
can move down vertically and
achieve a 65 % energy reduction
without any performance penalty.

Equivalently, we can improve speed about by about 25 % without loss in energy.

To gain further insights into energy reduction, the energy map for the adder is shown on the
right for the reference and optimized designs. This adder is convenient for 3-D representation,
where the horizontal axes correspond to individual bit slices and logic stages. For example, a 64-bit
design requires (1 + log264 + 1 = 8 stages). The adder has propagate/generate blocks at the input
(first stage), followed by carry-merge operators (six stages), and finally XORs for the final sum
generation (last stage). The plot shows the impact of sizing optimization on reducing the dominant
energy peak in the middle of the adder in order to balance sensitivity of W with VDD and VTH.

The performance range due to tuning of circuit variables is limited to about ±30% around the
reference point. Otherwise, optimization becomes costly in terms of delay or energy. This can also
be explained by looking into values of the optimization variables.

Circuit-Level Results: Tree Adder

E-D space navigates architecture exploration

S(W) = 22
S(VTH) = 22
S(VDD) = 16

S(W) = 1
S(VTH) = 1
S(VDD) = 1

S(W)
S(VTH) = 0.2
S(VDD) = 1.5

D/Dref

E/
E r

ef

0 0.5 1 1.5

1.5

1

0.5

0

65%

ref

S 0

S 15

(A 0
, B

0
)

(A 15
, B

15
)

C in

Energy map

2.13

Slide 2.14
Physical limitations put constraints
on the values of tuning variables.
While all the variables are within
their bounds, their sensitivities are
the same. The reference case,
optimized for nominal delay, has
equal sensitivities. Here, the
sensitivity of 1 means “reference”
sensitivity. In case any of the
variables hits a constraint, its
sensitivity cannot be made equal to

left, speeding up the design requires
the supply to increase up to the
device failure limit. Near that point

supply has to be bounded and further speed-ups can be achieved most effectively through threshold
scaling, but with higher energy cost.

Slide 2.15
After VDD reaches its upper bound,
only the threshold and sizing
sensitivities are equalized in further
optimization. They are equal to 22
in the case of minimum achievable
delay. At the minimum-delay point,
sensitivity of VDD is 16, because no
additional benefit is available from
VDD for speed improvement. The
slope of the threshold vs. delay
increment line clearly indicates that
VTH has to work “extra hard”
together with W to further reduce
the delay.

Many people just choose a
subset of tuning variables to optimize. Choosing a variable with the largest sensitivity is the right
approach for single-variable optimization. A more refined heuristic is to use two variables – the
variable with the highest sensitivity and the variable with the lowest sensitivity – and exploit the
sensitivity gap by trading off timing slack as described in Slide 2.6 to minimize energy. For example,
in the tree adder we analyzed, one would exploit W and VTH in a two-variable approach.

A Look at Tuning Variables

 It is best when variables don’t reach their boundary values

reliability
limit

Sens(VDD) =
Sens(W) =
Sens(VTH) = 1

Limited range of tuning variables

Supply voltage Threshold voltage

2.14

50 25 0 25 50 75 100
Delay increment (%)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

V D
D

/
V D

Dre
f

50 25 0 25 50 75 100
Delay increment (%)

350

300

250

200

150

100

50

0

V T
H

(m
V)

A Look at Tuning Variables

 When a variable reaches bound, fewer variables to work with

Limited range of tuning variables

Sens(VDD) = 16
Sens(VTH) =
Sens(W) = 22

2.15

reliability
limit

Sens(VDD) =
Sens(W) =
Sens(VTH) = 1

50 25 0 25 50 75 100
Delay increment (%)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

V D
D

/
V D

Dre
f

50 25 0 25 50 75 100
Delay increment (%)

350

300

250

200

150

100

50

0

V T
H

(m
V)

Supply voltage Threshold voltage

28 Chapter 2

that of the rest. For example, on the

Circuit Optimization 29

Slide 2.16
Looking at the three examples
(inverter chain, memory decoder,
and adder) that represent a wide
variety of circuit topologies, we can
make general conclusions about
energy-delay optimization. The left
graph shows energy reduction
versus delay increment for these
three different circuit topologies,
which loosely define bounds on
energy reduction. We take the best-
case and worst-case energy
reduction across the three
examples, so we can observe
general trends.

Sizing is the most efficient at small incremental delays. To understand this, we can also take a
look at sensitivities on the right and observe that at the minimum delay point sizing sensitivity is
infinite. This makes sense because at minimum delay there is no amount of energy that can be spent
to improve the delay. This is consistent with the result from Slide 2.7. The benefits of sizing get
quickly utilized at about 20% excess delay. For larger incremental delays, supply voltage becomes the
most dominant variable. Threshold voltage has the smallest impact on energy because this
technology was not leaky enough, and this is reflected in its sensitivity. If we balance all the
sensitivities, we can achieve significant energy savings. A 10 % delay slack allows us to achieve 30–
70 % reduction in energy at the circuit level. So, peak performance is very power-inefficient and
should be avoided unless architectural techniques are not available for performance improvement.

Slide 2.17
It is interesting to analyze the values
of circuit variables for the examples
from Slide 2.10. The reference
design in all optimizations is sized
for minimum delay at nominal
supply and threshold voltages of
the technology. In this example, for
a 0.13- m technology, VDD

ref = 1.2
V, VTH

ref = 0.35 V. Tuning of
circuit variables is related to
balancing of the leakage and
switching components of energy.

The table represents the ratio of
the total leakage to switching energy
in the three circuit examples. We

see about two orders of magnitude difference in nominal leakage-to-switching ratio. This clearly
suggests that nominal technology parameters are not optimal for all circuit topologies. To explore

Vth

Vdd

W

(Vth
min)

(Vdd
 max)

(Vth
ref)

Tuning Variables and Sensitivity

 10% excess delay 30-70% energy reduction

W

Vdd
Vth

 solid: inverter chain
dashed: 8/256 decoder
 dotted: 64-bit adder

Adder

Peak performance is very power inefficient!

2.16

(VTH
min)

(VTH
ref)

VTH

VDD

W

VTH
VDD

W (V
TH ref)

(VDD
max)

0.5 0.75 1 1.25 1.5

D/Dref

100

101

102

103

104

105

Se
ns

iti
vi

ty

0

20

40

60

80

100

0 20 40 60 80 100

Delay increase (%)

En
er

gy
 re

du
ct

io
n

(%
)

Optimal Circuit Parameters

Topology Inv Add Dec
(ELk /ESw)ref 0.1% 1% 10%

Reference Design:
Dref (VDD

ref, VTH
ref)

VDD
max

VDD
min VTH

min

VTH
max

Reference/nominal parameters (VDD
ref, VTH

ref) are rarely optimal

2.17

0.8 1 1.2 1.4
D (Dref)

0.8 1 1.2 1.4
D (Dref)

0.8 1 1.2 1.4
D (Dref)

0
0.6

0.2
0.4
0.6
0.8
1

1.2

V D
Dop

t
(V

DD
re

f)

0.4
0.3
0.2
0.1
0

0.1
0.2

V T
Hop

t (
V)

0.6

0.5

w
to

top
t

(w
to

tre
f) 0.4

0.3

0.2

0.1

00.6

 Large variation in optimal parameters VDD
opt, VTH

opt, Wopt

that further, let’s now look at the optimal values of VDD, VTH, and W, normalized to the reference
case, in these circuits, as shown in this slide. The delay is normalized to minimum delay (at the
nominal supply and threshold voltages) in its respective circuit.

Plots on the left and middle graph show that, at nominal delay, supply and threshold are close to
optimal only in the memory decoder (red line), which has the highest initial leakage energy. The
adder has smaller relative leakage, so its optimal threshold has to be reduced to balance switching
and leakage energy, while the inverter has the smallest relative leakage, leading to the lowest
threshold voltage. To maintain circuit speed, the supply voltage has to decrease with reduction of
the threshold voltage.

The plot on the right shows the relative total gate size versus target delay. The memory decoder
has the largest reduction in size due to a large number of inactive gates. The size of inactive gates
also decreases by the same factor as that in active paths.

In the past, designers used to tune only one parameter, most commonly being supply voltage
scaling, in order to minimize energy for a given throughput. However, the only way to truly
minimize energy is to utilize all variables. This may seem like a complicated task, but it is well worth
the effort, when we consider potential energy savings.

Slide 2.18
This chapter has so far presented
sensitivity-based optimization
framework that equalizes marginal
costs for the most energy-efficient
design. Below are key results we
have been able to derive from this
framework.

First, sizing is most effective for
small delay increments while supply
voltage is better at large incremental
delays relative to the minimum-
delay design. We are going to
extensively use this result in the
synthesis based environment by
performing incremental

compilations to utilize delay slack.

We also learned that peak performance is very power inefficient: about 70 % energy reduction is
possible with only 20% relaxation in timing. We also learned that there is a limited performance
range of tuning variables so we need to consider other layers in the design abstraction to further
increase delay and energy efficiency.

Lessons from Circuit Optimization

2.18

 Sensitivity-based optimization framework
– Equal marginal costs Energy-efficient design

 Effectiveness of tuning variables
– Sizing is the most effective for small delay increments
– Vdd is better for large delay increments

 Peak performance is VERY power inefficient
– About 70% energy reduction for 20% delay penalty

 Limited performance range of tuning variables
– Additional variables for higher energy-efficiency

30 Chapter 2

Circuit Optimization 31

Slide 2.19
Energy-delay tradeoff in logic
blocks can extended hierarchically.
This slide shows an example of a
64-bit ALU. This is a simplified bit-
slice model of the ALU that uses
the Kogge-Stone tree adder from
Slide 2.13. Now we need to
implement input registers. This can
be done using a high-speed cycle-
latch based design or using a low-
power master-slave based design.
What is the optimal energy-delay
tradeoff in the ALU given the
energy-delay tradeoff in each of the
circuit blocks? Individual circuit

examples can be misleading because the overall energy cost of the system is what really matters.

Slide 2.20
In this case it actually pays off to
upsize lower activity blocks such as
adders and downsize flip-flops so
that we can more effectively utilize
the energy that is available to us.
Globally optimal curves for the
register and adder combine to
define the energy-delay curve for
the ALU. We find that the cycle
latch is best used for high
performance while the master-slave
design is more suitable for low
power.

What happens at the boundary is
that the adder energy increases to

create a delay slack that can be much more efficiently utilized by downsizing higher activity blocks
such as registers (this tradeoff was explained in Slide 2.6). As a result, sensitivity increases at the
boundary delay point. In other words, the slope of optimal energy-delay line in the ALU increases.
After re-optimizing the adder and register, their sensitivities become equal as shown on the bottom-
right plot. The concept of balancing sensitivities at the gate level also holds at the block level. This
is a nice property which allows us to formulate a hierarchical system optimization approach.

Choosing Circuit Topology

 64-bit ALU (Register selection)

2.19

R
E
G

R
E
G

Add
CL=32

Cin=2

Cin=1

b=8

D
QCp

S

Cp
(a) Cycle-latch (CL)

Cp
D

QClk Clk
QMSM

Clk1
SS

Clk1
(b) Static Master-slave Latch-pair (SMS)

Clk1

Clk1
Clk

Clk

Clk1
Clk

Cycle-latch (CL) Static Master-Slave Latch-Pair (SMS)

Add

 Given energy-delay tradeoff for adder and register (two options),
what is the best energy-delay tradeoff in the ALU?

Balancing Sensitivity Across Circuit Blocks

 Upsize lower activity blocks (Add)

2.20

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

CL SMS

Delay (FO4)

E
ne

rg
y

(n
or

m
.)

SMS
CL

Reg

Add

ALU

S a
dd

=
S R

eg
En

er
gy

Add

Reg

Slide 2.21
To achieve a globally optimal
result, we therefore expand circuit
optimization hierarchically by
decomposing the problem into
several abstraction layers. Within
each layer, we try to identify
independent sub-spaces so we can
exchange design tradeoffs between
these various layers. At the circuit
level, we minimize energy subject
to a delay constraint using gate
size, supply and threshold voltage.
The result is the optimal value of
these tuning parameters as well as
the energy-delay tradeoff. At the
micro-architectural level we have

more degrees of freedom: we can choose circuit topology, we can use parallelism/pipelining or time-
multiplexing, and for a given algorithm, number of bits and throughput. Finally, at the macro-
architecture level, we may also introduce interleaving and folding to deal with recursive and multi-
dimensional problems. Since architectural techniques affect design area, we also have to take into
account implementation area.

Slide 2.22
To provide motivation for
architectural optimization, let’s look
at an example of an 802.11a
baseband chip. The DSP blocks
operate with an 80 MHz clock
frequency. The chip performs
40 GOPS (GOPS = Giga
Operations per Second) and
consumes 200 mW, which is typical
power consumption for a baseband
DSP. The chip was implemented in
a 0.25- m CMOS process. Since
the application is fixed, the
performance requirement would
not scale with technology.

However, as technology scales, the speed of technology itself gets faster. Thus, this architecture
would be sub-optimal if ported to a faster technology by simply shrinking transistor dimensions.
The architecture would also need to change in response to technology changes, in order to minimize
the chip cost. However, making architectural changes incurs significant design time and increases
non-recurring engineering (NRE) costs. We must, therefore, find a way to quickly explore various
architectural realizations and make use of the available area savings in scaled technologies.

Hierarchical Optimization Approach

delay

throughput

par, t-mux

E-D trade-off

cct topology

E-D tradeoff

Vdd, Vth, W

of bits

algorithm

E

E
W
Vth
Vdd

parallel
pipeline
time-mux

interleaving
folding

Area

Macro Arch.

Micro Arch.

Circuit

2.21

Example: 802.11a Baseband

 Direct mapped architecture

 200 MOPS/mW
– 80 MHz clock!
– 40 GOPS
– Power = 200 mW
– 0.25 m CMOS

 The architecture has to track
technology

ADC/DAC
Viterbi

Decoder

MAC Core

Time/Freq
Synch

FFT
DMA

PCI

AGCFSM

[An 802.11a baseband processor]

2.22

32 Chapter 2

Circuit Optimization 33

Slide 2.23
To further illustrate the issue of
architecture design, let’s examine
several architectures for digital
baseband in a radio. This slide
shows energy efficiency (to be
defined in Chap. 4) versus clock
period in three digital processing
architectures: microprocessors,
programmable DSPs, and
hardwired logic. Digital baseband
functionality for a radio is typically
provided with direct-mapped,
hardwired logic. This approach
offers the highest energy-efficiency,
which is a prime concern in battery

operated devices. Another extreme is the heavily time-multiplexed microprocessor architecture,
which has the highest flexibility, but it is also the least energy efficient because of extra overhead to
support the time multiplexing.

If we take another look at these architectural choices along the horizontal axis, we see that the
clock speed required from direct-mapped architectures is significantly lower than the speed of
technology tailored for microprocessor designs. We can take this as an opportunity to further
reduce energy and area of chip implementations using architecture design.

Slide 2.24
As seen in the previous slide, there
is a large disparity in the required
clock speed for an application and
the speed of operation available by
the technology. In order to take
advantage of this disparity, we need
to tune circuit and architecture
variables. The challenge is to come
up with an optimal combination of
these variables for a given
application. Supply voltage scaling,
sizing and threshold voltage
adjustment can be used at the
circuit level, as discussed earlier in
this chapter. At the architectural

level, we have pipelining, parallelism etc. that can be used to exploit the available performance
margin. The goal is to reduce the performance gap in order to minimize energy per operation. The
impact of circuit-level variables on energy and delay can be clearly understood by looking at the
simple expressions for delay, leakage and switching components of energy. The next challenge is to

Wireless Baseband Chip Design

Microprocessors

Programmable
DSPs

Hardwired
Logic

GHz 100’s of MHz 10’s of MHz

Speed of technology

En
er

gy
 E

ffi
ci

en
cy

Clock Period

 Direct mapping is the most energy-efficient
 Technology is too fast for dedicated hardware

– Opportunity to further reduce energy and area

2.23

A Number of Variables to Consider

 How to optimally combine all variables?

Speed of technology (fast)

Clock Period

Required speed (slow)

sizing
VTH

VDD

time-multiplexingparallelism
pipelining

2 orders of magnitude (and growing…)
2.24

1
·

() d

DD

DD on TH

V
D

V V V W
0/ 3· · ·THV V

Lk DDE W e V T 2·Sw DDE W V

figure out how to work-in architectural variables and perform global optimization across circuit and
architecture levels. Also, how do we make the optimizations work within existing design flows?

Slide 2.25
This diagram illustrates algorithm,
architecture, and circuit design
levels. In a typical design flow, we
start with a high-level algorithm
model, followed by architectural
optimization, and further
optimizations at the circuit level.
The design starts off in
MATLAB/Simulink and converts
into a layout with the help of
Cadence and Synopsys CAD tools.
However, in order to ensure that
the final design is energy- and area-
efficient, algorithm designers need
to have feedback about power, area

and timing from the circuit level. Essentially, architecture optimizations ensure that algorithm
specifications meet technology constraints. Algorithm sample time and architectural clock rate are
the timing constraints used to navigate architecture and circuit optimizations, respectively. It is,
therefore, important to include hardware parameters in the algorithm model early in the design
process. This will be made possible with the hierarchical approach illustrated on Slide 2.19.

Slide 2.26
In high-level descriptions such as
MATLAB/Simulink, algorithms
can be modeled with realistic
latency and wordlength information
to provide a bit-true cycle-accurate
representation. The sample rate
can be initially chosen to map the
design onto FPGA for hardware
emulation. Further down the
implementation path, we have to
know speed, power and area
characteristics of the building
blocks in order to perform top-level
optimization.

As technology parameters
change with scaling, we need a way to provide technology feedback in a systematic manner that
avoids design iterations. Simulink modeling (as will be described in later chapters) provides a
convenient way for this architecture-circuit co-design.

Towards Architecture Optimization

Cadence

Simulink

RTL
Power

Area
Timing

Circuit
Optimization

DSP
Architectures

Algorithm
Modeling

E-D Tclk

TsampleE-A-D

2.25

Architectural Feedback from Technology

 Simulink hardware library implicitly carries information only
about latency and wordlength (we can later choose sample
period when targeting an FPGA)

 For ASIC flow, block characterization also has to include
technology features such as speed, power, and area

 But, technology parameters scale each generation
– Need a general and quick characterization methodology
– Propagate results back to Simulink to avoid iterations

2.26

34 Chapter 2

Circuit Optimization 35

Slide 2.27
To facilitate architecture-circuit co-
design, it is crucial to obtain speed,
power, and area estimates from the
circuit layer and introduce them to
Simulink to navigate architecture-
level changes. The estimates can be
obtained from the logic-level or
physical-level synthesis, depending
on the desired level of accuracy and
available simulation time.
Characterization of many blocks
may sound like a big effort, but the
characterization can be greatly
simplified by decomposing the
problem into simple datapaths at

the circuit level and choosing an adequate level of pipelining at the micro-architectural level.
Further, designers don’t need to make extensive library characterizations, but only characterize
blocks used in their designs.

Slide 2.28
The first step in technology
characterization is to obtain simple
energy-delay (E-D) relationships
with respect to voltage scaling.
This assumes that pipeline logic has
uniform logic depth and equal
sizing sensitivity so that supply
voltage scaling can be done globally
to match the sizing sensitivity. The
E-D tradeoff curve shown on this
slide can be generated for a fanout-
of-four inverter, a typical
benchmark for speed of logic,
because scaling of other CMOS
gates follows a similar trend. The

E-D curve serves as a guideline for the range of energy and delay adjustment that can be made by
voltage scaling. It also tells us about the energy-delay sensitivity of the design. At the optimal E-D
point, sizing and supply voltage scaling tradeoff curves have to be tangent, representing equal
sensitivity. As shown on the plot, the min-delay point has highest sensitivity to sizing and requires
downsizing to match supply sensitivity at nominal voltage. Lowering supply will thus require further
downsizing to balance the design.

Simple E-D characterizations provide great insights for logic and architectural adjustments. For
example, assume a datapath with LD logic stages where each stage has a delay T1 and let TFF be the
register delay. Cycle time Tclk can be expressed simply as: Tclk = LD·T1 + TFF. We can satisfy the

Architecture-Circuit Co-Design

HDL

L

Area
Power

Speed

behavioral

logical

physical

Area
Power

Speed

Post-layout

Pre-layout

Re- synthesis

Architectural
Feedback

Circuit
Optimization

DSP
Architectures

E-D Tclk

2.27

Datapath Characterization

En
er

gy

Delay0

Wopt @ VDD
refW

Min delay

Target delay

VDD
scaling

 Optimal design point
– Curves from W and VDD

tuning are tangent
(equal sensitivity)

 Goal: keep all pipelines at the
same E-D point

Circuit Level

2.28

 Balance tradeoffs due to gate size (W) and supply voltage (VDD)

equation with many combinations of T1 and LD by changing the pipeline depth and the supply
voltage to reach a desired E-D point. By automating the exploration, we can quickly search among
many feasible solutions in order to best minimize area and energy.

Slide 2.29
Architecture design is typically done
in a modular block-based approach.
The common parameter for DSP
hardware blocks is cycle time.
Hence, allocating the proper
amount of latency to each block is
crucial to achieve overall design
optimality. For example, an N-by-
N multiplier is about N times more
complex than an N-bit adder. This
complexity difference is reflected in
multiplier latency as shown on the
slide. With this characterization
flow, we can quickly obtain latency
versus cycle time for library blocks.

This way, we augment high-level Simulink blocks with library cards for area, power, and speed. This
characterization approach greatly simplifies top-level retiming (to be discussed in Chaps. 3, 9 and
11).

Slide 2.30
Energy-delay optimization at circuit
level was discussed. The
optimization uses sensitivity-based
approach to balance marginal
returns with respect to tuning
variables. Energy and delay models
from Chap. 1 allow for convex
formulation of delay-constrained
energy minimization. As a result,
optimal energy-delay tradeoff is
obtained by tuning gate size, supply
and threshold voltage. Sensitivity
theory suggests that gate sizing is
the most effective at small delays
(relative to the minimum-delay

point), supply voltage reduction is the most effective variable for medium delays and threshold
voltage is the most effective for long delays (around minimum-energy point). Circuit-level
optimization is limited to about ±30 % around the minimum delay; outside of this region
optimization becomes too costly either in energy or delay. To expand the optimization across

Cycle Time is Common for All Blocks

Simulink

Synopsys

RTL

netlist

Area
Power

Speed

Switch-level
accuracy

HSPICE

12

9

6

3

0
0 1 2 3

cycle time (norm.)

la
te

nc
y

mult
add

Area
Power

Speed

2.29

Summary

 Optimal energy-delay tradeoff obtained by tuning gate size,
supply and threshold voltage can be calculated by optimization
– Energy and delay models allow for convex formulation of delay-

constrained energy minimization
– Circuit-level energy-delay tradeoff allows for quick comparison

of multiple circuit topologies for a given logic function
 Insights from circuit optimization
– Minimum-delay design consumes the most energy
– Gate sizing is the most effective for small delays
– Supply voltage is the most effective for medium delays
– Threshold voltage is the most effective for large delays

 Circuit optimization is effective around min-delay; more degrees
of freedom (e.g. architectural) are needed for broader range of
performance tuning in an energy-efficient manner

2.30

36 Chapter 2

Circuit Optimization 37

broader range of performance, more degrees of freedom are needed. Next chapter discusses the use
of architectural-level variables for area-energy-delay optimization.

References

 V. Stojanovi et al. "Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and
Supply Voltage Optimization," in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 211-214.

 D. Markovi et al., "Methods for True Energy-Performance Optimization," IEEE J. Solid-
State Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

 S. Ma and P. Franzon, "Energy Control and Accurate Delay Estimation in the Design of
CMOS Buffers," IEEE J. Solid-State Circuits, vol. 29, no. 9, pp. 1150-1153, Sept. 1994.

Additional References

 R. Gonzalez, B. Gordon, and M.A. Horowitz, "Supply and Threshold Voltage Scaling for
Low Power CMOS," IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1210-1216, Aug. 1997.

 V. Zyuban et al., "Integrated Analysis of Power and Performance for Pipelined
Microprocessors," IEEE Trans. Computers, vol. 53, no. 8, pp. 1004-1016, Aug. 2004.

Slide 3.1

This chapter discusses architectural
techniques for area and energy
reduction in chips for digital signal
processing. Parallelism, time-
multiplexing, pipelining,
interleaving and folding are
compared in the energy-delay space
of pipeline logic as a systematic way
to evaluate different architectural
options. The energy-delay analysis
is extended to include area
comparison and quantify time-
space tradeoffs. So, the energy-
area-performance representation
will serve as a basis for evaluating

multiple architectural techniques. It will also give insight into which architectural transformations
need to be made to track scaling of the underlying technology for the most cost- and energy-
efficient solutions.

Slide 3.2

Three basic architectural techniques
are parallelism, pipelining, and time-
multiplexing. Figure (a) shows the
reference datapath with logic blocks
A and B between pipeline registers.
Starting from the reference
architecture, we can make
transformations into parallel,
pipelined, or time-multiplexed
designs without affecting the data
throughput.

Parallelism and pipelining are
used for power reduction. We
could introduce parallelism as
shown in Figure (b). This is

accomplished by replicating the input register and the datapath, and adding a multiplexer before the
output register. Parallelism trades increased area (blocks shaded in g ray) for reduced speed of the
pipeline logic (A and B are running at half the original speed), which allows for supply voltage
reduction to decrease power. Another option is to pipeline the blocks, as shown in Figure (c). An
extra pipeline register is inserted between logic blocks A and B. This lets blocks A and B run at half
the speed and also allows for supply voltage reduction, which leads to a decrease in power. The
logic depth is reduced at the cost of increased latency.

Time-multiplexing is used for area reduction, as shown in Figures (d) and (e). The reference case
shown in Figure (d) has two blocks to execute two operations of the same kind. An alternative is to

Basic Micro-Architectural Techniques

 Parallelism, pipelining, time-multiplexing

2
f

2
f

(a) reference

(c) pipeline (b) parallel

A B

A B B

BA

A

f f

f f f

f

A
f

(d) reference for time-mux (e) time-multiplex

f

A
f f

Af f

f f
2f 2f

3.2

with Borivoje Nikoli
University of California, Berkeley

Architectural Techniques

Chapter 3

39
 DOI 10.1007/978-1-4419-9660-2_3, © Springer Science+Business Media New York 2012

D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

40 Chapter 3

do the same by using a single hardware module, but at twice the reference speed, to process the two
data streams as shown in Figure (e). If the area of the multiplexer and demultiplexer is less than the
area of block A, time-multiplexing results in an area reduction. This is most commonly the case
since datapath logic is much more complex than a de/multiplexing operation.

Slide 3.3

To establish a baseline for
architecture study, let’s consider a
reference datapath which includes
an adder that adds two operands A
and B, followed by a comparator
that compares the sum to a third
operand C [1]. The critical-path
delay here is tadder + tcomparator, which is
equal to 25 ns, for example (this is a
delay for the 0.6- m technology
used in [1]). Let Cref be the total
capacitance switched at a reference
voltage VDD,ref =5V. The switching
power for the reference datapath is
fref · Cref · VDD,ref

2. Now, let’s see
what kind of tradeoffs can be made by restructuring the datapath by using parallelism.

Slide 3.4

Parallelism is now employed on the
previous design. The two modules
now process odd and even samples
of the incoming data, which are
then combined by the output
multiplexer. The datapath is
replicated and routed to the output
multiplexer. The clock rate for
each of the blocks is reduced by
half to maintain the same
throughput. Since the cycle time is
reduced, supply voltage can also be
reduced by a factor of 1.7. The
total capacitance is now 2.15Cref
including the overhead capacitance

of 0.15Cref . The total switching power, however, is (fre f/2) · 2.15Cref · (VDD, ref/1.7)2 0.36 Pref .
Therefore, over 60 % of power reduction is achieved without performance penalty by using a
parallel-2 architecture.

Parallel Datapath Architecture

 The clock rate of a parallel datapath can be reduced by half with
the same throughput as the reference datapath fpar = fref/2
– VDD,par = VDD,ref /1.7, Cpar = 2.15 · Cref

– Ppar = (fref/2) · (2.15 · Cref) · (VDD,ref/1.7)2 0.36·Pref

3.4

fclk /2
A
B
C

fclk /2
A
B
C

Z

fclk

Starting Design: Reference Datapath

 Critical-path delay tadder + tcomparator (= 25 ns) [1]

– Total capacitance being switched = Cref

– VDD = VDD,ref = 5 V
– Power for reference datapath = Pref = fref · Cref · VDD,ref

2

3.3

[1] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital Design,” IEEE J.
Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

Add

REG

fclk

A

Z

REGB

REGC

A>B?

Architectural Techniques 41

Slide 3.5

It should, however, be kept in mind
that parallelism adds latency, as
illustrated in this slide. The top half
of the slide shows the incoming
data stream A and the
corresponding output Z. The
design has a single-cycle latency, so
samples of Z are delayed by one
clock cycle with respect to samples
of A. The parallel-2 design takes
samples of A and propagates
resulting samples of Z after two
clock cycles. Therefore, one extra
cycle of latency is introduced.
Parallelism is, therefore, possible if

extra latency is allowed. This is the case in most low-power applications. Besides energy reduction,
parallelism can also be used to improve performance; if the clock rate for each of the blocks were
kept at the original rate, for example, then the throughput would increase by twofold.

Slide 3.6

The plot in this slide shows energy
per operation (Eop) versus
throughput for architectures with
varying degrees of parallelism [2].
We see that parallelism can be used
to reduce power at the same
frequency or increase the frequency
for the same energy. Squares show
the minimum energy-delay product
(EDP) point for each of the
architectures. The results indicate
that as the amount of parallelism
increases, the minimum EDP point
corresponds to a higher throughput
and also a higher energy. With an

increasing amount of parallelism, more energy is needed to support the overhead. Also, leakage
energy has more impact with increasing parallelism.

The plot also shows the increased performance range of micro-architectural tuning as compared
to circuit-level optimization. The reference datapath (min-delay sizing at reference voltage) is shown
as the black dot in the energy-delay space. This point is also used as reference for energy. The
reference design shows the tunability at the circuit level, which is limited in performance to ±30%
around the reference point as discussed in Chap. 2. Clearly, parallelism goes much beyond ±30 %
in extending performance while keeping the energy consumption low. However, the area and

Parallelism Adds Latency

A1 A2 A3 A4 A5

A1

A2

A3

A4

A5

Z1

Z1 Z2 Z3 Z4 Z5

Z2 Z3 Z4 Z5

Level of parallelism P = 2

time

3.5

Add

REG

fclk

A
Z

B

REG

fclk /2
A
B

fclk /2
A
B

Z

fclk

Increasing Level of Parallelism

Area: AP P · Aref

Throughput (1/FO4)

E o
p

(n
or

m
.)

Parallelism
 Improves throughput for

the same energy
 Improves energy for the

same throughput
Cost: increased area

Is having more parallelism always better?

3.6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

ref 2 3 4 5

Increasing
parallelism

[2]

[2] D. Markovi et al., “Methods for True Energy-Performance Optimization,” IEEE J. Solid-State
Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

performance benefits of parallelism come at the cost of increased area, which imposes a practical
(cost) limit on the amount of parallelism.

Slide 3.7

Area is not the only limiting factor
to increasing the level of
parallelism. Total energy also
increases at some point due to the
large impact of leakage. Let’s look
at the E-D tradeoff curve to explain
this effect. The total energy we
expend in a parallel design is the
sum of switching energy of the
active block, the leakage energy of
all the parallel blocks and the
energy incurred in the multiplexing.
Even if we neglect the multiplexing
overhead, (which is a fair
assumption for complex blocks),

the increase in leakage energy at high levels of parallelism would imply that the minimum-energy
point now shifts to a higher voltage. The total energy to perform one operation with higher levels of
parallelism is thus higher, since the increased leakage and cost of overhead pull the energy per
operation to a higher value.

Slide 3.8

Let us now use the same example
to look into pipelining. We
introduce latency via a set of
pipeline registers to cut down the
critical path of tadder + tcomparator to the
maximum of (tadder, tcomparator). The
clock frequency is the same as the
original design. Given the reduced
critical path, the voltage can now be
reduced by a factor of 1.7 (same as
in the parallelism example on Slide
3.4). The capacitance is slightly
higher than the reference
capacitance to account for the
switching energy dissipated in the

pipeline registers. The switching power of the pipelined design is thus given by fref · (1.15Cref)-

 · (VDD,ref/1.7)2 0.39Pref . Pipelining, therefore, can also be used to reduce the overall power
consumption.

Pipelined Datapath Architecture

 Critical-path delay is less max (tadder , tcomparator)
– Keeping clock rate constant: fpipe = fref

– Voltage can be dropped VDD,pipe = VDD,ref/1.7
– Capacitance slightly higher: Cpipe = 1.15 · Cref

– Ppipe = fref · (1.15 · Cref) · (VDD,ref /1.7)2 0.39 · Pref

3.8

Add

REG

fclk

A

Z

REGB

REGC

A>B?

REG
REG

42 Chapter 3

More Parallelism is Not Always Better

Supply voltage, VDD

To
ta

l E
n

e
rg

y

Reference

Parallel

 Leakage and overhead start to dominate at high levels of
parallelism, causing minimum energy (dot) to increase

 Optimum voltage also increases with parallelism

3.7

·tot Sw Lk overheadE E N E E  

[J. M. Rabaey, UCB]

Architectural Techniques 43

Slide 3.9

Pipelining is one of the key
techniques used in microprocessor
design. This slide shows a practical
design: a superscalar processor
from IBM, which illustrates the
effect of pipelining on power and
performance. This example is
taken from the paper by Srinivasan
et. al. (see Slide 3.13 for complete
reference). A latch-level accurate
power model in the PowerTimer
tool is developed for a power-
performance analysis. The analysis
accounts for power of several
processor units in hold and

switching modes. The approach to model energy is illustrated on the slide. The processor can be
analyzed as a set of sub-units (micro-architectural-level structures), where each sub-unit consists of a
number of macros. Each macro can execute an operation on input SF Data or be in the Hold
mode. Power consumption of all such macros in the processor gives an estimate of the total power.

Slide 3.10

The timing model for the processor
is based on the delay per stage of
the pipeline including register
(latch) delay. The processor front
end dispatches operations into four
units: fixed-point (FXU), floating-
point (FPU), load/shift (LSU), and
branching unit (BRU). Each of
these units is modeled at the
datapath level by the number of
stages (s), logic delay (t), and latch
delay per stage (c). The time per
stage of pipeline is Ti = ti/si + ci.
This gate-level model is used to
calculate the time it takes to

perform various operations by the processor units.

Pipelining: Microprocessor Example

 Superscalar processor
– Determine optimal pipeline depth and target frequency

 Power model
– PowerTimer toolset developed at IBM T.J. Watson
– Methodology to build energy models based on results of

circuit-level power analysis tool

Power = C1 · SF + HoldPower
Power = C2 · SF + HoldPower

Power = CN · SF + HoldPower

. . .

Macro 1
Macro 2

Macro N

Sub-units (Arch-level structures)

SF Data

Energy Models

Power Estimate

3.9

Timing: Analytical Pipeline Model

 Time per stage of pipeline: Ti = ti/si + ci

Front End

FXU FPU LSU BRU

Stages: s1 s2 s3 s4
Logic delay: t1 t2 t3 t4
Latch delay/stage: c1 c2 c3 c4

3.10

Slide 3.11

Using the model from the previous
slide, we can now estimate the time
for completing instructions and
taking into account instruction
dependence. For instance, the
fixed-point unit may be stalled if an
instruction m depends on
instruction (m – i). Hence, the time
to complete a fixed-point operation
is the sum of the time to complete
the operation without stalls, T1,
time to clear a stall within FXU,
Stallfxu-fxu·T1, time to clear a stall in
FPU, Stallfxu-fpu·T2, and so on for all
functional units which may have

co-dependent instructions. Suppose that parameter u is the fraction of time that a pipeline has
instructions arriving from the front end (0 indicates no utilization, 1 indicates full utilization). Based
on the time it takes to complete an instruction and the pipeline utilization, we can calculate
throughput of a processor as highlighted on the slide [3]. Lower pipeline utilization naturally results
in a lower throughput and vice versa. Fewer stalls reduce the time per instruction and increase
throughput.

Slide 3.12

Simulation results from the study
are summarized here. Relative
performance versus the number of
logic stages (logic depth) for a
variety of metrics was investigated.
The metrics include performance in
billion instructions per second
(BIPS), various degrees of power-
performance tradeoffs, and power-
aware optimization (that maximizes
BIPS3/W). The results show that
performance is maximized with
shallow logic depth (LD = 10). This
is in agreement with earlier
discussion about pipelining

(equivalent to shortening logic depth), when used for performance improvement. The situation in
this processor is a bit more complex with the consideration of stalls, but general trends still hold.

Power is minimized for LD = 18. Therefore, more logic stages are needed for lower power. Other
applications such as TPC-C require 23 logic stages for power minimization while performance is
maximized for LD = 10.

Timing: Analytical Pipeline Model

 Time to complete FXU operation in presence of stalls
Tfxu = T1 + Stallfxu-fxu · T1 + Stallfxu-fpu · T2 + … + Stallfxu-bru · T4

Stallfxu-fxu = f1 · (s1 1) + f2 · (s1 2) + …
fi is conditional probability that an FXU instruction m depends
on FXU instruction (m i)

Throughput = u1/Tfxu + u2/Tfpu + u3/Tlsu + u4/Tbru

ui fraction of time pipe i has instructions arriving from FE of
the machine ui = 0 unutilized pipe, ui = 1 fully utilized

3.11

[3] V. Srinivasan et al., “Optimizing Pipelines for Power and Performance,” in Proc. IEEE/ACM Int.
Symp. on Microarchitecture, Nov. 2002, pp. 333-344.

[3]

Simulation Results

 Optimal pipeline depth was determined for two applications
(SPEC 2000, TPC-C) under different optimization metrics
– Performance-aware optimization: maximize BIPS
– Power-aware optimization: maximize BIPS3/W

 More pipeline stages are needed for low power (BIPS3/W)

3.12

Application Max BIPS Max BIPS3/W
Spec 2000 10 FO4 18 FO4

TPC-C 10 FO4 25 FO4

 Choice of pipeline register also impacts BIPS
– Overall BIPS performance improved by 20% by using a register

with 2 FO4 delay as compared to a register with 5 FO4 delay

44 Chapter 3

Increasing the logic depth reduces the power, due to the decrease in register power overhead.

Architectural Techniques 45

The performance also depends on the underlying datapath implementation. A 20% performance
variation is observed for designs that use latches with delay from 2 FO4 to 5 FO4 delays. Although
the performance increases with faster latches, the study showed that the logic depth at which
performance is maximized increases with increasing latch delay. This makes sense, because more
stages of logic are needed to compensate for longer latch delay (reduce latch overhead).

This study of pipelining showed several important results. Performance-centric designs require
shorter pipelines than power-centric designs. A ballpark number for logic depth is about 10 for
high-performance designs and about 20 for low-power designs.

Slide 3.13

This slide summarizes the benefits
of pipelining and parallelism for
power reduction for the two
examples presented in Slides 3.3–
3.9 [1]. Adding one level of
parallelism or pipelining to the
reference design has a similar
impact on power consumption
(about 60% power reduction). This
assumes that the reference design
operates at its maximum frequency.
Power savings achieved are
consistent with energy-delay
analysis from Chap. 2. Also,
since the delay increase is 100 %,

supply reduction is the most effective for power reduction. The gains summarized in this slide
could have been even larger had gate sizing been used together with VDD reduction. The inclusion
of sizing, however, would complicate the design since layout would need to be modified to include
new sizing of the gates. When parallelism and pipelining are combined, even larger energy/power
savings can be achieved: the slide shows 80 % power reduction when both parallelism and pipelining
are employed.

Architecture Summary (Simple Datapath)

Architecture type Voltage Area Power
Reference datapath
(no pipelining of parallelism) 5 V 1 1

Pipelined datapath 2.9 V 1.3 0.39
Parallel datapath 2.9 V 3.4 0.36
Pipeline-Parallel 2.0 V 3.7 0.2

 Pipelining and parallelism relax performance of a datapath,
which allows voltage reduction and results in power savings
 Pipelining has less are overhead than parallelism, but is generally

harder to implement (involves finding convenient logic cut-sets)

3.13

[1] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital Design,” IEEE J.
Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

Results from [1]

46 Chapter 3

Slide 3.14

Let us further analyze parallelism
and pipelining using the energy-
delay space for pipeline logic. The
block diagrams show reference,
parallel and pipeline
implementations of a logic function.
Parallelism simply slows down the
computation by introducing
redundancy in area. It directs
operands to parallel branches in an
interleaved fashion and later
combines them at the output.
Pipelining introduces an extra
pipeline registers to relax timing
constraints on blocks A and B so

that we can then scale the voltage to reduce energy.

The energy-delay behavior of logic blocks during these transformations is very important to
understand, because pipeline logic is a fundamental micro-architectural component. From a
datapath logic standpoint, parallelism and pipelining are equivalent to moving the reference energy-
delay point toward reduced Energy/Op and increased Time/Op on the energy-delay curve. Clearly,
the energy saving would be the largest when the reference design is in the steep-slope region of the
energy-delay curve. This corresponds to the minimum-delay design (which explains why parallelism
and pipelining were so effective in previous examples). It is also possible to reduce energy when the
performance requirement on the reference design is beyond its minimum achievable delay as
illustrated on Slide 3.6. In that case, parallelism would be needed to meet the performance first,
followed by the use of voltage scaling to reduce energy. How is the energy minimized?

Slide 3.15

Minimum energy is achieved when
the leakage energy is about one half
of the switching energy, ELk/ESw
0.5. This ratio can be analytically
derived, as shown in the box [4].
The equation states that the optimal
ELk/ESw depends on the logic depth
(LD), switching activity (), and the
technology process (parameter K).
The minimum is quite broad, due
to the logarithmic formula, with
total energy being within about
10% of the minimum for ELk/ESw
from 0.1 to 10.

These diagrams show reference,
parallel and pipeline implementations of an ALU. In this experiment, VTH was swept in increments

Parallelism and Pipelining in E-D Space

2
f

2
f

(a) reference

(c) pipeline (b) parallel

A B

A B B

BA

A

f f

f f f

f

reference parallel/pipeline

parallel

reference

pipeline

Time/op

En
er

gy
/o

p It is important to link
back to E-D tradeoff

3.14

Minimum Energy: ELk/ESw 0.5

Topology Inv Add Dec
(ELk/ESw)opt 0.8 0.5 0.2

 Large (ELk/ESw)opt

 Flat Eop minimum

Optimal designs have high leakage

nominal
parallel
pipeline

Vth
ref-180mV

0.81Vdd
max

Vth
ref-95mV

0.57Vdd
max

Vth
ref-140mV

0.52Vdd
max

3.15

2
opt

Lk

dSw

E
LE ln K

 
 

    
 

ELeakage/ESwitching

E o
p

/
E o

pre
f
(V

DD
re

f ,
V T

Hre
f)

10 2
0

10 1 100 101

0.2

0.4

0.6

0.8

1

[4] V. Stojanovi et al., “Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply
Voltage Optimization,” in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 211-214.

[4]

Architectural Techniques 47

of 5mV and for each VTH, the optimal VDD and sizing were found to minimize energy. Each point,
hence, has an ELk/ESw ratio that corresponds to minimum energy. The plot illustrates several points.
First, the energy minimum is very flat and roughly corresponds to equalizing the leakage and
switching components of energy. This is the case in all three architectures. The result coincides
with the three examples from the circuit level: inverter chain, adder, and memory decoder, as shown
in the table. Second, parallel and pipeline designs are more energy efficient than the reference
design, because their logic runs slower and voltage scaling is possible. Third, the supply voltage at
the minimum-energy point is lower in the pipeline design than in the parallel design, because the
pipeline design has smaller area and less leakage. This is also evidenced by a lower VTH in the
pipeline design.

Optimal designs, therefore, have high leakage when the total energy is minimized. This makes
sense for high-activity designs where we can balance the ELk/ESw ratio to minimize energy. In the
idle mode ESw = 0, so the energy minimization problem reduces to leakage minimization.

Slide 3.16

Time multiplexing does just the
opposite of pipelining/parallelism.
It executes a number of parallel
data streams on the same
processing element (A). Due to the
parallel-to-serial conversion at the
input of block A, logic block A
works with up-sampled data (2·f)
to maintain external throughput.
This imposes a more aggressive
timing constraint on logic block A.
The reference design, hence, moves
toward higher energy and lower
delay in the E-D space. Since the
hardware for logic is shared, the

area of the time-multiplexed design is reduced.

Time Multiplexing

reference

time-mux

A
f

(a) reference for time-mux (b) time-multiplex

f

A
f f

Af f

f f
2f 2f

time-muxreference

Time/op

En
er

gy
/o

p

3.16

Slide 3.17

We frequently encounter parallel
data in signal processing algorithms
such as those found in multi-carrier
communication systems or medical
applications. The example shown
in the upper figure shows N
processing elements (PEs) that
process N independent streams of
data. Given the speed of nano-
scale technologies, the processing
element can work much faster than
the application requirement. Under
such conditions we can time-
interleave parallel data streams on
the same hardware in order to take

advantage of the difference in application speed requirements and the speed of the technology. The
interleaving approach is used to save hardware area.

Parallel-to-serial (P/S) conversion is applied to the incoming data stream to time-interleave the
samples. The processing element in the interleaved architecture now runs at a rate N-times faster to
process all incoming data streams. A serial-to-parallel (S/P) converter then splits the output data
stream back into N parallel channels. It is important to note that extra pipeline registers need to be
introduced for the interleaved processing element.

Slide 3.18

Let us consider a simple example of
a processing element to illustrate
interleaving. We assume a simple
add-multiply operation and two
inputs C1 and C2.

The processing element shown
in this slide is a two-stream
interleaved implementation of the
function 1/(1 a·z 1). Two input
streams at a rate fs are interleaved at
a rate 1/2fs. The key point of
interleaving is to add an extra
pipeline stage (re d) as a memory
element for the stream C2. This
extra pipeline register can be

pushed into the multiplier, which is convenient because the multiplier now needs to operate at a
higher speed to support interleaving. Interleaving, thus, means up-sampling and pipelining of the
computation. It saves area by sharing datapath logic (add, mult). In recursive systems, the total loop
latency has to be equal to the number of input sub-channels to ensure correct functionality.

Data-Stream Interleaving

SVDSVDSVDSVDSVDSVDSVDSVDSVDPE

Interleaved Architecture

N blocks

N N

fsymbol

PE

fsymbol fsymbol

P/S S/P

N · fsymbol

N

fsymbol fsymbol

N

… …

PE too fast
Large area

Reduced area
P/S overhead
Pipelined

PE = recursive operation

3.17

PE Performs Recursive Operation

 Interleave = up-sample & pipeline

fs

a

c1(k + 1), c1(k)

fs

c2(k + 1), c2(k)

1/fs 1/fs

2fs

c2(k + 1), c1(k + 1), c2(k), c1(k)

1/fs

1/2fs

2fs

3.18

×

+

×

+

×

+

a

a

48 Chapter 3

Architectural Techniques 49

Slide 3.19

The example in this slide is an N
data stream generalization of the
previous example.

The initial PE that implements
H(z) = 1/(1 c·z 1) is now
interleaved to operate on N data
streams. This implies that N – 1
additional registers are added to the
original single-channel design. Since
the design now needs to run N-
times faster, the extra registers can
be used to pipeline the adder and
multiplier. This could result in
further performance improvement
or energy reduction. The number

of pipeline stages pushed into the adder/multiplier is determined in such a way as to keep uniform
logic depth for all paths. If, for a given cycle time, N is greater than the number of registers needed
to pipeline the adder and multiplier, b = N – a – m extra registers are needed to balance the latency
of the design. Data-stream interleaving is applicable for parallel data processing.

Slide 3.20

Folding, which is similar to data-
stream interleaving in principle, is
used for time-serial data processing.
It involves up-sampling and
pipelining of recursive loops, like in
data-stream interleaving. Folding
also needs an additional data
ordering step (the mux in the
folded architecture) to support
time-serial execution. Like
interleaving, folding also reduces
area. As shown in the slide, a
reference design with N PEs in
series is transformed to a folded
design with a single PE. This is

possible if the PE can run faster than the application requires, so the excess speed can be traded for
reduced area. The folded architecture operates at a rate N-times higher than the reference
architecture. The input to the PE is multiplexed between the external input and PE’s output.

Data-Stream Interleaving Example

Recursive operation:
z(k) = x(k) + c ·z(k – 1)

N data streams:

bm

c

a

xN … x2 x1

zN … z2 z1

time index k

y1 y2 … yN

time index k – 1

z

a + b + m = N
N · fclk

fclk

c

z(k)x(k)

y(k – 1)
x1, x2, …, xN

Extra b registers
to balance latency

3.19

×

+

… …
…

…
…

…

×

+

Folding

PE

Folded Architecture

N blocksfsymbol

PE

…

fsymbol

N · fsymbol

…

PE too fast
Large area

Reduced area
Highly pipelined

PE = recursive operation

PE

…

0

1

N · fsymbol

…

fsymbol

N

1
2

3.20

50 Chapter 3

Slide 3.21

This example illustrates folding of
16 data streams representing
frequency sub-carriers in a multi-
input multi-output (MIMO)
baseband DSP. Each stream is a
vector of dimensionality four

 rate fclk. The PE performs
recursive operations on the sub-
carriers (PE* indicates extra
pipelining inside the PE in order to
accommodate all sub-carriers). We
can take the output of the PE block
and fold it over in time back to its
input or select the incoming data
stream y1 by using the life-chart on

the right. The 16 sub-carriers, each carrying a vector of real and imaginary data, are sorted in time
and space, occupying 16 consecutive clock cycles to allow folding by 4. This amount of folding
corresponds to four antennas in a MIMO system.

Slide 3.22

Both interleaving and folding
introduce pipeline registers to store
internal states, but share pipeline
logic to save overall area. We can
use this simple area model to
illustrate area savings. Both
techniques introduce more area
corresponding to the states, but
share the logic area. Timing and
energy stay the same because in
both cases we do pipelining and up-
sampling, which basically brings us
back to the starting point. Adding
new pipeline registers raises the
question of how to optimally

balance the pipeline stages (retiming). Retiming will be discussed at the end of this chapter.

Folding Example

16 data streams
data sorting

16 clk cycles

y2(k)y3(k)y4(k)

c1c16

y1(k)

s=0s=1s=1s=1

PE*

4fClk

in0

1

s

y1(k)
in

y1(k)

y2(k)y3(k)

y4(k)

 Folding = up-sampling & pipelining
– Reduced area (shared datapath logic)

c1c16 c2

3.21

Area Benefit of Interleaving and Folding

 Area: A = Alogic + Aregisters

 Interleaving or folding of level N
– A = Alogic + N · Aregisters

Time/op

En
er

gy
/o

p

up-sample pipeline

 Timing and Energy stay the same

3.22

sampled at

Architectural Techniques 51

Slide 3.23

The energy-delay tradeoff in
datapath logic helps explain
architectural transformations. To
include area, we plot the energy-
area tradeoff beside the energy-
delay tradeoff [5]. The energy axis
is shared between the energy-area
and energy-delay curves. This way,
we can analyze energy-delay at the
datapath level and energy-area at
the micro-architecture level. The
energy-delay tradeoff from the
datapath logic drives energy-area
plots on the left. The E-D tradeoff
can be obtained by simple VDD

scaling, as shown in this slide. The reference point indicates a starting design for architecture
transformations. The energy-area-delay framework shown in this slide is a simple guideline for
architectural transformations, which will be described next.

Slide 3.24

Pipelining and parallelism both
relax the timing constraint on the
pipeline logic and they map roughly
to the same point on the energy-
delay line. Voltage is scaled down
to reduce energy per operation, but
the area increases as shown on the
left. Area increases more in the
parallel design than in the pipeline
design. The energy-area tradeoff is
very important design consideration
the system, because energy relates
to the battery life and area relates to
the cost of silicon.

Architectural Transformations

VDD scaling

reference

DelayArea 0

reference

Energy

 Procedure:
move toward desired E-D point while minimimizing area [5]

3.23

[5] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University
of California, Berkeley, 2006.

Architectural Transformations (Cont.)

 Parallelism & Pipelining
– reduce Energy, increase Area

reference
pipeline,

reference

pipelineparallel
parallel

0 DelayArea

Energy

3.24

VDD scaling

Slide 3.25

In contrast to pipelining and
parallelism, time multiplexing
requires datapath logic to run faster
in order to process many streams
sequentially. Starting from the
reference design, this means shorter
time available for computation.
Voltage and/or sizing need to
increase in order to achieve faster
delay. As a result of resource
sharing, the area of the time-
multiplexed design is reduced as
compared to the reference design.
The area reduction comes at the
expense of increased energy-per-

operation.

Slide 3.26

Interleaving and folding reduce the
area for the same energy by sharing
the logic gates. Both techniques
involve up-sampling and
interleaving, so there is no time
slack available to utilize and, hence,
the supply voltage remains
constant. That is why interleaving
and folding map back to the
reference point in the energy-delay
space, but move toward reduced
area in the energy-area space.

We can use these architectural
techniques to reach a desired
energy-delay-area point and this

slide shows a systematic way of how to do it.

Architectural Transformations (Cont.)

 Interleaving & Folding
– const Energy, reduce Area

time-mux

reference
pipeline,intl,

time-mux

reference

pipelineparallel
parallelfold

intl,
fold

0 DelayArea

Energy

3.26

VDD scaling

Architectural Transformations (Cont.)

 Time multiplexing
– increase Energy, reduce Area

time-mux

reference
pipeline,

time-mux

reference

pipelineparallel
parallel

0 DelayArea

Energy

3.25

VDD scaling

52 Chapter 3

Architectural Techniques 53

Slide 3.27

We can also use the sensitivity
curve to decide on which
architectural transformation to use.
The plot shows energy-per-
operation (Eop) versus time-per-
operation (Top) for an ALU design.
The reference design is made such
that energy-delay sensitivities are
balanced so that roughly 1% of
energy increase corresponds to 1%
of delay reduction (and vice versa).
This point has sensitivity S = 1.

In the S >1 region, a small
decrease in time-per-operation
costs a significant amount of

energy. Hence, it would be better to move back to longer Top by using parallelism/pipelining and
save energy.

In the S<1 region, a small reduction in energy corresponds to a large increase in delay. Thus we
can use time multiplexing to move to a slightly higher energy point, but save on area.

Slide 3.28

Here is another way to look into
area-energy-performance tradeoff.
This graphs plots energy-per-
operation versus time-per-operation
for various implementations of a
64-bit ALU. Reference, parallel and
time-multiplexed designs are
shown. The numbers indicate the
relative area of each design (2–4 for
parallelism, 1/5-1/2 for time
multiplexing) as compared to the
reference design (Aref = 1).

Suppose that energy is limited to
Eop (green line). How fast can we
operate? We can see that

parallelism is a good technique for improving throughput while time multiplexing is a good solution
for low throughput when the required delay per operation is long.

When a target performance (Ttarget) is given, we choose the architecture with the lowest area that
satisfies the energy budget. For the max Eop given by the green line, we can use time multiplexing
level 5 that has 1/5 Aref. However, if the maximum Eop is limited to the purple line, then we can only

Energy-Area Tradeoff

Max Eop

1 1
2

1
3

1
4 1

5

234

Ttarget

A = Aref
1
5

A = Aref
1
3

64-b ALU

High throughput: Parallelism = Large Area

Low throughput: Time-Mux = Small Area
3.28

log (Top)

lo
g

(E
op

)
Back to Sensitivity Analysis

small Top

with Eop 

S > 1

small Eop

with Top 

S < 1

parallelism
good to

save energy
3.27

Top (norm.)

E o
p

(n
or

m
.)

time-mux
good to
save area

use time multiplexing by level 3, so the area increases to 1/3 Aref .

Therefore, parallelism is good for high-throughput applications (requires large area) and time-
multiplexing is good for low-throughput applications (requires small area). The “high” and “low”
are relative to the speed of technology.

Slide 3.29

Essentially, by employing time-
multiplexing and parallelism, we are
trading off energy for area. This
plot shows the energy-area tradeoff
for different throughput
requirements. The lines show
points of fixed throughput ranging
from Top

ref/4 to 4Top
ref. Higher

throughput means larger area (the
use of parallelism). For any given
throughput, an energy-area tradeoff
can be made by employing various
levels of time-multiplexing (low
area, high energy) or parallelism
(low energy, high area).

Slide 3.30

An important issue to consider with
pipelining-based transformations is
how many cycles of latency to
allocate to each DSP block.
Remember, pipelining helps
performance, but we also need to
balance logic depth within a block
to maximize performance out of
our design. This step is called
retiming and involves moving
existing registers around. This
becomes particularly challenging in
recursive designs when registers
need to be shifted around loops.
To simplify the problem, it is very

important to assign the correct amount of latency to each block and retime feed-forward blocks.

DSP block characterization for latency vs. cycle time is shown on the slide. In a given design, we
have blocks of varying complexity which take different number of cycles to propagate input to
output. The increased latency of the complex block comes from the motive to balance pipeline
depths for all paths in the block. Once all the logic depths are balanced, then we can globally scale
supply voltage on locally sized logic pipelines. In balanced datapaths, design optimization consists of
optimizing a chain of gates (i.e. circuit optimization, which we have learned how to do in Chap. 2).

It is Basically a Time-Space Tradeoff

0.1 1 10

1

Aop / Aop
 ref

E
op

 /
E

op re
f

4T
op
 ref

3T
op
 ref T

op
 ref /3

T
op
 ref /4

T
op
 ref

3.29

Another Issue: Block Latency / Retiming

 Goal: balance logic depth within a block

Speed
Power
Area

La
te

nc
y

Cycle time0

mult

add

 Select block latency to achieve
target TClk

– Balances pipeline logic
depth

 Apply W and VDD scaling to the
underlying pipelines

Target
Tclk

Micro-Architecture Level

3.30

54 Chapter 3

Architectural Techniques 55

Slide 3.31

Supply voltage scaling is an
important variable for energy
minimization, so we need to include
it in our block characterization
flow. This is done by translating
timing specifications for logic
synthesis to a more aggressive
target, so that the design can
operate with a reduced voltage.
The amount of delay vs. voltage
scaling is estimated from gate-level
simulations [5].

On the left, we have a graph that
plots an E-D curve for a fanout-4
inverter for a target technology.

From synthesis, we have the cycle time and latency as shown on the right. Given a cycle time target,
we select the latency for all building blocks. For instance, in the plot shown on the slide, for a unit
cycle time (normalized), the multiplier has a latency of 8 and the adder has a latency of 2 in order to
meet the delay specification. Now, suppose that the target delay needs to be met at supply voltage
of 0.6 V. Since libraries are characterized at a fixed (reference) voltage, we need to account for the
delay margin in synthesis. For example, if the cycle time of adder at 0.6V is found to be four units,

the target cycle time for synthesis at 1V would

constraints of chip synthesis tools.

Slide 3.32

Architecture techniques for direct
and recursive algorithms are
presented. Techniques of
parallelism and pipelining can be
used to reduce energy for the same
performance or, equivalently,
improve performance for the same
level of energy per operation. Study
of a practical processor showed that
performance-centric designs require
shallower pipelines while power-
centric designs require deeper
pipelines. Optimization of energy
subject to a delay constraint showed
that optimal designs have balanced

leakage and switching components. This is intuitively clear because otherwise one could trade one
type of energy for another to achieve further energy reduction. Techniques of interleaving and
folding involve up-sampling and pipelining of recursive loops to share logic area without impacting

Including Supply Voltage Scaling

 Characterize blocks with predetermined wordlength [5]

– Translate timing specification to a target supply voltage
– Determine optimal latency for a given cycle time

Area
Power

Speed

12

9

6

3

0
0 1 2 3

Cycle time (norm.)

La
te

nc
y

mult

add

(b)

Target
speed

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

Delay (norm.)

E
ne

rg
y

(n
or

m
.) Target speed

(nominal Vdd)

(a)

Synthesized blocksSimulated FO4 inverter
(Vdd scaling) (nominal Vdd)

Desired point
(optimal Vdd)

a = 2

m = 8

1 V

0.6 V

Target speed

Target speed
(nominal VDD)

(VDD scaling) (reference VDD)

3.31

[5] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University
of California Berkeley, 2006.

Summary

 Architecture parallelism and pipelining can be used to reduce
power (improve energy efficiency) by voltage scaling
– Equivalently, performance can be improved for the same

energy per operation
 Performance-centric designs (that maximize BIPS) require shorter

(fewer FO4 stages) logic pipelines
 Energy-performance optimal designs have about equal leakage

and switching components of energy
– Otherwise, one can be traded for another for further energy

reduction
 Architecture techniques for direct (parallelism, pipelining) and

recursive (interleaving, folding) systems can be analyzed in area-
energy-performance plane for compact comparison
– Latency (number of pipeline stages) is dictated by cycle time

3.32

and if the delay at 0.6 V is 5x the delay at 1V, then
be assigned as 4/5= 0.8 units. This way, we can incorporate supply voltage optimization within

power and performance. Architectural examples emphasizing the use of parallelism and time-
multiplexing will be studied in the next chapter to show energy and even area benefits of parallelism.

References

 A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, "Low-Power CMOS Digital Design,"
IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484, Apr. 1992.

 D. Markovi et al., "Methods for True Energy-Performance Optimization," IEEE J. Solid-
State Circuits, vol. 39, no. 8, pp. 1282-1293, Aug. 2004.

 V. Srinivasan et al., "Optimizing Pipelines for Power and Performance," in Proc. IEEE/ACM
Int. Symp. Microarchitecture, Nov. 2002, pp. 333-344.

 R.W. Brodersen et al., "Methods for True Power Minimization," in Proc. Int. Conf. on Computer
Aided Design, Nov. 2002, pp. 35-42.

 D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis,
University of California, Berkeley, 2006.

Additional References

 K. Nose and T. Sakurai, "Optimization of VDD and VTH for Low-Power and High-Speed
Applications," in Proc. Asia South Pacific Design Automation Conf., (ASP-DAC) Jan. 2000, pp.
469-474.

 V. Zyuban and P. Strenski, "Unified Methodology for Resolving Power-Performance
Tradeoffs at the Microarchitectural and Circuit Levels," in Proc. Int. Symp. Low Power
Electrionics and Design, Aug. 2002, pp. 166-171.

 H.P. Hofstee, "Power-Constrained Microprocessor Design," in Proc. Int. Conf. Computer
Design, Sept. 2002, pp 14-16.

56 Chapter 3

Slide 4.1

This chapter studies architecture
flexibility and its implication on
energy and area efficiency. Having a
flexible architecture would be nice.
It would be convenient if we could
design a chip and program it to do
whatever it needs to do. There
would be no need for optimizations
prior to any design decisions. What
is the cost of flexibility? What are
we giving up? How much more
area, power, etc?

This chapter provides answers
to those questions. First, energy-
and area-efficiency metrics for DSP

computations will be defined, and then we will study how architecture affects energy and area
efficiency. Examples of general-purpose microprocessors, programmable DSPs, and dedicated
hardware will be compared. The comparison for a number of chips will show that architecture
parallelism is the key for maximizing energy (and even area) efficiency.

Slide 4.2

The main issue is determining
how much flexibility to include, how
to do it in the most efficient way
and how much it would cost [1].
There are good reasons to make
flexible designs, and we will discuss
the cost of doing it in this chapter.
However there are different ways to
provide flexibility. Flexibility has in
some sense become equal to
software programmability. There
are lots of ways to do flexibility, and
software programmability is only
one of those.

Architecture Flexibility

Chapter 4

57 DOI 10.1007/978-1-4419-9660-2_4, © Springer Science+Business Media New York 2012
D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 4.3

There are several good reasons for
flexibility:

A flexible design can serve
multiple applications. By selling one
design in large volume, the cost of
the layout masks can be greatly
reduced. This applies to Intel’s and
TI’s processors, for instance.

Another reason is that we are
unsure of specifications or can’t
make a decision. This is the reason
flexibility is one of the key factors
for cell phone companies, for
example. Flexibility is so important

because they have to delay the decisions until the last possible minute. People who are making the
decisions on what the features, standards, etc. will be won’t make a decision until they absolutely
have to. If the decision can be delayed until software design stage, then the most up-to-date version
would be available and that will have the best sales.

Despite the fact that dedicated design could provide orders of magnitude better energy efficiency
than DSP processors, the DSP parts still sell in large volumes (on the order of a million chips a day).
For the DSPs the main reason flexibility is so important is backwards compatibility. Software is so
difficult to do, so difficult to verify, that once it is done, people don’t want to change it. It actually
turns out that software is not flexible and easy to change. Customers are attracted by the idea of
getting new hardware that is compatible with legacy code.

Building dedicated chips is very expensive. For a 90-nm technology, the cost for a mask set is
over $1 million and even more for advanced technologies. If designers do something that may
potentially be wrong, that scares people.

Slide 4.4

We need some metrics to determine
the cost of flexibility.

Let’s use a power metric, which
is for thermal limitations. This is
how many computations (number of
atomic operations) we do per mW.

An energy metric tells us how
much a set of operations cost in
energy. In other words, how much
we can do with one battery. The
energy is measured in the number of
operations per Joule. Energy issue
is a battery issue, whereas

58 Chapter 4

 59

operations/mW is a power issue.

We also need a cost metric, which is equal to the area of a chip.

Finally, performance requirements need to be met. We will assume that designs meet
performance metrics and we look at the other metrics.

Slide 4.5

The metrics are going to be defined
around operations. An operation is
an algorithmically interesting
computation, like a multiply, add or
delay. It is related to the function an
algorithm performs. This is
different from an instruction. Often
we talk about MIPS (millions of
instructions per second) and we
categorize complexity by how many
instructions it takes. Instructions
are tied to a particular
implementation, a particular
architecture. If we talk about
operations, we want to get back to

what we are trying to do (algorithm), not to the particular implementation. So, in general it takes
several instructions to do one operation. We are going to base ourselves around operations.

MOPS is millions of OP/sec (OP = operation). This is a rate at which operations are being
performed.

Nop is number of parallel operations per clock cycle. This is an important number because it tells
us the amount of parallelism in our hardware. For each clock cycle, if we have 100 multipliers and
they each contribute to an algorithm, we have an Nop of 100 in that clock cycle, or that chip has a
parallelism of 100.

Pchip is the total power of the chip, the area of the chip * Csw (Csw is switched capacitance, some
average value of capacitance and its activity that’s being switched each cycle per unit area). Some
parts of the chip will be changing rapidly, so all that capacitance will be linearly factored in. Other
parts will be changing slowly, so that capacitance will be weighted down, because the activity factor
is lower. Csw = activity factor * Capacitance of gates, as explained in Chap. 1.

Csw is equal to switched capacitance/mm2. Solving for Csw yields power of the chip divided by
area of the chip, divided by VDD

2, divided by fclk. Csw is the average capacitance over the chip. To
find the power of the chip, Csw needs to multiply area of the chip, the clock rate, and VDD

2. The
question is how Csw changes between different variations of the design?

Achip is the total area of the chip.

Aop is the average area of each operation. So if we take Nop (the number of parallel operations in
each clock cycle), divide that by the area of the chip, this tells us how much area each parallel
operation takes.

Architecture Flexibility

60 Chapter 4

The idea is to figure out what the basic metrics are so we can see how good a design is. How do
we compare different implementations and see which ones are good?

Slide 4.6

Energy efficiency is the number of
useful OPs divided by the energy
required to do them. So if we have
1000 operations, we know how
many nJ it takes to do them, and
therefore we can calculate the
energy efficiency. Energy efficiency
is the OP/nJ, the average number of
Joules per operation. Joules are
power * time (Watt * s). OP/sec
divided by nJ/sec gives
MOPS/mW. Therefore, if we
calculate OP/nJ, it is exactly the
same as MOPS/mW. This implies
that the energy metric is exactly the

same as the power metric. Therefore, power efficiency and energy efficiency are actually the same.

Slide 4.7

Now we can compare different
designs and answer the question of
how many mW does it take to do
one million operations or how many
nJ per operation.

 61

Slide 4.8

This slide summarizes a number of
chips from ISSCC, top international
conference in chip design, over a 5-
year period (1996–2001). Only chips
for 0.18µm to 0.25µm were analyzed
(because technology will have a big
effect on these numbers). In this
study, there were 20 different chips.
The chips which had all the
numbers needed for calculating Csw,
power, area and OPs were chosen.
Eight of the chips were
microprocessors; the DSPs are
another set of chips – software
programmable with extra hardware

to support the particular domain they were interested in (multimedia, graphics, etc); the final group
is dedicated chips – hard-wired, do-one-function chips. How does MOPS/mW change over these
three classes?

Slide 4.9

The y-axis is energy efficiency, in
MOPS/mW or nJ/op on a log
scale, and the x-axis indicates the
chip analyzed. The numbers range
from 0.01 to about 0.1 MOPS/mW
for microprocessors. The general
purpose DSPs (still software
programmable, so quite flexible),
are about 10 to 100 times more
efficient than the general purpose
microprocessors, so this parallelism
is having quite an effect – a factor
of 10. The dedicated chips are
going up another couple orders of
magnitude. Overall, we can

observe a factor of 1000 between dedicated chips and software-programmable chips. This number
is sometimes intuitively clear when people say there are just some things you don’t do in software.
For a really fast bit manipulation, for example, you would not think to do it in software.

We had many good reasons for software programmability, but at a cost higher by a factor of
1000. We can’t be trading off things that are so different. There are other reasons for doing high
levels of flexibility, but it is not going to come from engineers optimizing the area or energy
efficiency. The numbers are too different.

Energy Efficiency (MOPS/mW or OP/nJ)

4.9

Microprocessors
General

Purpose DSPs

~3 orders of
magnitude!

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

0.01

0.1

1

10

100

1000

En
er

gy
 E

ff
ic

ie
nc

y
(M

O
PS

/m
W

)
Architecture Flexibility

Slide 4.10

Let’s look at the components of
MOPS/mW. Operations per
second: Nop is the number of parallel
operations per clock cycle. If we
want to look at MOPS, we take the
clock rate times the number of
parallel operations. Parallelism is
the key to understanding energy and
area efficiency metrics.

Power of the chip is equal to the
same formula we had in Slide 4.5.

If we put in the values for MOPS
and take that ratio (MOPS/Pchip), we
end up with 1/(Area per operation

per clock cycle * Csw * VDD
2). (Aop * Csw) is the amount of switched capacitance per operation. For

example, consider having 100 multipliers on a chip. The chip area divided by 100 will give Aop.
Take Csw (area cap/unit area for that design), that gives the average switched cap per op, times VDD

2
would be the average power per op. 1 over that is the MOPS/mW.

Let’s look at the three components, VDD, Csw, and Aop , and see how they change between these

Slide 4.11

Supply voltage could be lower for
the general purpose microprocessor
than for the dedicated chips. The
actual reason is that parts run faster
if they are run at higher voltages. If
microprocessors run at higher
voltages, the chips would burn up.
Microprocessors run below the
voltages they can be run at.
Dedicated chips use all the voltage
they can get because they don’t
have a power problem in terms of
heat sinking on a chip. Therefore,
it is not VDD

2 that is causing the
different designs to be so different.

From Chap. 3, you might think it is voltage scaling that is making the difference. It is not.

Supply Voltage, VDD

4.11

Microprocessors
General

Purpose DSPs Dedicated

Supply voltage isn’t the cause of the difference.
(it’s actually a bit higher for the dedicated chips)

MOPS/mW = 1 / (Aop · Csw · VDD
2)

1
Chip Number

V D
D

(V
)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

three architectures.

62 Chapter 4

 63

Slide 4.12

What about Csw? It is the
capacitance per unit area * activity
factor. The CPU is running very
fast, which gets hot, but the rest of
the chip is memory. The activity
factor of that memory would be
very low, since you are not
accessing all that memory.
However, Csw for the
microprocessor is actually higher,
despite the fact that most of the
chip is not doing much. Dedicated
chips have the lowest Csw, despite
the fact that all the chips are
executing every cycle. Why?

Essentially, a microprocessor is time multiplexing to do lots of tasks and there is big overhead
associated with time multiplexing. To run logic at 2GHz, there are clocks that are buffered, big
drivers (the size of the drivers is in meters), and huge transistors. That leads to big capacitance
numbers. With time multiplexing, high-speed operation, and long busses, as well as the necessity to
drive and synchronize the data, a lot of power is required.

What about fanout, where you drive buses that end up not using that data? When we look at
microprocessor designs of today that try to get more parallelism, we see that they do speculative
execution, which is a bad thing for power. You spawn out 3 or 4 guesses for what the next
operation should be, perform those operations, figure out which one is going to be used, and throw
away the answer to the other 3. In an attempt to get more parallelism, the designers traded off
power. When power limited, however, designers have to rethink some of these techniques. One
idea is the use of hardware accelerators. If we have to do MPEG decoding, for example, then it is
possible to just use an MPEG decoder in hardwired logic instead of using a microprocessor to do
that.

Switched Capacitance, Csw (pF/mm2)

4.12

Microprocessors

General
Purpose DSPs Dedicated

Csw is lower for dedicated, but only by a factor of 2-3

MOPS/mW = 1 / (Aop · Csw · VDD
2)

1
Chip Number

C s
w

(p
F/

m
m

2)

110

90

70

50

30

10
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Architecture Flexibility

Slide 4.13

So if it is not VDD or Csw, it has to be
the Aop. A microprocessor can only
do three or four operations in parallel.

every one of the parallel units is
being executed. Aop is equal to 100’s
of mm2 per operation for a
microprocessor, because you only
get one operation per clock cycle.
Dedicated chips give 10’s or 100’s of
operations per clock cycle, which
brings Aop down from hundreds of
mm2 per op down to 1/10 of mm2
per op. It is the parallelism
achievable in a dedicated design that

makes them so efficient.

Slide 4.14

Energy is not everything. The
other part is cost. Cost is equal to
area. How much area does it take
to do a function? What is the best
way to reduce area? It may seem
that the best way to reduce area is
to take a bit of area and time
multiplex it, like in the von
Neumann model. When von
Neumann built his architecture
over 50 years ago, his model of
hardware was that an adder
consumed a rack. A register was
another rack. If that is a model of
hardware, you don’t think about

parallelism. Instead, you think about time sharing each piece of hardware. The first von Neumann
computer was a basement, and that was just one ALU. Chips are cost/mm2. Cost is more often
more important than energy. So wouldn’t the best way to reduce cost be to time multiplex?

Let’s look at Power PC, the NEC DSP chip, and the MUD chip (multi-user detection chip done
at Berkeley) to gain some insight into the three architectures.

Let’s Look at Some Chips to
Actually See the Different Architectures

4.14

MUD

We’ll look at one from each category…

PPC

NEC
DSP

Microprocessors

General
Purpose DSPs

Dedicated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

0.01

0.1

1

10

100

1000

En
er

gy
 E

ff
ic

ie
nc

y
(M

O
PS

/m
W

)

We took the best numbers – assuming

64 Chapter 4

 65

Slide 4.15

Slide 4.16

Let’s take the NEC DSP chip,
which has MOPS/mW of 7 (70
times that of the Power PC). It has
4 DSP units, each of which can do 4
parallel operations. Therefore, it
can do 16 ops/clock cycle, which is
equivalent to 8 times more
parallelism than the PPC. The NEC
DEC chip has a 50 MHz clock, but
it can do 800 MOPS, whereas for
the PPC with a 450 MHz clock, it
can do 900 MOPS. That is the
power of parallelism. Aop is 5.3
mm2. Area efficiency and energy
efficiency are a lot higher for this

chip. We see some shared memory on the chip. This is a wasted area, just passing data back and
forth between these parallel units. Memories are not very efficient. 80% of the chip is operational,
whereas in the microprocessor only a fraction of the chip building blocks (see previous slide) are
doing operations.

Let’s look at the Power PC.
MOPS/mW = 0.13. The processor
is a 2-way superscalar consisting of
an integer unit and a floating-point
unit, so it executes 2 operations
each cycle. The clock rate is
450MHz, so the number of real-
time instructions is 900 MIPS.
Here, we have blurred the line
between instructions and
operations. Let’s say instruction =
operation for this microprocessor.
Aop = 42 mm2 per operation.

Architecture Flexibility

Slide 4.17

For the dedicated chip, there are 96
ops per clock cycle. At 25 MHz,
this chip computes 2400MOPS.
We have dropped the clock rate
but ended up with three times more
throughput, so clock rate and
throughput have nothing to do
with each other. Reducing clock
rate actually improves throughput
because more area can be spent to
do operations. Aop is 0.15 mm2, a
much smaller chip. Power is 12
mW. The key to lower power is
parallelism.

Slide 4.18

Parallelism is probably the foremost
architectural issue – how to provide
flexibility and still retain the
area/energy efficiency of dedicated
designs. A company called
Chameleon systems began working
on this problem in the early 2000’s
and won many awards for their
architecture. FPGAs are optimized
for random logic, so why not
optimize for higher logic – adders,
etc? They were targeting the TI
DSP chips and their chips didn’t
improve fast enough. They had just
the right tools to get flexibility for

this DSP area that works better than an FPGA or TI DSP – they still did not make it. Companies
that do the general purpose processors like TI know their solution isn’t the right path, and they’re
beginning to modify their architecture, make dedicated parts, move towards dedicated design, etc.
There should probably be a fundamental architecture like an FPGA that is reconfigurable that
somehow addresses the DSP domain – that is flexible yet efficient. It is a big time opportunity.

We would argue that the basic problem is time multiplexing. To try to use the same architecture
over and over again is at the root of the problem [2]. It is not that it shouldn’t be used in some
places, but to use it as the main basic architectural strategy seems to be overdoing it.

66 Chapter 4

 67

Slide 4.19

Let’s look at MOPS/mm2, area
efficiency. This metric is equivalent
to the chip cost. You may expect
that parallelism would increase cost,
but that is not the case. Let’s look
at the same examples and compare
area efficiency for processors, DSP
chips, and dedicated chips.

Slide 4.20

You would think that with all that
time multiplexing you would get
more MOPS/mm2. The plot shows
area efficiency on a log scale for the
example chips. Microprocessors
achieve around 10 MOPS/mm2.
DSPs are getting a little better, but
not much. Dedicated, some
designs do a lot better, some don’t.
The low point is a hearing aid that
uses a very low voltage, so this gets
very low area efficiency due to
reduced processing speed. In
general, it is orders of magnitude
more area efficient to use

parallelism and time multiplex very little. That is also very surprising. You would think the ALU,
overdesigned to be 32 or 64 bits, while the dedicated chips are 12 or 16 bits, would be the most area
efficient. What causes the area inefficiency in microprocessors? To be more flexible you have to pay
an area cost. Signals from the ALU need to get to different places so busses are ran all over the
place whereas in dedicated you know where everything is. In flexible designs, you also have to store
intermediate values. The CPU is running very fast and you have to feed data constantly into it.
There is all sorts of memory all over that chip. Memory is not as fast as the logic, so we put in
caches and cache controllers. A major problem is that technology improves the speed of logic much
more rapidly than it does memory. All the time multiplexing and all the controllers create lots of
area overhead.

The overhead of flexibility in processor architectures is so high that there are about two orders of
magnitude of area penalty as compared to dedicated chips.

Surprisingly, the Area Efficiency
Roughly Tracks the Energy Efficiency

4.20

Microprocessors

General
Purpose DSPs Dedicated

The overhead of flexibility in processor architectures is so high that
there is even an area penalty

~2 orders of
magnitude

1
Chip Number

Ar
ea

 E
ff

ic
ie

nc
y

(M
O

PS
/m

m
2) 10000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1000

100

10

1

Architecture Flexibility

Slide 4.21

There is no hardware/software
tradeoff. The cost of flexibility is
extremely high. What we want is
something more flexible that can do
a lot of different things that is
somehow near the efficiency of
these highly optimized parallel
solutions. Part of the solution has
to do with high levels of parallelism.

References

 R.W. Brodersen, "Technology, Architecture, and Applications," in Proc. IEEE Int. Solid-State
Circuits Conf., Special Topic Evening Session: Low Voltage Design for Portable Systems, Feb.
2002.

 T. A.C.M. Claasen, "High Speed: Not the Only Way to Exploit the Intrinsic Computational
Power of Silicon," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1999, pp. 22-25.

68 Chapter 4

Part II

DSP Operations and Their Architecture

Slide 5.1

This chapter reviews number
representation and DSP arithmetic.
It starts with floating-point number
representation. Fixed-point
representations are then introduced,
as well as related topics such as
overflow and quantization modes.
Basic implementations of add and
multiply operations are shown as a
baseline for studying the impact of
micro-architecture on switching
activity and power.

Slide 5.2

The chapter topics include
quantization effects, floating-point
and fixed-point arithmetic. Data
dependencies will be exploited for
power reduction, which will be
illustrated on adder and multiplier
examples. Adders and multipliers
are core operators of DSP
algorithms. We will look into gate-
level implementation of these
operations and analyze their
performance and energy.

Arithmetic for DSP

Chapter 5

Chapter Overview

 Number systems

 Quantization effects

 Data dependencies

 Implications on power

 Adders and multipliers

5.2

71
 DOI 10.1007/978-1-4419-9660-2_5, © Springer Science+Business Media New York 2012

D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 5.3

Let’s start the discussion with a
high-level symbolic abstraction of
the variables [1]. For example,
variable a is the sum of the constant
 and variable b, a = + b. This is

a notation with infinite precision. It
is convenient for symbolic calculus,
and it is often very easy to
understand. Although such a
representation is suitable for
algorithm development, it is
impractical for physical realization.
The hardware cost to implement
the calculation of a can vary greatly
depending on the desired level of

accuracy. Hence, we need to study various options and their practical feasibility.

Slide 5.4

Floating point is a commonly used
representation in general processors
such as CPUs. It has very high
precision and serves well for
algorithm study and validation.
There are several standards for
floating-point numbers; the table
on this slide [2] shows the IEEE
754 standard. The value is
represented using a sign, fraction,
exponent, and bias bits. The single-
precision format uses 32 bits, out of
which 1 is used for the sign, 8 for
the exponent and the remaining 23
for the fraction. A bias of 127 is

applied to the exponent. The double-precision format requires 64 bits and has greater accuracy.

Number Systems: Algebraic

 High-level abstraction
 Infinite precision
 Often easier to understand
 Good for theory/algorithm development
 Hard to implement

5.3

Algebraic Number
e.g. a = + b

[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley,
2004.

[1]

Number Systems: Floating Point

5.4

Value = (1)Sign × Fraction × 2(Exponent – Bias)

IEEE 754 standard Sign Exponent Fraction Bias
Single precision [31:0] 1 [31] 8 [30:23] 23 [22:0] 127

Double precision [63:0] 1 [63] 11 [62:52] 52 [51:00] 1023

 Widely used in CPUs
 Floating precision
 Good for algorithm study and validation

[2] J.L. Hennesy and D.A. Paterson, Computer Architecture: A Quantitative Approach, (2nd Ed),
Morgan Kaufmann, 1996.

[2]

72 Chapter 5

DSP Arithmetic 73

Slide 5.5

As an example of floating-point
representation, we look at the 10-
bit representation of the constant .
The sign bit is zero, since is
positive. The fractional and
exponent parts are computed using
weighted bit-sums, as shown in the
first bullet. The truncated value for
 in this representation is 3.125.

Since a small number of bits are
used in this representation, the
number deviates from the accurate
value (3.141592654…) even at the
second decimal point. The IEEE
754 standard formats with 32 or 64

bits would provide a much higher precision.

Slide 5.6

Algorithm developers use floating-
point representation, which also
serves as a reference for algorithm
performance. After the algorithm is
developed, it is refined for fixed-
point accuracy. Let’s look into the
properties of the floating-point
representation for the IEEE 754
standard.

The first property is the
rounding of the “half-way” result to
the nearest available even number.
For example, 3.05 rounds to 3.0
(even number). Otherwise,
rounding goes to the nearest

number (round-up if the last digit that is being discarded is greater than 5; round-down if the last
digit that is being discarded is less than 5).

The second property concerns the representation of special values such as NaN (not a number),
 (infinity), and . These numbers may occur as a result of arithmetic operations. For instance,

taking the square root of a negative number will result in a NaN, and any function performed on a
NaN result will also produce a NaN. Readers may be familiar with this notation in MATLAB, for
example. Division by zero results in , while division by yields 0. We can, however, take as a
function argument. For example, arctan() gives /2.

Example of Floating-Point Representation

5.5

A non-IEEE-standard floating point

0 1 1 0 0 0 11 0 1

Frac ExpSign

=

Bias = 3

= (1)0 × (1×2 1 + 1×2 2 + 0×2 3 + 0×2 4 + 1×2 5 + 0×2 6)

× 2 = 3.125(1×22 + 0×21 + 1×20 3)

Value = (1)Sign × Fraction × 2(Exponent – Bias)

 Calculate

 Very few bits are used in this representation, which results in low
accuracy (compare to actual value = 3.141592654…)

Floating-Point Standard: IEEE 754

 Property #1
– Rounding a “half-way” result to the nearest float

(picks even)

Example:
6.1 × 0.5 = 3.05 (base 10, 2 digits)

3.0 3.1 (base 10, 1 digit)

 Property #2
– Includes special values (NaN, ,)

Examples:
sqrt(0.5) = NaN, f(NaN) = NaN [check this in MATLAB]
1/0 = , 1/ = 0
arctan(x) /2 as x  arctan() = /2

even

5.6

Slide 5.7

A very convenient technique that
aids in the representation of out-of-
range numbers is the use of
“denormals.” Denormals allow
representation of numbers smaller
than 10Emin, where Emin is the
minimum exponent. Instead of
flushing the result to 0, a
significand < 1.0 is used. For
instance, consider a decimal system
with 4 significant digits and

x = 1.234 · 10Emin.
Denormals are numbers where the
result is less than 10Emin. The use of
denormals guarantees that if two

numbers, x and y, are equal then the result of their subtraction will be zero. The reverse also holds.
A flush-to-0 system does not satisfy the reverse condition. For example, if x = 1.256 · 10Emin and y =
1.234 · 10Emin, the result of x– y in the flush-to-0 sysetm will be 0 although x and y are not equal.
The use of denormals effectively allows us to approach 0 more gradually.

Slide 5.8

There are four different rounding
modes that can be used. The
default mode is to round to the
nearest number; otherwise user can
select rounding toward 0, , or .

Floating-Point Standard: IEEE 754 (Cont.)

 Property #3
– Uses denormals to represent the result < 1.0  eEmin

Emin = min exponent

Example:
base 10, 4 significant digits, x = 1.234  10Emin

denormals: x/10 0.123  10Emin

x/1,000 0.001  10Emin

x/10,000 0
x = y  x – y = 0

flush-to-0: x = 1.256  10Emin, y = 1.234  10Emin

x – y = 0.022  10Emin = 0 (although x y)

denormal number (exact computation)

Flush to 0
Use significand < 1.0 and Emin
(“gradual underflow”)

5.7

Floating-Point Standard: IEEE 754 (Cont.)

 Property #4
– Rounding modes

Nearest (default)
Toward 0
Toward
Toward

5.8

the number

74 Chapter 5

DSP Arithmetic 75

Slide 5.9

This slide gives an example of a
single-precision 32-bit floating-
point number. According to the
standard, 1 bit is reserved for the
sign, 8 bits for the exponent, and 23
bits for the fraction, and the bias is
127. In the case that the fraction is
< 1, the significand is calculated as
1 + fraction. The numerical
example in the slide shows the use
of these techniques. The bit-wise
organization of the sign, exponent,
and fraction fields is shown. A sign
bit of 1 indicates a negative
number, the exponent of 129 is

offset by the bias of 127, and the fractional part evaluates to 0.25. Since the fractional part is < 1,
the significand is 1.25. We calculate the result as 1.25 · 22 = 5.

Slide 5.10

Now, let’s consider fixed-point 2’s
complement representation. This is
the most common fixed-point
representation used in DSP
arithmetic. The slide shows a bit-
wise organization of in the 2’s
complement notation. The sign bit
= 0 indicates a positive number.
Besides the sign bit, there are
integer and fractional bits that
correspond to data range and
accuracy. This representation is
often expressed in the (WTot, WFr)
format, where WTot and WFr are the
total and fractional number of bits,

respectively. A simple weighted bit-sum is used to calculate the value as illustrated on the slide.

Fixed-point arithmetic is very convenient for implementation due to a reduced bit count as
compared to floating-point systems. The fixed-point representation has a much narrower dynamic
range than floating-point representation, however. The implementation also has to consider
overflow (large positive or negative numbers) and quantization (fine-precision numbers) effects. 2’s
complement is commonly used in hardware due to its simplicity and low numerical complexity.

Representation of Floating-Point Numbers

 Single precision: 32 bits
– Sign: 1 bit
– Exponent: 8 bits
– Fraction: 23 bits

Fraction < 1  Significand = 1 + Fraction
– Bias = 127

Example:
1 10000001 0100…0

sign exponent fraction
129 – 127 0.012 = 0.25

1.25  22 = 5

(significand = 1.25)

5.9

Fixed Point: 2’s Complement Representation

 WInt and WFr suitable for predictable dynamic range
– o-mode (overflow, wrap-around)
– q-mode (trunc, roundoff)

 Economic for implementation

5.10

Overflow mode Quantization mode

= 0×23 + 0×22 + 1×21 + 1×20 + 0×2 1 + 0×2 2 + 1×2 3 + 0×2 4 + 0×2 5 + 1×2 6

= 3.140625

fractional

0 0 1 1 0 1 00 0 1

WInt WFrSign

=

Slide 5.11

Another fixed-point representation
is unsigned magnitude. When the
overflow bit is “1”, it indicates
negative values. For instance, in 8-
bit representation, 12910 =
100000012, which indicates 1. No
additional bit-wise arithmetic is
required for negative numbers like
in 1’s or 2’s complement.

MATLAB has a number of
built-in functions for number
conversion. The reader is
encouraged to read the tool help
pages. Some of these functions are
listed on this slide. Additionally,

Simulink has a graphical interface for fixed-point types. The example shows an unsigned format
with a total of 10 bits of which 6 bits are fractional.

Slide 5.12

Commonly used fixed-point
representations are summarized
here. Sign-magnitude is the most
straightforward approach based on
a sign bit and magnitude bits. 2’s
complement and 1’s complement
numbers require bit-wise inversion
to convert between positive and
negative numbers. 2’s complement,
which is most commonly used for
DSP applications, also requires
adding a 1 to the least significant bit
position. Finally, there is a biased
representation in which a bias is
applied to negative numbers k such

that k + bias is always non-negative. Typically, bias = 2n 1, where n is the number of bits.

Fixed-Point Representations

 Sign magnitude

 2’s complement
– x + (x) = 2n (complement each bit, add 1)
– Most widely used (signed arithmetic easy to do)

 1’s complement
– x + (x) = 2n 1 (complement each bit)

 Biased  add bias, encode as ordinary unsigned number
– k + bias 0, bias = 2n–1 (typically)

5.12

Fixed Point: Unsigned Magnitude Representation

 Useful built-in MATLAB functions:
– fix, round, ceil, floor, dec2bin, bin2dec, etc.

5.11

 In MATLAB:
– dec2bin(round(pi*2^6), 10)
– bin2dec(above)*2^-6

 In SysGen/Simulink:
– (10, 6) = (total # bits, # frac bits)

Overflow mode Quantization mode

0 0 1 1 0 1 00 0 1

WInt WFr

= [1] C. Shi, Floating-point to Fixed-
point Conversion, PhD thesis,
University of California, Berkeley,
Spring 2004.

[1]

76 Chapter 5

DSP Arithmetic 77

Slide 5.13

Here are a few examples. Suppose
n=4 (number of bits) and k=3.
Given k, we want to come up with
a representation of –k.

In sign-magnitude, k= 00112
with MSB being reserved for the
sign. Therefore, the negative value
is obtained by simply inverting the
sign bit, k=10112.

In 2’s complement, k+(k)=

is obtained in two steps. In the first
step, we do a bit-wise inversion of k
and obtain 11002. In the second

step, we add 1 to the LSB and obtain –k =11 012 . Now, we can go back and verify the assumption:
k+(k)=00112 +11012 =100002= 2 4. The carry out of 1 is ignored, so the resultant 4-bit
number is 0.

In 1’s complement, the concept is similar to that of 2’s complement except that we stop after the
first step (bit-wise inversion). Therefore, k=11002. As a way of verification, k+(k)=00112+
11002 = 11112 = 24 – 1.

In biased representation, bias = 2n 1 = 8. k + bias = 10112, k + bias = 01012 = 5 0.

Slide 5.14

The 2’s complement representation
is the most widely used in practice
due to its simplicity. Arithmetic
operations are preformed regardless
of the sign (as long as the overflow
condition is being tracked). For
example, the addition of 5 and 2
is performed by simple binary
addition, as shown on the slide.
Since 4 bits are sufficient to
represent the result, the sign bit is
discarded and we have the correct
result, 00112 = 310.

To keep track of the overflow,
we have to look at carries at MSB.

If the carry into and out of MSB differ, then we have an overflow. In the previous example,
repeated here with annotation of the carry bit, we see that carries into and out of the MSB match,
hence no overflow is detected.

Fixed-Point Representations: Example

Example: n = 4 bits, k = 3, k = ?

 Sign magnitude: k = 00112 k = 10112

 2’s complement: k + 1011 = 2n 0011
k = 1100 +1101

+ 1 10000
11012

 1’s complement: k = 11002 k + (k) = 2n 1

 Biased: k + bias = 10112 –k + bias = 01012 = 5 0
2n–1 = 8 = 10002

5.13

Procedure:
• Bit-wise inversion
• Add “1”

2’s Complement Arithmetic

 Most widely used representation, simple arithmetic

 Example: 5 + 2 0010 (2)
01012 (5) 1101

+11102 (2) + 1
10011 = +3 11102

5.14

Discard the sign bit (if there is no overflow)

 Overflow occurs when Carry into MSB Carry out of MSB

0 1 0 12 (5)
+1 1 1 02 (2)
1 0 0 1 1 (3)

Carry: 1 1 0 0

MSB

Carry into MSBCarry out of MSB =  No overflow!

2n has to hold. The negative value

Slide 5.15

An example of overflow is provided
in this slide. If we assume 4-bit
numbers and perform the addition
of 6 and 11, the result is 17 =
100012. Since the result is out of
range, an extra bit is required to
represent the result. In this
example, overflow occurs.

A nice feature of 2’s
complement is that by simply
bringing a carry into the LSB,
addition turns into subtraction.
Mathematically, a + b (Cin = 0)
becomes a – b (Cin = 1). Such
property is very convenient for

hardware realization.

Slide 5.16

To study quantization, this slide
shows a continuous-time analog
waveform xa(t) and its sampled
version xs[n]. Sampling occurs at
discrete time intervals with period
T. The dots indicate the sampled
values. The sampled waveform
xs[n] is quantized with a finite
number of bits, which are coded
into a fixed-point representation.
The quantizer and coder implement
analog-to-digital conversion, which
works at a rate of 1/T.

Overflow

 Example: unsigned 4-bit addition

6 = 01102
+11 = 10112

= 17 = 100012 (5 bits!)

5.15

extra bit

 Property of 2’s complement
– Negation = bit-by-bit complement + 1 Cin = 1, result: a b

Quantization Effects

5.16

S&H
xa(t)

T

Quantizer Coder
xs[n] x[n] xB[n]ˆ ˆ

A/D

time

T = sample period

3T 2T T 0 T 2T 3T 4T

xa(t)
xs [n] sampled

waveform

samples, n3 2 1 0 1 2 3 4

78 Chapter 5

DSP Arithmetic 79

Slide 5.17

To maintain an accurate
representation of xa(t) over the
sampling period, quantized values
Q(x) are computed as the average
of xa(t) at the beginning and end of
the sampling period, as illustrated
on the right. The quantization step

 is chosen to cover the maximum
absolute value xm of input x with B
bits. B+1 bits are required to
cover the full range of 2xm, which
also includes both positive and
negative values. The corresponding
quantization characteristic is shown
on the left.

The quantization error e[n] can be computed from the quantization characteristic. Due to the
nature of quantization, the absolute value of e[n] cannot exceed /2. The error can be modeled as
Additive White Noise (AWN).

Slide 5.18

In practical systems, we can
implement quantization with
rounding or truncation. The
rounding quantization characteristic
is shown on the left and is the same
as that on the previous slide. The
solid stair-case Q[x] intersects with
the dashed 45-degree line Q[x]=x,
thereby providing a reasonably
accurate representation of x.

Truncation can be implemented
simply by just discarding the least
significant bit, but it introduces
two-times larger error than
rounding. The quantization

characteristic Q[x] is always below the 45-degree line. This representation may work in some feed-
forward designs due to its simplicity, but can result in significant error accumulation in recursive
algorithms. Feedback systems, for this reason, use rounding as the preferred quantization mode.

Quantization Modes: Rounding, Truncation

5.18

/2 x

Q[x]

3
2

5
2

7
2

2

3

4

3
2

2

3

7
2

5
2

x

Q[x]

2

3

4

2

3

2 3 4

234

Rounding Truncation

Feedback systems
use rounding

Quantization

5.17

x

2

3 /2/2

3 /2 /2

2
x = Q(x)ˆ

Full range: 2xm

xa(t)
x[n]ˆ

=
2xm

2B+1
m

2B=

B = # bits of quantization

2’s complement representation

ˆe[n] = x[n] x[n]
/2 < e[n] /2

(AWN process)

x

80 Chapter 5

Slide 5.19

Quantization affects least
significant bits. We also need to
consider accuracy issues related to
overflow, which affects the most
significant bits. One idea is to use a
wrap-around scheme, as shown in
this slide [3]. We simply discard the
most significant bit when the
number goes out of range and keep
the remaining bits. This is simple
to implement, but could be very
inaccurate since large positive
values can be represented as
negative and vice versa.

Slide 5.20

Another way to deal with overflow
is to use saturation, as shown on
this slide. In this case, we also keep
the same number of bits, but
saturate the result to the largest
positive (negative) value. Saturation
requires extra logic to detect the
overflow and freeze the result, but
provides more accurate
representation than wrap-around.
Saturation is particularly used in
recursive systems that are sensitive
to large signal dynamics.

Overflow Modes: Wrap Around

5.19

/2 x

Q[x]

3
2

5
2

9
2

2

3

4

3
2

2

3

7
2

5
2

11
2

13
2

15
2

11
2

13
2

15
2

011

010

001

111

110

101

100

011

010

001

111

110

101

100

[3]

[3] A.V. Oppenheim, R.W. Schafer, with J.R. Buck, Discrete-Time Signal Processing, (2nd Ed), Prentice
Hall, 1998.

Overflow Modes: Saturation

5.20

/2 x

Q[x]

3
2

5
2

2

3

4

3
2

2

3

7
2

5
2

011

010

001

111

110

101

100

9
2

7
2

Feedback systems use saturation

DSP Arithmetic 81

Slide 5.21

Per the discussion in Slide 5.17,
quantization noise can be modeled
as the Additive White Noise
(AWN) process illustrated here.
Given the flat noise characteristic,
we can calculate the noise variance
(corresponding to the noise power)
by solving the integral of e2·(1/)
when e varies between – /2 and

/2. The variance equals 2/12.
For B+1 bits used to quantize xm ,
e = 2 2B·xm2/12.

The noise power can now be
used to calculate the signal-to-
quantization-noise ratio (SQNR)

due to quantization as given by the formula in this slide. Each extra bit of quantization improves
the SQNR by 6dB.

Slide 5.22

As an example of fixed-point
operations, let us look at a
multiplier. The multiplier takes
input arguments X and Y, which
have M and N bits, respectively. To
perform multiplication without loss
of accuracy, the product Z requires
M+N bits [4]. If we now take the
product as input to the next stage,
the required number of bits will
further increase. After a few stages,
this strategy will result in
impractical wordlength. Statistically,
not all output bit combinations will
occur with the same probability. In

fact, the number of values at the output will often be smaller than the total number of distinct values
that M + N bits can represent. This gives rise to opportunities for wordlength reduction.

One approach to reduce the number of bits is to encode numbers in a way so as to increase the
probability of occurrence of certain output states. Another technique is to reduce the number of bits
based on input statistics and desired signal-to-noise specification at the nodes of interest. More
details on wordlength optimization will be discussed in Chap. 10.

Quantization Noise

5.21

/2/2 e

1/
Pen(e)

B + 1 quantizer

2/22 2

/2

1
12e e de


 

2 22

10 102 2

12·2 ·
10 10

B
xx

e m

SQNR log log
X

   
    

  

10· 10.8 26.02 0 m

x

X
B log

 
    

 

Binary Multiplication

5.22

 Arguments: X, Y

 Product: Z

1

0

·2
M

i
i

i

X X





1

0

·2
N

j
j

j

Y Y






1 1 1

0 0 0

· ·2 ·2 · ·2
M N M N

k i j
k i j

k i j

Z X Y z X Y
   

  

       
   

  

1 1

0 0

· ·2
M N

i j
i j

i j

Z X Y
 



 

 
  

 
  [4]

[4] J. Rabaey, A. Chandrakasan, B. Nikoli , Digital Integrated Circuits: A Design Perspective, (2nd Ed),
Prentice Hall, 2003.

2 2
2 2

12

B
m

e

x
σ





xm: full-scale signal

Slide 5.23

Even without considering
wordlength reduction, multiplier
cost can be reduced by using circuit
implementation techniques.
Consider a 6-bit multiplier and a 4-
bit multiplicand as shown in the
slide. Binary multiplication is
performed in the same way as
decimal multiplication. Each bit of
the multiplicand is multiplied with
the multiplier to create partial
products. The partial products are
summed to create the result, which
is 10 bits in this example. How to
implement the multiplier?

Slide 5.24

A straightforward implementation
is shown in Slide 5.23. Single-bit
multiplies are implemented with an
array of AND gates to realize the
partial products. The partial
products are then summed with three
stages of additions. A simple ripple-
carry adder is used as an illustration.
Each adder block starts with a half-
adder at the least significant bit and
propagates the carry to the most
significant bit. Intermediate bits are
realized with full-adder blocks since
they have carry inputs. In all adder
stages but the last, the MSBs are

also realized using half-adders. This realization is a good reference point for further analysis and
optimization.

Binary Multiplication: Example

Multi-bit multiply
= bit-wise multiplies (partial products) + final adder

5.23

1 0 0 1 0 1

1 0 1 1×

1 0 0 1 0 1
1 0 0 1 0 1

0 0 0 0 0 0
1 0 0 1 0 1+

Multiplier

Multiplicand

Partial products

Result1 1 0 0 1 0 1 1 1

82 Chapter 5

Array Multiplier

5.24

HA: half adder
FA: full adder

Partial product

HAFAFAHA

Y1

Y0

Z0

X0

X0

X1

X1

X2

X2

X3

X3

HAFAFAFA

Y2

X0X1X2X3
Z1

Z2

HAFAFAFA

Y3

X0X1X2X3

Z3Z4Z5Z6Z7

[J.M. Rabaey, UCB]

DSP Arithmetic 83

Slide 5.25

The speed of the multiplier can be
improved by restructuring the logic
blocks. This slide shows a critical-
path analysis of the multiplier
architecture from the previous slide.
For an M-by-N bit multiplier, there
are several critical paths that
propagate through the same
number of logic blocks. Two such
paths are illustrated by the blue
(critical path 1) and red c(ritical
path 2) arrows. The green arrow
indicates shared portion of the two
paths. As noted on Slide 5.23, the
number of adder stages needed for

N partial products is equal to N–1.

Tracing the paths through the adder stages, we can calculate the critical path for the multiplier as:

 tmult = [(M – 1) + (N – 2)]·tcarry + (N – 1)·tsum + tand,

where tand is the delay through the AND gates that compute the partial products, (N–1)·t sum is the
delay of the sum bits (vertical arrows), and [(M– 1)+ (N–2)]·t carry is the delay of the carry bits
(horizontal arrows). The multiplier delay, therefore, increases linearly with M and N. Since N has
more weight in the tmult formula than M, it is of interest to investigate techniques that would reduce
the number of adder stages or make them faster.

Slide 5.26

One way to speed up the
multiplication is to use carry-save
arithmetic, as shown on this slide.
The idea is to route the carry signals
vertically down to the next stage
instead of horizontally within the
same adder stage. This is possible,
because the addition of the carry
out bits in each stage is deferred to
final stage, which uses a vector-
merge adder. The computation is
faster, because the result is
propagated down as soon as it
becomes available, as opposed to
propagating further within the

stage. This scheme is, hence, called “carry-save” and is commonly used in practice.

The carry-save architecture requires a final vector-merging adder, which adds to the delay, but the
overall delay is still greatly reduced. The critical path of this multiplier architecture is:

HAFAFAHA

HAFAFAFA

HAFAFAFA

M-by-N Array Multiplier: Critical Path

Critical path 1 & 2

5.25

Critical path 2

Critical path 1

M

N

Note: number of horizontal adder slices = N – 1

 (1) (2) · (1)·mult carry sum andt M N t N t t      

[J.M. Rabaey, UCB]

Carry-Save Multiplier

5.26

FAFAFAHA

FAFAFAHA

HAFAFAHA

HAHAHAHA

Vector-merging adder

M

N

(1)·mult carry and merget N t t t   
[J.M. Rabaey, UCB]

tmult = (N – 1)·tcarry + tand + tmerge,
where tmerge is the delay of the vector-merging adder, tand is the delay of AND gates in the partial
products, and (N– 1)·tcarry is the delay of carry bits propagating downward. The delay formula thus
eliminates the dependency on M and reduces the weight of N.

Assuming the simplistic case where tcarry = tand = tsum = tmerge = tunit, the delay of the adder in Slide
5.25 would be equal to [(M–1)+2·(N– 1)]·tunit as compared to (N+1)·tunit. For M=N=4, the
vector-merging adder architecture has a total delay of 5·tunit, as compared to 9·tunit for the array-
multiplier architecture. The speed gains are even more pronounced for a larger number of bits.

Slide 5.27

The next step is to implement the
multiplier and to maximize the area
utilization of the chip layout. A
possible floorplan is shown in this
slide. The blocks organized in a
diagonal structure have to fit in a
square floorplan as shown on this
slide. At this point, routing also
becomes important. For example,
X and Y need to be routed across
all stages, which poses additional
constraints on floorplanning. The
placement and routing of blocks
has to be done in such a way as to
balance the wire length (delay) of

input signals.

Slide 5.28

The partial-product summation can
also be improved at the
architectural level by using a
Wallace-Tree multiplier. The partial
product bits are represented by the
blue dots. At the top-left is a direct
representation of the partial
products. The dots can be re-
arranged in a tree-like fashion as
shown at the top-right. This
representation is more convenient
for the analysis of bit-wise add
operations. Half adders (HA) take
two input bits and produce two
output bits. Full adders (FA) take

Multiplier Floorplan

5.27

HA: half adder
FA: full adder
VM: vector-merging cell

X and Y signals are
broadcasted through
the complete array

C S
HA

C S
HA

C S
HA

C S
HA

C S
HA

C S
HA

C S
FA

C S
FA

C S
FA

C S
FA

C S
FA

C S
FA

C
S

VM
C

S
VM

C
S

VM
C

S
VM

Z6Z7 Z5 Z4 Z3

Z2

Z1

Z0

X0X1X2X3

Y0
Y1

Y2

Y3

Wallace-Tree Multiplier

5.28

6 5 4 3 2 1 0 6 5 4 3 2 1 0

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Partial products

Bit position

Second stage Final adder

HAFA

84 Chapter 5

DSP Arithmetic 85

three input bits and produce two output bits. Applying this principle from the root of the tree allows
for a systematic computation of the partial-product summation.

The bottom-left of the figure shows bit-wise partial-product organization after executing the
circled add operations from the top-right. There are now three stages. Applying the HA at bit
position 2 and propagating the result towards more significant bits yields the structure in the
bottom-right. The last step is to execute final adder.

Slide 5.29

The partial-product summation
strategy described in the previous
slide is graphically shown here. Full-
adder blocks are also called 3:2
compressors because they take 3
input bits and compress them to 2
output bits. Effective organization
of partial adds, as done in the
Wallace Tree, results in a reduced
critical-path delay, which allows for
voltage scaling and power
reduction. The Wallace-Tree
multiplier is a commonly used
implementation technique.

Slide 5.30

The multiplier can be viewed as
hierarchical extension of the adder.

Other techniques to consider
include the investigation of
logarithmic adders vs. linear adders
in the adder tree. Logarithmic
adders require fewer stages, but
generally also consume more
power. Data encoding as opposed
to simple 2’s complement can be
employed to simplify arithmetic.
And pipelining can reduce the
critical-path delay at the expense of
increased latency.

Wallace-Tree Multiplier

5.29

Partial products

First stage

Second stage

Final Adder

HA

X1Y3

X2Y2

HA

X0Y3

X1Y2X3Y1

FA FAFA

X2Y3

X2Y3X3Y3 X3Y0

X2Y1

FA

X1Y1

X0Y2

X2Y0

X1Y0

X0Y1

X0Y0

Z7Z6 Z5 Z4 Z3 Z2 Z1 Z0

Multipliers: Summary

 Optimization goals different than in binary adder

 Once again: Identify critical path

 Other possible techniques
– Logarithmic versus linear (Wallace-Tree multiplier)
– Data encoding (Booth)
– Pipelining

5.30

Slide 5.31

Apart from critical-path analysis, we
also look at power consumption.
Switching activity is an important
factor in power minimization.
Datapath switching profile is largely
affected by implementation. This
slide shows parallel and time-
multiplexed bus architectures for
two streams of data. The parallel-
bus design assumes dedicated buses
for the I and Q channels with
signaling at a symbol rate of 1/T.
The time-shared approach requires
just one bus and increases the
signaling speed to 2/T to

accommodate both channels.

Suppose that each of the channels consists of time samples with a high degree of correlation
between consecutive samples in time as shown on signal value vs. time sample plot on the left. This
implies low switching activity on each of the buses and, hence, low switching power. The time-
shared approach would result in very large signal variations due to interleaving. It also results in
excess power consumption. This example shows that lower area implementation may not be better
from a power standpoint and suggests that arithmetic issues have to be considered both at algorithm
and implementation levels.

Slide 5.32

Signal activity can be leveraged for
power reduction. This slide shows
an example of how to exploit signal
correlation for a reduction in
switching. Consider an unknown
input In that has to be multiplied by
0011 to calculate A, and by 0111 to
calculate B.

Binary multiplication can be
done by using add-shift operations
as shown on the left. To calculate
A, In is shifted to the right by 3 and
4 bit positions and the two partial
results are summed up. The same
principle is applied to the

calculation of B. When A and B are calculated independently, shifting by 4 and shifting by 3 are
repeated, which increases the overall switching activity. This gives rise to the idea of sharing
common sub-expressions to calculate both results.

Time-Multiplexed Architectures

5.31

 Time-shared bus destroys signal correlations and increases
switching activity

I0 I1 I2

Q0 Q1 Q2
I0 I1 I2Q0 Q1 Q2

Parallel bus for I,Q
Time-shared bus for I,Q

T T

Time sampleTime sample

Si
gn

al
 v

al
ue

Si
gn

al
 v

al
ue

I

Q

Optimizing Multiplications

5.32

A = in × 0 0 1 1
B = in × 0 1 1 1

A = (in >> 4 + in >> 3)
B = (A + in >> 2)

A = (in >> 4 + in >> 3)
B = (in >> 4 + in >> 3 + in >> 2)

Activity factor

N
um

be
r o

f s
hi

ft
-a

dd
 o

ps

Only scaling

Scaling and
common
sub-expression

86 Chapter 5

DSP Arithmetic 87

Since the shifts by 3 and by 4 are common, we can then use A as a partial result to calculate B. By
adding A and In shifted by 2 bit positions, we obtain B. The plot on this slide shows the number of
shift-add operations as a function of the input activity factor for the two implementations. The
results show that the use of common sub-expressions greatly reduces the number of operations and,
hence, power consumption. Again, we can see how the implementation greatly affects power
efficiency.

Slide 5.33

In addition to the implementation,
the representation of numbers can
also play a role in switching activity.
This slide shows a comparison of
the transition probabilities as a
function of bit position for 2’s
complement and sign-magnitude
number representations [5]. Cases
of slowly and rapidly varying input
are considered. Lower bit positions
will always have switching
probability around 0.5 in both
cases, while more significant bits
will vary less frequently in case of
the slowly varying input. In 2’s

complement, the rapidly varying input will cause higher-order bits to toggle more often, while in the
sign-magnitude representation only the sign bit would be affected. This makes sense, because many
bits will need to flip from positive to negative numbers and vice versa in 2’s complement. Sign-
magnitude representation is, therefore, more naturally suited for rapidly varying input.

Number Representation

5.33

 Sign-extension activity is significantly reduced using
sign-magnitude representation

Bit Number

Slowly varying

Rapidly varying
Rapidly varying

Bit Number

Tr
an

si
tio

n
Pr

ob
ab

ili
ty

Sign Magnitude2’s complement

Tr
an

si
tio

n
Pr

ob
ab

ili
ty

0 N 1 0 N 1
0

0.5

1

0

0.5

1

[5] A. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Thesis, University of California,
Berkeley, 1994.

[5]

Slide 5.34

Input reordering can be used to
maintain signal correlations and
reduce switching activity. The sum
S2 can be computed with different
orders of the inputs. On the left, S1
is a sum of inputs that are 7 bits
apart, which implies very little
correlation between the operands.
S1 is then added to the input shifted
by 8 bits. On the right, S1 is a sum
of inputs that differ by only one bit
and, hence, have a much higher
degree of correlation. The transition
probability plots show this result.

The plot on the right clearly
shows a reduced switching probability of S1 for lower-order bits in the scheme on the right. S2 has
the same transition probability for both cases since the final result is computed from the same
primary inputs. Input reordering can lead to a 30% reduction in switching energy. This example,
once again, emphasizes the need to have joint consideration of the algorithm and implementation
issues.

Slide 5.35

The concept of switching activity
also applies to the memory
architecture. For example, this slide
compares serial- and parallel-access
memories used to implement a k-
bit display interface. On the left, a
single k-bit word is multiplexed
from 8 words available in memory
at a rate of f. This value is then
latched at the same rate f. On the
right, 8 words are latched in at rate
f/8 and the multiplexer selects one
word at rate f.

Looking at the switching activity
of the two schemes, k latches are

switched at rate f on the left, while the scheme on the right requires the switching of k·N latches (N
=8 in our example) at rate f/8. Since the critical-path delay of the serial scheme is longer, the parallel
scheme can operate at lower supply voltage (VDD2 < VDD1) to save power. The parallel-access
scheme needs more area for pipeline registers, but the overall switched capacitance is the same for
both schemes. Power reduction enabled by pipelining could outweigh the area penalty.

Reducing Activity by Reordering Inputs

30% reduction in switching energy

5.34

+ +

»8»7

IN

IN IN

S1 S2
+ +»8

»7

IN

IN

IN

S1 S2

Bit number

Tr
an

si
tio

n
pr

ob
ab

ili
ty

Bit number

Tr
an

si
tio

n
pr

ob
ab

ili
ty

S1

S2

S1
S2

Memory Architecture

5.35

Memory
Cell Array

Row
 decoder

Addr

k k k

f

Latch

k

f
k k-bit display interface

k latches

Serial access

Memory
Cell Array

Row
 decoder

Addr

k k k

f /8 Latch

f
k

Parallel access

k · N latches

 Pipelining and voltage scaling

k k k

VDD1 VDD2 < VDD1

88 Chapter 5

DSP Arithmetic 89

Slide 5.36

DSP arithmetic was discussed in
this chapter. Algorithms developed
in algebraic form are validated in
floating-point simulations, after
which a fixed-point representation
is typically used for hardware
implementation. Translation to
fixed point involves determining
the number of bits as well as
quantization and overflow modes.
Rounding and saturation are most
often used in feedback systems.
Key building element of DSP
systems, an adder, requires the
reduction in carry-path delay for

improved performance (or energy efficiency). The use of carry-save addition was discussed as a way
of speeding multiplication. Data activity plays an important role in power consumption. In
particular, time-shared buses may increase the activity due to reduced signal correlation and hence
increase power. Designers should also consider number representation when it comes to reduced
switching activity: it is know that 2’s complement has higher switching activity than sign-magnitude.
Fixed-point realization of iterative algorithms is discussed in the next chapter.

References

 C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California,
Berkeley, 2004.

 J.L. Hennesy and D.A. Paterson, Computer Architecture: A Quantitative Approach, (2nd
Ed), Morgan Kaufmann, 1996.

 A.V. Oppenheim, R.W. Schafer, with J.R. Buck, Discrete-Time Signal Processing, (2nd Ed),
Prentice Hall, 1998.

 J. Rabaey, A. Chandrakasan, B. Nikoli , Digital Integrated Circuits: A Design Perspective,
(2nd Ed), Prentice Hall, 2003.

 A.P. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Thesis, University of
California, Berkeley, 1994.

Additional References

 Appendix A of: D.A. Patterson, and J.L. Hennessy. Computer Organization & Design: The
Hardware/Software Interface, (2nd Ed), Morgan Kaufmann, 1996.

 Simulink Help: Filter Design Toolbox -> Getting Started -> Quantization and Quantized
Filtering -> Fixed-point Arithmetic/Floating-point Arithmetic, Mathworks Inc.

Summary

 Algorithms are developed in algebraic form and verified using
floating-point precision
 Fixed-point representation degrades algorithm performance due

to quantization noise arising from finite precision
– Of particular importance are quantization (rounding,

truncation) and overflow (saturation, wrap-around) modes
Rounding has zero-mean error and is suitable for recursive systems
Saturation is typically used in feedback systems

 Implementation of a fixed-point adder (key building block in DSP
algorithms) needs to focus on the carry-path delay minimization
– Carry-save addition can be used to speed up multiplication

 Data correlation can impact power consumption
– Time-shared buses increase the activity (reduce correlation)
– 2’s complement has higher switching than sign-magnitude

5.36

Slide 6.1

This chapter studies iterative
algorithms for division, square
rooting, trigonometric and
hyperbolic functions and their
baseline architecture. Iterative
approaches are suitable for
implementing adaptive signal
processing algorithms such as those
found in wireless communications.

Slide 6.2

Many DSP algorithms are iterative
in nature. This chapter analyzes
three common iterative operators:
CORDIC (COordinate Rotation
DIgital Computer), division, and
square root. CORDIC is a widely
used block, because it can compute
a large number of non-linear
functions in a compact form.
Additionally, an analysis of
architecture and convergence
features will be presented. Newton-
Raphson formulas for speeding up
the convergence of division and
square root will be discussed.

Examples will illustrate convergence time and block-level architecture design.

Chapter Overview

 The chapter focuses on several important iterative algorithms
– CORDIC
– Division
– Square root

 Topics covered include
– Algorithms and their implementation
– Convergence analysis
– Speed of convergence
– The choice of initial condition

6.2

CORDIC, Divider, Square Root

Chapter 6

91
 DOI 10.1007/978-1-4419-9660-2_6, © Springer Science+Business Media New York 2012

D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 6.3

The CORDIC algorithm is most
commonly used in communication
systems to translate between
Cartesian and polar coordinates.
For instance, yR and yI, representing
the I and Q components of a
modulated symbol, can be
transformed into their respective
magnitude (|y|) and phase ()
components using CORDIC. The
CORDIC algorithm can also
accomplish the reverse
transformation, as well as an array
of other functions.

Slide 6.4

CORDIC uses rotation as an
atomic recursive operation to
implement a variety of functions.
These functions include: Cartesian-
to-polar coordinate translation;
square root; division; sine, cosine,
and their inverses; tangent and its
inverse; as well as hyperbolic sine
and its inverse. These functions are
implemented by configuring the
algorithm into one of the several
modes of operation.

CORDIC

 To perform the following transformation

and the inverse, we use the CORDIC algorithm

CORDIC - COordinate Rotation DIgital Computer

6.3

y(t) = yR + j · yI |y| · ej

CORDIC: Idea

 Use rotations to implement a variety of functions

Examples:

6.4

1· (/)2 2· | | j tan y xx j y x y e

2 2z x y cos(/)z y x tan(/)z y x

/z x y sin(/)z y x sinh(/)z y x

1(/)z tan y x 1()z cos y

92 Chapter 6

CORDIC, Divider, Square Root 93

Slide 6.5

Let’s analyze a CORDIC rotation.
We start from (x, y) and rotate by
an arbitrary angle to calculate (x’,
y’) as described by the equations on
this slide. By rewriting sin() and
cos() in terms of cos() and tan(),
we get a new set of expressions. To
simplify the math, we do rotations
only by values of tan() that are
powers of 2. In order to rotate by
an arbitrary angle , several
iterations of the algorithm are
needed.

Slide 6.6

The number of iterations required
by the algorithm depends on the
intended precision of the
computation. The table shows
angles corresponding to tan() =
2 i. We can see that after 7
rotations, the angular error is less
than 1o. A sequence of
progressively smaller rotations is
used to rotate to an arbitrary angle.

CORDIC (Cont.)

 How to do it?

 Start with general rotation by

 The trick is to only do rotations by values of tan() which are
powers of 2

6.5

x’ = x · cos() y · sin()
y’ = y · cos() + x · sin()

x’ = cos() · [x y · tan()]
y’ = cos() · [y + x · tan()]

CORDIC (Cont.)

Rotation Number

6.6

 To rotate to any arbitrary angle, we do a sequence of rotations to
get to that value

tan() k i
45o 1 1 0

26.565o 2 1 2 1
14.036o 2 2 3 2
7.125o 2 3 4 3
3.576o 2 4 5 4
1.790o 2 5 6 5
0.895o 2 6 7 6

Slide 6.7

The basic CORDIC iteration (from
step i to step i +1) is described by
the formulas highlighted in gray. Ki
is the gain factor for iteration i that
is used to compensate for the
attenuation caused by cos(i). If we
don’t multiply (xi+1, yi+1) by Ki, we
get gain error that converges to
0.61. In some applications, this
error does not have to be
compensated for.

An important parameter of the
CORDIC algorithm is the direction
of each rotation. The direction is
captured in parameter di = ±1,

which depends on the residual error. To decide di, we also accumulate the rotation angle zi+1 = zi
di·tan 1(2 i) and calculate di according to the angle polarity. The gain error is independent of the
direction of the rotation.

Slide 6.8

Let’s do an example of a Cartesian-
to-polar coordinate translation. The
initial vector is described by the
coordinates (x0, y0). A sequence of
rotations will align the vector with
the x-axis in order to calculate (x0

2
+ y0

2)0.5 and .

Basic CORDIC Iteration

The di is chosen to rotate by

6.7

 If we don’t multiply (xi+1, yi+1) by Ki we get a gain error which is
independent of the direction of the rotation
 The error converges to 0.61 - May not need to compensate for it
 We also can accumulate the rotation angle: zi+1 = zi di · tan 1(2 i)

xi+1 = (Ki) · [xi yi · di · 2 i]
yi+1 = (Ki) · [yi + xi · di · 2 i]

Ki = cos(tan 1(2 i)) = 1/(1 + 2 2i)0.5

di = ±1

Example

6.8

x0

y0

Initial vector

 We want to find and (x0
2 + y0

2)0.5

 Initial vector is described by x0 and y0 coordinates

94 Chapter 6

CORDIC, Divider, Square Root 95

Slide 6.9

The first step of the algorithm is to
check the sign of the initial y-
coordinate, y0, to determine the
direction d1 of the first rotation. In
the first iteration, the initial vector
is rotated by 45o (for y0 < 0) or by

45o (for y0 > 0). In our example, y0
> 0, so we rotate by 45o. The new
vector is calculated as x1 = x0 +
y0/2, y1 = y0 – x0/2.

Slide 6.10

The next step is to apply the same
procedure to (x1, y1) with an
updated angle. The angle of the
next rotation is ±26.57o (tan 1(2 1)
= 26.57o), depending upon the sign
of y1. Since y1>0, we continue the
clockwise rotation to reach (x2, y2)
as shown on the slide. With each
rotation, we are closer to the y-axis.

Step 1: Check the Angle / Sign of y0

6.9

 If positive, rotate by 45o

 If negative, rotate by +45o

x0

y0

45o

d1 = 1 (y0 > 0)

x1 = x0 + y0 /2
y1 = y0 x0 /2y1

x1

Step 2: Check the Sign of y1

6.10

 If positive, rotate by 26.57o

 If negative, rotate by +26.57o

26o
y1

x1

x2

y2

d2 = 1 (y1 > 0)

x2 = x1 + y1 /4
y2 = y1 x1 /4

Slide 6.11

The procedure is repeated until yn =
0. The number of iterations is a
function of the desired accuracy
(number of bits). When the
algorithm converges to yn = 0, we
have xn = An·(x0

2 + y0
2)0.5, where An

represents the accumulated gain
error.

Slide 6.12

The accumulation of the gain error
is illustrated on this slide. The
algorithm has implicit gain unless
we multiply by the product of the
cosine of the rotation angles. The
gain value converges to 1.642 after
4 iterations. Starting from (x0, y0),
we end up with an angle of z3 = 71o
and magnitude with an accumulated
gain error of 1.642. That was the
conversion from rectangular to
polar coordinates.

The Gain Factor

6.12

G0 = 1
G0G1 = 1.414
G0G1G2 = 1.581
G0G1G2G3 = 1.630
G0G1G2G3G4 = 1.642

 Gain accumulation:

 So, start with x0, y0; end up with:

z3 = 71o

(x0
2 + y0

2)0.5 = 1.642 (…)

Shift & adds of x0, y0

 We did the rectangular-to-polar coordinate conversion

Repeat Step 2 for Each Rotation k

6.11

 Until yn = 0

xn

yn

yn = 0

xn = An · (x0
2 + y0

2)0.5

accumulated gain

96 Chapter 6

CORDIC, Divider, Square Root 97

Slide 6.13

We can also do the reverse
transformation: conversion from
polar to rectangular coordinates.
Given A = |A|·ej , we start from
x0 = |A| and y0 = 0, and a residual
angle of z0 = . The algorithm starts
with a vector aligned to the x-axis.
Next, we rotate by successively
smaller angles in directions
dependent on the sign of zi. If zi >
0, positive (counterclockwise)
rotation is performed. In each
iteration we keep track of the
residual angle zi+1 and terminate the
algorithm when zi+1 = 0. The polar-

to-rectangular translation is also known as the rotation mode.

Slide 6.14

The CORDIC algorithm analyzed
so far can be summarized with the
formulas highlighted in the gray
box. We can choose between the
vectoring and rotation modes. In
the vectoring mode, we start with a
vector having a non-zero angle and
try to minimize the y component.
As a result, the algorithm computes
vector magnitude and angle. In the
rotation mode, we start with a
vector aligned with the x-axis and
try to minimize the z-component.
As a result, the algorithm computes
the rectangular coordinates of the

original vector. In both cases, the built-in gain An converges to 1.647 and, in cases where scaling
factors affect final results, has to be compensated.

Rectangular-to-Polar Conversion: Summary

 Start with vector on x-axis

6.13

x0

y0

A = |A| · ej

x0 = |A|
y0 = 0, z0 =

zi < 0, di = 1
zi > 0, di = +1

zi+1 = zi di · tan 1(2 i)

CORDIC Algorithm

6.14

xi+1 = xi yi · di · 2 i

yi+1 = yi + xi · di · 2 i

zi+1 = zi di · tan 1(2 i)
1, yi > 0

+1, yi < 0
di =

1, zi < 0
+1, zi > 0

di =

Rotation mode
(rotate by specified angle)

Minimize residual angle

Vectoring mode
(align with the x-axis)

Minimize y component

Result
xn = An · [x0 · cos(z0) y0 · sin(z0)]
yn = An · [y0 · cos(z0) + x0 · sin(z0)]
zn = 0

Result
xn = An · (x0

2+ y0
2)0.5

yn = 0
zn = z0 + tan 1(y0/x0)

An = (1+2 2i) · 0.5 1.647
n

Slide 6.15

This slide graphically illustrates
algorithm convergence for
vectoring mode, starting with a
vector having an initial angle of 30o.
We track the accumulated gain and
residual angle, starting from the red
dot (Iteration: 0). Rotations are
performed according to sign of yi
with the goal of minimizing the y-
component. The first rotation by

45o produces a residual angle of
15o and a gain of 1.414. The

second rotation is by +26.57o,
resulting in an accumulated gain of
1.581. This process continues, as

shown on the slide, toward smaller residual angles and an accumulated gain of 1.647.

Slide 6.16

The algorithm can converge in a
single iteration for the case when
= 45o. This trivial case is interesting,
because it suggests that the
convergence accuracy of a recursive
algorithm greatly depends upon the
initial conditions and the granularity
of the rotation angle in each step.
We will use this idea later in the
chapter.

Vectoring Example

6.15

45o

0

26.57o

14.04o

7.13o

3.58o

It: 0

It: 1

It: 2

It: 3

It: 4
It: 5

Acc. Gain Residual angle
K0 = 1 = 30o

K1 = 1.414 = 15o

K2 = 1.581 = 11.57o

K3 = 1.630 = 2.47o

K4 = 1.642 = 4.65o

K5 = 1.646 = 1.08o

Etc.

Vectoring Example: Best-Case Convergence

6.16

45o

0

It: 0

It: 1

Acc. Gain Residual angle
K0 = 1 = 45o

K1 = 1.414 = 0o

K2 = 1.581 = 0o

K3 = 1.630 = 0o

K4 = 1.642 = 0o

K5 = 1.646 = 0o

Etc.

 In the best case (= 45o), we can converge in one iteration

98 Chapter 6

CORDIC, Divider, Square Root 99

Slide 6.17

CORDIC can also be used to
calculate trigonometric functions.
This slide shows sin() and cos().
We start from a scaled version of x0
to account for the gain that will be
accumulated and use CORDIC in
the rotation mode to calculate
sin() and cos().

Slide 6.18

With only small modifications to
the algorithm, it can be used to
calculate many other functions. So
far, we have seen the translation
between polar and rectangular
coordinates and the calculation of
sine and cosine functions. We can
also calculate tan 1 and the vector
magnitude in the vectoring mode,
as described by the formulas on the
slide.

Functions

6.18

Vectoring mode

z0 = angle
y0 = 0, x0 = 1/An

xn = An · x0 · cos(z0)
yn = An · x0 · sin(z0)

xn = An · (x0
2 + y0

2)0.5

Rotation mode

sin/cos tan 1

(=1)

z0 = 0
zn = z0 + tan 1(y0/x0)

Vector/Magnitude

x0 = r
z0 =
y0 = 0

Polar Rectangular Rectangular Polar

xn = r · cos()
yn = r · sin()

r = (x0
2 + y0

2)0.5

= tan 1(y0/x0)

Calculating Sine and Cosine

6.17

cos()

sin()

(1/1.64)

yn = sin()
xn = cos()

To calculate sin and cos:
 Start with x0 = 1/1.64, y0 = 0
 Rotate by

100 Chapter 6

Slide 6.19

CORDIC can be used to calculate
linear operations such as division.
CORDIC can be easily re-
configured to support linear
functions by introducing
modifications to the x and z
components as highlighted in this
slide. The x component is trivial,
xi+1 = xi. The z component uses 2 i
instead of tan 1(2 i). The
modifications can be generalized to
other linear functions.

Slide 6.20

The generalized algorithm is
described in this slide. Based on m
and ei, the algorithm can be
configured into one of three modes:
circular, linear, or hyperbolic. For
each mode, there are two sub-
modes: rotation and vectoring.
Overall, the algorithm can be
programmed into one of the six
modes to calculate a wide variety of
functions.

CORDIC Divider

 To do a divide, change CORDIC rotations to a linear function
calculator

6.19

xi+1 = xi 0 · yi · di · 2 i = xi

yi+1 = yi + xi · di · 2 i

zi+1 = zi di · (2 i)

Generalized CORDIC

6.20

xi+1 = xi m · yi · di · 2 i

yi+1 = yi + xi · di · 2 i

zi+1 = zi di · ei

di

Rotation Vectoring
di = 1, zi < 0
di = +1, zi > 0

di = 1, yi > 0
di = +1, yi < 0

sign(zi) sign(yi)

Mode m ei

Circular +1 tan 1(2 i)
Linear 0 2 i

Hyperbolic 1 tanh 1(2 i)

CORDIC, Divider, Square Root 101

Slide 6.21

This slide shows a direct-mapped
realization of CORDIC [1].
Algorithm operations from the tree
difference equations are mapped to
hardware blocks as shown on the
left. The registers can take either
the initial conditions (x0, y0, z0) or
the result from previous iteration
(xn, yn, zn) to compute the next
iteration. The shift by n blocks
(>> n) indicate multiplication by 2 n
(in iteration n). The parameter m
controls the operating mode
(circular, linear, hyperbolic).
Rotational mode is determined

based on the sign of yi (vectoring) or the sign of zi (rotation). Elementary rotation angles are stored
in ROM memory. After each clock cycle CORDIC resolves one bit of accuracy.

Slide 6.22

The block diagram from the
previous slide can be modeled as
the sub-system shown here. Inputs
from MATLAB are converted to
fixed-point precision via the input
ports (yellow blocks). The outputs
of the hardware blocks are also
converted to floating-point
representations (zs, zd blocks) for
waveform analysis in MATLAB.
Blocks between the yellow blocks
represent fixed-point hardware.
The resource estimation block
estimates the amount of hardware
used to implement each block. The

system generator block produces a hardware description for implementing the blocks on an FPGA.
The complexity of the iterative sqrt and div algorithms in this example is about 15k gates for 14-bit
inputs and 16-bit outputs. The block-based model and hardware estimation tools allow for the
exploration of multiple different hardware realizations of the same algorithm. Next, we will look
into the implementation of iterative square rooting and division algorithms [2].

An FPGA Implementation

 Three difference equations directly
mapped to hardware

 The decision di is driven by the sign of
the y or z register
– Vectoring: di = sign(yi)
– Rotation: di = sign(zi)

 The initial values loaded via muxes
 On each clock cycle

– Register values are passed through
shifters and add/sub and the values
placed in registers

– The shifters are modified on each
iteration to cause the desired shift
(state machine)

– Elementary angle stored in ROM
 Last iteration: results read from reg

6.21

Vectoring

Rotation

Cir/Lin/Hyp

[1] R. Andraka, ”A survey of CORDIC algorithms for FPGA based computers,” in Proc. Int. Symp. Field
Programmable Gate Arrays, Feb. 1998, pp. 191-200.

Reg

>>n

>>n

Reg

±

±

m·di

di

yn

xn

x0

y0

sgn(yi)

ROM

Reg
±

zn

z0

sgn(zi)

di

[1]

Iterative Sqrt and Division

~15k gates

6.22

[2] C. Ramamoorthy, J. Goodman, and K. Kim, "Some Properties of Iterative Square-Rooting
Methods Using High-Speed Multiplication," IEEE Trans. Computers, vol. C-21, no. 8, pp. 837–847,
Aug. 1972.

[2]

 Inputs:
– a (14 bits), reset (active high)

 Outputs:
– zs (16 bits), zd (16 bits) Total: 32 bits

102 Chapter 6

Slide 6.23

The hardware model of an
algorithm can be constructed using
the Xilinx System Generator (XSG)
library. Each block (or hierarchical
sub-system) has a notion of
wordlength and latency. The
wordlength is specified as the total
and fractional number of bits; the
latency is specified as the number
of clock cycles. Additional details
such as quantization, overflow
modes, and sample period can be
defined as well.

Suppose we want to implement
1/sqrt(). This can be done with

CORDIC in n iterations for n bits of accuracy or by using the Newton-Raphson algorithm in n/2
iterations. The Newton-Raphson method is illustrated here. The block diagram shows the
implementation of iterative formula xs(k+1) = xs(k)/2·(3 Z·xs

2(k)) to calculate 1/sqrt(Z). It is
important to realize that the convergence speed greatly depends not just on the choice of the
algorithm, but also on the choice of initial conditions. The initial condition block (init_cond)
computes the initial condition that guarantees convergence in a fixed number of iterations.

Slide 6.24

The convergence of the Newton-
Raphson algorithm for 1/sqrt(N) is
analyzed here. The difference
equation xs(k) converges to
1/sqrt(N) for large k. Since N is
unknown, it is better to analyze the
normalized system ys(k) =
sqrt(N)·xs(k) where ys(k) converges
to 1. The error formula for es(k) =
ys(k) –1 reflects relative error. The
algebra yields a quadratic expression
for the error. This means that each
iteration resolves two bits of
accuracy. The number of iterations
depends on the desired accuracy as

well as the choice of the initial condition.

Quadratic Convergence: 1/sqrt(N)

2()
(1) (3 ())

2
s

s s
x k

x k N x k
1

()s
k

x k
N

2()
(1) (3 ())

2
s

s s
y k

y k y k () 1s k
y k

21
(1) () (3 ())

2s s se k e k e k

() () 1s se k y k

6.24

Iterative 1/sqrt(Z): Simulink XSG Model

User defined parameters:
- data type
- wordlength (#bits, binary pt)
- quantization
- overflow
- latency
- sample period

wordlength

latency

xs(k+1) =
xs(k)/ 2· (3 – Z· xs

2(k))
xs(k)

Z

6.23

 User defined parameters
– Wordlength (#bits, binary pt)
– Quantization, overflow
– Latency, sample period

 The choice of initial condition
– Determines # iterations
– and convergence…

rst

xs(k+1)

CORDIC, Divider, Square Root 103

Slide 6.25

Following the analysis from the
previous slide, the convergence of
the Newton-Raphson algorithm for
1/N is shown here. The xd(k)
converges to 1/N for large k. We
also analyze the normalized system
yd(k) = N·xd(k) where yd(k)
converges to 1. The relative error
formula for ed(k) = yd(k) – 1 reflect
also exhibits quadratic dependence.

Slide 6.26

The choice of the initial condition
greatly affects convergence speed.
The plot on this slide is a transfer
function corresponding to one
iteration of the 1/sqrt(N)
algorithm. By analyzing the
mapping of ys(k) into ys(k+1), we
can gain insight into how to select
the initial condition. The squares
indicate convergence points for the
algorithms. The round yellow dot is
another fixed point that represents
the trivial solution. The goal is thus
to select the initial condition that is
closest to the yellow squares. Points

on the blue lines guarantee convergence. Points along the dashed pink line would also result in
convergence, but with a larger number of iterations. Points on the red dotted lines will diverge.

Quadratic Convergence: 1/N

(1) () (2 ())d d dx k x k N x k
1

()d
k

x k
N

(1) () (2 ())d d dy k y k y k () 1d k
y k

2(1) ()d de k e k

() () 1d de k y k

6.25

Initial Condition: 1/sqrt(N)

-4 -2 0 2 4
-4

-2

0

2

4

ys(k)

y s(k
+1

)

5
3

2()
(1) (3 ())

2
s

s s
y k

y k y k () 1s k
y k

0 (0) 3sy

3 (0) 5sy

(0) 5sy

Convergence:

Conv. stripes:

Divergence:

6.26

104 Chapter 6

Slide 6.27

Similarly, we look at the transfer
function yd (k + 1) = f (yd (k)) for the
division algorithm. The algorithm
converges for 0 < yd (0) < 2;
otherwise it diverges.

Slide 6.28

With some insight about
convergence, further analysis is
needed to better understand the
choice of the initial condition. This
slide repeats the convergence
analysis from Slide 6.24 to illustrate
error dynamics. The error formula
en+1 = 1.5·en

2 – 0.5·en
3 indicates

quadratic convergence, but does
not explicitly account for the initial
condition (included in e0) [3].

Initial Condition: 1/N

-4 -2 0 2 4
-4

-2

0

2

4

yd(k)

y d(k
+1

)

(1) () (2 ())d d dy k y k y k () 1d k
y k

0 (0) 2dyConvergence:

Divergence: otherwise

6.27

1/sqrt(N): Convergence Analysis

6.28

2
1 3

2
n

n n
x

x N x
1

n
n

x
N

n
n

y
x

N

2
1 3

2
n

n n
y

y y

1n ne y

2 3
1

3 1
2 2n n ne e e

Error:

[3] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University
of California, Berkeley, 2006.

[3]

CORDIC, Divider, Square Root 105

Slide 6.29

To gain more insight into
convergence error, let’s revisit the
transfer function for the 1/sqrt()
algorithm. The colored segments
indicate three regions of
convergence. Since the transfer plot
is symmetric around 0, we look into
positive values. For 0 < y0 < sqrt(3),
the algorithm converges to 1. For
sqrt(3) < y0 < sqrt(5), the algorithm
still converges, but it may take on
negative values and require a larger
number of iterations before it
settles. For y0 > sqrt(5), the
algorithm diverges.

Slide 6.30

The error transfer function is
shown on this plot. The
convergence bands discussed in the
previous slide are also shown. In
order to see what this practically
means, we will next look into the
time response of yn.

1/sqrt(N): Convergence Analysis (Cont.)

2
1 3

2
n

n n
y

y y 1n n
y

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

3
5 00 3y

03 5y

0 5y

convergence

conv. stripes

divergence

6.29
ys(k)

y s
(k

+1
)

Error

divergence

conv. stripes

convergence

6.30

10.500.511.5
0

1

2

3

4

5

6

en

e n
+1

106 Chapter 6

Slide 6.31

This plot shows what happens
when we select the initial conditions
in each of the convergence bands as
previously analyzed. If we start
from close neighborhood of the
solution and begin with 1 + or 1
– , the algorithm converges in less
than 3 or 4 iterations. If we start
from the initial value of sqrt(3) + ,
the algorithm will converge in 5
iterations, but the solution might
have the reverse polarity (1
instead of 1). Getting further away
from sqrt(3) will take longer (10
iterations for 2 away) and the

solution may be of either polarity. Starting from sqrt(5) – 2 , we see a sign change initially and a
convergence back to 1. Getting closer to sqrt(5) will incur more sign changes and a slowly decreasing
absolute value until the algorithm settles to 1 (or 1).

Slide 6.32

For initial conditions greater than
sqrt(5), the algorithm diverges as
shown on this plot. The key,
therefore, is to pick a suitable initial
condition that will converge within
the specified number of iterations.
This has to be properly analyzed
and implemented in hardware.

Choosing the Initial Condition

6.31

sqrt(5) –
sqrt(5) – –
sqrt(3) + +

sqrt(3) +
1 +
1 –

0
Iteration

5 10 15 20 25
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5
So

lu
tio

n

Initial Condition > sqrt(5) Results in Divergence

6.32

Iteration

2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

So
lu

tio
n

sqrt(5) +
sqrt(5) –

sqrt(5) – –

2 64 8 10 1412 16 18 20

CORDIC, Divider, Square Root 107

Slide 6.33

The idea is to determine the initial
condition to guarantee convergence
in a bounded number of iterations.
Moreover, it is desirable to have
decreasing error with every
iteration. To do this, we can define
a function V(xn) and set
convergence bound by specifying
V(x0) < a. To account for
symmetry around 0, we define
V(xn) to be positive, as given by
(6.1). This function defines the
squared absolute error. To satisfy
decreasing error requirement, we
set V(xn+1) – V(xn) < 0 as in

(6.2). Finally, to guarantee convergence in a fixed number of iterations, we need to choose an x0
that satisfies (6.3).

Slide 6.34

The initial condition for which the
absolute error decreases after each
iteration is calculated here. For the
square rooting algorithm the initial
condition is below sqrt(4.25) – 0.5,
which is more restrictive than the
simple convergence constraint
given by sqrt(3). For the division
algorithm, initial conditions below 2
guarantees descending error. Next,
we need to implement the
calculation of x0.

Descending Absolute Error

2() (1)k kE x x 1() () () 0k k kV x E x E x k

2 20
0 0 0 0 0() (1) (1) (4)

4s
x

V x x x x x

2
0 0 0 0() (1) (2)dV x x x x

0 1 2 3

-0.2

0

0.2

0.4

0.6

initial condition, x0

sq
rt,

 V
(x

0)

3

-0.5+ 4.25

0 1 2 3

-0.2

0

0.2

0.4

0.6

initial condition, x0

di
v,

 V
(x

0)

Descending error:

6.34

1/sqrt Div

1/sqrt(): Picking Initial Condition

2
1 3

2
n

n n
x

x N x
1

n
n

x
N

 Equilibriums 1
0,

N
 Initial condition

– Take:

– Find x0 such that:

– Solution:

2
1

()n nV x x
N

1() () 0 (0,1,2,...)n nV x V x n n

0 0{ : () }S x V x a

“Level set” V(x0) = a is a convergence bound
 Local convergence (3 equilibriums)

(6.2)

6.33

(6.3)

(6.1)

108 Chapter 6

Slide 6.35

The solution to (6.2) yields the
inequality shown here. The roots
are positioned at x1 and x2,3, as
given by the formulas on the slide.
The plot on the left shows the term
f3 = (2.5·x0 – N/2·x0

3 – 2/sqrt(N))
as a function of x0 for N ranging
from 1/64 to 16. Zero crossings are
indicated with dots. The initial
condition has to be chosen from
positive values of f3. The function f3
has a maximum at sqrt(5/3N),
which could be used as an initial
condition.

Slide 6.36

Here is an implementation of the
initial condition discussed in the
previous slide. According to
(6.3), 1/sqrt(N) – sqrt(a) < x0 <
1/sqrt(N)+sqrt(a). For N ranging
from 1/64 to 16, the initial circuit
calculates 6 possible values for x0.
The threshold values in the first
stage are compared to N to select a
proper value of x0. This circuit can
be implemented using inexpensive
digital logic.

1/sqrt(N): Picking Initial Condition (Cont.)

2 30
0 0 0

5 2
(1) 0

2 2 2
x N

N x x x
N

10
-1

10
0

10
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

initial condition x0

f3

N=1/64
N=1/16
N=1/4
N=1
N=4
N=16

(6.2) 

0
5

3Mx
N

Roots:

1
1

x
N

2,3
1

1 17
2

x
N

Max:

6.35

1/16 1/4
1

4

16

1/64

Numbers below: N

Initial Condition Circuit

0
1 1

a x a
N N

>16

>4

>1

>1/4

>1/16

>1/64 x0 = 8
x0 = 4

x0 = 2

x0 = 1

x0 = 1/2

x0 = 1/4

N

(6.3) 

6.36

CORDIC, Divider, Square Root 109

Slide 6.37

This slide shows the use of the
initial conditions circuit in the
algorithm implementation. On the
left, we see the internal node xs(k)
from Slide 6.23, and on the right we
have the sampled output xs(k+1).
The middle plot on the left shows a
magnified section of the waveform
on the top. Convergence within 8
iterations is illustrated. Therefore, it
takes 8 clock cycles to process one
input. This means that the clock
frequency is 8-times higher than the
input sample rate. The ideal (pink)
and calculated (yellow) values are

compared to show good matching between the calculated and expected results.

Another idea to consider in the implementation is to shift the internal computation (xs(k) from
Slide 6.23) to effectively extend the range of the input argument. Division by 2 is illustrated on the
bottom plot to present this concept. The output xs(k+1) has to be shifted in the opposite direction
to compensate for the input scaling. The output on the bottom right shows correct tracking of the
expected result.

Slide 6.38

The convergence speed is analyzed
here as a function of the desired
accuracy and of the initial error
(initial condition). Both the square-
root and the division algorithms
converge in at most 5 iterations for
an accuracy of 0.1% with initial
conditions up to 50% away from
the solution. The required number
of iterations is less for lower
accuracy or lower initial error.

An idea that can be considered
for adaptive algorithms with slowly
varying input is to use the solution
of the algorithm from the previous

iteration as the initial condition to the next iteration. This is particularly useful for flat-fading channel
estimation in wireless communications or for adaptive filters with slowly varying coefficients. For
slowly varying inputs, we can even converge in a single iteration. This technique will be applied in
later chapters in the realization of adaptive LMS filters.

Left: Internal Node, Right: Sampled Output

6.37

Internal node and output Sampled output of the left plot

Zoom in: convergence in 8 iterations Sampled output of the left plot

Internal divide by 2 extends range Sampled output of the left plot

internal

sampled out

sampled out
8 iterations

internal

sampled outextended
range

Convergence Speed

 Adaptive algorithm
– current result  .ic for next iteration

Target relative error (%) 0.1% 1% 5% 10%
e0: 50%, # iter (sqrt/div) 5 / 4 5 / 3 4 / 3 3 / 2
e0: 25%, # iter (sqrt/div) 3 / 3 3 / 2 2 / 2 2 / 1

 # iterations required for specified accuracy

6.38

Iterative
algorithm.ic 1/sqrt(N)

Nk+1 Nk

(yk)

110 Chapter 6

Slide 6.39

Iterative algorithms and their
implementation were discussed.
CORDIC, a popular iterative
algorithm based on angular
rotations, is widely used to calculate
trigonometric and hyperbolic
functions as well as divide
operation. CORDIC resolves one
bit of precision in each iteration
and may not converge fast enough.
As an alternative, algorithms with
faster convergence such as
Newton-Raphson methods for
square root and division are
proposed. These algorithms have

quadratic convergence, which means that two bits of resolution are resolved in every iteration.
Convergence speed also depends on the choice of initial condition, which can be set such that
absolute error decreases in each iteration. Another technique to consider is to initialize the algorithm
with the output from previous iteration. This is applicable to systems with slowly varying inputs.
Ultimately, real-time latency of recursive algorithms depends on the choice of initial condition and
desired resolution in the output.

References

 R. Andraka, "A Survey of CORDIC Algorithms for FPGA based Computers," in Proc. Int.
Symp. Field Programmable Gate Arrays, Feb. 1998, pp. 191-200.

 C. Ramamoorthy, J. Goodman, and K. Kim, "Some Properties of Iterative Square-Rooting
Methods Using High-Speed Multiplication," IEEE Trans. Computers, vol. C-21, no. 8, pp.
837–847, Aug. 1972.

 D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis,
University of California, Berkeley, 2006.

Additional References

 S. Oberman and M. Flynn, "Division Algorithms and Implementations," IEEE Trans.
Computers, vol. 47, no. 8, pp. 833–854, Aug. 1997.

 T. Lang and E. Antelo, "CORDIC Vectoring with Arbitrary Target Value," IEEE Trans.
Computers, vol. 47, no. 7, pp. 736–749, July 1998.

 J. Valls, M. Kuhlmann, and K.K. Parhi, "Evaluation of CORDIC Algorithms for FPGA
Design," J. VLSI Signal Processing 32 (Kluwer Academic Publishers), pp. 207–222, Nov. 2002.

Summary

 Iterative algorithms can be use for a variety of DSP functions
 CORDIC uses angular rotations to compute trigonometric and

hyperbolic functions as well as divide and other operations
– One bit of resolution is resolved in each iteration

 Netwon-Raphson algorithms for square root and division have
faster convergence than CORDIC
– Two bits of resolution are resolved in each iteration (the

algorithm has quadratic error convergence)
 Convergence speed greatly depends on the initial condition
– The choice of initial condition can be made as to guarantee

decreasing absolute error in each iteration
– For slowly varying inputs, adaptive algorithms can use the

result of current iteration as the initial condition
– Hardware latency depends on the initial condition and accuracy

6.39

Slide 7.1

This chapter introduces the
fundamentals of digital filter design,
with emphasis on their usage in
radio applications. Radios by
definition are expected to transmit
and receive signals at certain
frequencies, while also ensuring that
the transmission does not exceed a
specified bandwidth. We will,
therefore, discuss the usage of
digital filters in radios, and then
study specific implementations of
these filters, along with pros and
cons of the available architectures.

Slide 7.2

Filters are ideally suited to execute
the frequency selective tasks in a
radio system [1]. This chapter
focuses on three classes of filters:
feed-forward FIR (finite impulse
response), feedback IIR (infinite
impulse response), and multi-rate
filters [2, 3]. A discussion on
implementation examines various
architectures for each of these
classes, including parallelism,
pipelining, and retiming. We also
discuss an area-efficient
implementation approach based on
distributed arithmetic. The

presentation of each of the three filter categories will be motivated by relevant application examples.

Chapter Outline

Topics discussed:

 Direct Filters

 Recursive Filters

 Multi-rate Filters

7.2

Example applications:

 Radio systems
– Band-select filters
– Adaptive equalization
– Decimation / interpolation

 Implementation techniques
– Parallel, pipeline, retimed
– Distributed arithmetic

[1] J. Proakis, Digital Communications, (3rd Ed), McGraw Hill, 2000.
[2] A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice Hall, 2009.
[3] J.G. Proakis and D.K. Manolakis, Digital Signal Processing, (4th Ed), Prentice Hall, 2006.

[1]

Digital Filters

Chapter 7

with Rashmi Nanda
University of California, Los Angeles

and Borivoje Nikoli
University of California, Berkeley

 DOI 10.1007/978-1-4419-9660-2_7, © Springer Science+Business Media New York 2012
111D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

112 Chapter 7

Slide 7.3

To motivate filter design, we first
talk about typical radio architectures
and derive specifications for the
hardware implementation of the
filters. As a starting example, we
will discuss the raised-cosine filter
and its implementation. Basic
architectural concepts are
introduced, and their use will be
illustrated on a digital baseband for
ultra-wideband radio.

Slide 7.4

The slide shows a typical radio
transmitter chain. The baseband
signal from the MODEM is
converted into an analog signal and
then low-pass filtered before
mixing. The MODEM is a DSP
block responsible for modulating
the raw input bit stream into AM,
PSK, FSK, or QAM modulated
symbols. Baseband modulation can
be viewed as a mapping process
where one or more bits of the input
stream are mapped to a symbol
from a given constellation. The
constellation itself is decided by the

choice of the modulation scheme. Data after modulation is still composed of bits (square-wave),
which if directly converted to the analog domain will occupy a large bandwidth in the transmit
spectrum. The digital data must therefore be filtered to avoid this spectral leakage. The transmit
filter executes this filtering operation, also known as pulse shaping, where the abrupt square wave
transitions in the modulated data stream are smoothened out by low-pass filtering. The band limited

Further filtering in the analog domain, after D/A conversion, is necessary to suppress spectral
images of the baseband signal at multiples of the sampling frequency. In Chap. 13, we will see
how it becomes possible to implement this analog filter digitally. The transmit filter in the
MODEM will be treated as a reference in the subsequent slides.

Filter Design for Digital Radios

[2] A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice Hall, 2009.
[3] J.G. Proakis and D.K. Manolakis, Digital Signal Processing, (4th Ed), Prentice Hall, 2006.

Radio Transmitter

 Amalgam of analog, RF, mixed signal, and DSP components

Baseband
Modulation

Transmit
Filter

I

Q

Input
Bits

I

Q

AM, PSK, FSK, QAM Pulse Shaping

MODEM

7.4

Antenna

LO

RF filter PA

Q

I

DAC

DAC

LPF

LPF
0

90

D
S
P

digital signal is now converted to the analog domain using a digital-to-analog (D/A) converter.

Digital Filters 113

Slide 7.5

In the previous slide, we looked at
filtering operations in radio
transmission. Filters have their use
in the radio receiver chain as well.
Digital filtering is once again a part
of the baseband MODEM block,
just after the analog signal is
digitized using the ADC. The
receive filter in the MODEM
attenuates any out-of-band spectral
components (interference, channel
noise etc.) that are not in the
specified receive bandwidth. This
receive filter is matched in its
specifications to the transmit filter

shown in the previous slide. After filtering, the baseband data goes through a timing correction
block, which is followed by equalization. Equalizers are responsible for reversing the effects of the
frequency-selective analog transmit channel. Hence, equalizers are also frequency selective in nature
and are implemented using filters. They are an important part of any communication system, and
their implementation directly affects the quality of service (QoS) of the system. We will look at
various algorithms and architectures for equalizers in a later section of the chapter.

Slide 7.6

Radio design is a multi-stage
process. After specifying the
modulation scheme, sample period,
and signal bandwidth, algorithm
designers have to work on the
different blocks in the radio chain.
These include transmit and receive
filters, modulators, demodulators,
signal detectors, timing correction
blocks, and equalizers. Significant
effort is spent on the design of filter
components: transmit and receive
filters, and adaptive equalizers.
After the algorithm design phase,
the design needs to be described in

a sample- and bit-accurate form for subsequent hardware implementation. This process includes
choosing the optimal number of bits to minimize the impact of fixed-point accuracy (discussed in
Chap. 10), and choosing an optimal architecture for implementation (topic of Chap. 11). These
steps can be iterated to develop a hardware-friendly design. The final step is mapping the design
onto hardware.

Radio Receiver

Receive
Filter

Timing
Correction

Adaptive
Equalizer

Demod/
Detector

I

Q

I

Q

Received
Bits

MODEM

7.5

D
S
P

ADC

Antenna

LO0
90

Pre-selection
filter

LPF

LPF

LNA
ADC

Design Procedure

 Assume: Modulation, Ts (symbol period), bandwidth specified
– Algorithm design

● Transmit / receive filters
● Modulator
● Demodulator
● Detector
● Timing correction
● Adaptive equalizer

– Implementation architecture
– Wordlength optimization
– Hardware mapping

7.6

114 Chapter 7

Slide 7.7

As noted earlier, the result of
baseband modulation is a sequence
of symbols, which are still in digital
bit-stream form. The frequency
domain representation of this bit-
stream will be the well-known sinc
function, which has about 13 dB of
attenuation at the first side lobe.
Typically, the allowable bandwidth
for transmission is restricted to the
main lobe, and any data
transmission in the adjacent
spectrum amounts to spectral
leakage, which must be suppressed.
A transmit filter is therefore

required before transmission, to restrict the data to the available bandwidth. If the symbol period
after modulation is Ts, then the allowable bandwidth (pass band) for transmission is 2/Ts.

Slide 7.8

The diagram on the left of the slide
illustrates the ideal frequency
response of a transmit/receive
filter. The rectangular response
shown in red will only allow signals
in the usable bandwidth to pass,
and will completely attenuate any
signal outside this bandwidth. We
have seen in the previous slide that
the frequency response of a square
wave bit-stream is a sinc function.
Similarly, the impulse response of
the brick-wall filter shown in the
figure is the infinitely long sinc
function. Thus, a long impulse

response is needed to realize the sharp roll-off characteristics (edges) of the brick-wall filter. A
practical realization is infeasible in FIR form, when the impulse response is infinitely long.

Ideal Filter

7.8

1

1/2Ts 1/2Ts
then the time response goes on forever.

0 Ts 2Ts 3Ts

 Sample rate = fs

 Baseband BW = fs/2 (pass band BW = fs)

 If we band-limit to the minimum possible amount 1/2Ts,

Signal-Bandwidth Limitation

 Modulation generates pulse train of zeros and ones
 The frequency response of pulse train is not band-limited
 Filter before transmission to restrict bandwidth of symbols

0 1/T 2/T1/T2/T

13 dB
|H(f)|

Binary sequence generated after modulation

Frequency response of a single pulse

Attenuate
side-lobes

Symbol period = T

pass band

T

1 0 1 0 0 1

7.7

Digital Filters 115

Slide 7.9

Practical FIR implementations of
transmit/receive filters typically
adopt a truncated version of the
impulse response. Truncation of
the impulse response results in a
gentler roll-off in the frequency
domain, in contrast to the sharp
roll-off in the brick-wall filter. One
such truncated realization is the
raised-cosine filter, which will be
discussed in the following slides.

Slide 7.10

The raised-cosine filter is a popular
implementation of the
transmit/receive (Tx/Rx) frequency
response. The equations shown on
the top of the slide describe the
frequency response as a function of
frequency and the parameter α. The
roll-off slope can be controlled
using the parameter α, as illustrated
in the figure. The roll-off becomes
smoother with increasing values of
α. As expected, the filter
complexity (the length of the
impulse response) also decreases
with higher α value. The

corresponding impulse response of the raised cosine function decays with time, and can be
truncated with negligible change in the shape of the response. The system designer can choose the
extent of this truncation as well as the wordlength of the filter operations; in this process he/she
sacrifices filter ideality for reduced complexity.

Practical Transmit / Receive Filters

 Transmit filters
– Restrict the transmitted signal bandwidth to a specified value

 Receive filters
– Extract the signal from a specified bandwidth of interest

Usable Bandwidth
Ideal

Filter response

Practical
Filter response

Ideal filter response has infinitely long impulse response.
Raised-cosine filter is a practical realization.

Brick wall
Sharp roll-off

7.9

Raised-Cosine Filter

 Frequency response of raised-cosine filter

HRC (f) =

= 0
= 0.5

= 1

T

1/2T1/2T 1/T1/T

HRC (f)

7.10

1
1 | |

2 s

f
T

1 1 1
1 | | | |

2 2 2 2
s s

s
s s s

T T
cos f f

T T T
1

0 | |
2 s

f
T

116 Chapter 7

Slide 7.11

The diagram shows the time-
domain pulse shaping of a digital
bit stream by the raised-cosine
filter. As expected, low-pass filters
smoothen out the abrupt transitions
of the square pulses. When square
wave pulses are smoothened, there
is a possibility of overlap between
adjacent symbols in the time-
domain. If the overlap occurs at the
sampling instants, then this can lead
to erroneous signal samples at the
receiver end. An interesting feature
of raised cosine pulse shaping is the
contribution of the adjacent

symbols at the sampling instants. The slide illustrates how symbol2 does not have any contribution at
time T = 0 when symbol1 is sampled at the receiver. Similarly symbol1 has no contribution at time T
when symbol2 is sampled. As such, no inter-symbol interference (ISI) results after pulse shaping using
raised-cosine filters.

Slide 7.12

It is simpler to split the raised-
cosine filter response symmetrically
between the transmit and receive
filters. The resulting filters are
known as square-root raised-cosine
filters. The square-root filter
response is broader than the raised-
cosine one, and there is often
additional filtering needed to meet
specifications of spectral leakage or
interference attenuation. These
additional filters, however, do not
share properties of zero inter-
symbol interference, as was true for
the raised-cosine filter, and will

require equalization at the receiver end.

Over-sampling of the baseband signals will result in more effective pulse shaping by the filter.
This also renders the system less susceptible to timing errors during sampling at the receiver end. It
is common practice to over-sample the signal by 4 before sending it to the raised-cosine filter. The
sampling frequency of the filter equals that of the ADC on the receive side and that of the DAC on
the transmit side. The impulse response of the filter can be obtained by taking an N-point inverse
Fourier transform of the square-root raised-cosine frequency response (as shown in the slide). The
impulse response is finite (= N samples), and the attenuation and roll-off characteristics of the filter

Raised-Cosine Filter (Cont.)

 Time-domain pulse shaping with raised-cosine filters
 No contribution of adjacent symbols at the sampling instants
– No inter-symbol interference with this pulse shaping

T 2T 3TT 0

symbol1 symbol2

7.11

Raised-Cosine Filter (Cont.)

 Square-root raised-cosine filter response
– Choose sample rate for the filter
– Sample rate is equal to D/A frequency on transmit side and A/D

frequency on receive side
– If fD/A = fA/D = 4·(1/Tsymbol)

 Normally we split the filter between the transmit & receive

for –(N – 1)/2 < n < (N – 1)/2

Impulse response is finite, filter can be implemented as FIR

7.12

() () ()Tx Rx RCH f H f H f

(2)/() (4 /)· j mn N
Tx RC sh n H m NT e

() () ()RC Tx RxH f H f H f

Digital Filters 117

will depend on the values of α and N. Next, we take a look at the structures used for implementing
this FIR filter.

Slide 7.13

This slide illustrates a basic
architecture used to implement an
FIR filter. An N-tap finite impulse
response function can be
symbolically represented by a series
of additions and multiplications as
shown in the slide. The simplest
way to implement such a filter is
the brute-force approach of
drawing a signal-flow graph of the
filter equation and then using the
same graph as a basis for hardware
implementation. This structure,
known as the direct-form
implementation for FIR filters, is

shown in the slide. The diagram shows N multiply operations for the N filter taps and N− 1
addition operations to add the results of the multiplications. The clock delay is implemented using
memory units (registers), where z−D represents D clock cycles of delay.

Slide 7.14

The direct-form architecture is
simple, but it is by no means the
optimal implementation of the FIR.
The main drawback is the final
series of N −1 additions that result
in a long critical-path delay, when
the number of filter taps N is large.
This directly impacts the maximum
achievable throughput of the direct-
form filters. Several techniques can
be used to optimize the signal-flow
graph of the FIR so as to ensure
high speed, without compromising
on area or power dissipation.

Direct-Form FIR Filter

 A straightforward implementation of the signal-flow graph
– Critical-path delay proportional to filter order
– Suitable when number of taps are small

critical path

Critical path = tmult + (N 1) · tadd

x(n 1) x(n N+1)
x(n)

y(n)

h0

z 1

×

z 1 z 1

h1 ×

+ +

hN 1 ×

7.14

0 1 2 1() (1) (2(.)) . . (1)Nx n h x n h x n h x n Ny n h

Implementing the Filter

 An N-tap filter is a series of adds and multiply operations
 Draw the signal-flow graph (SFG) of the FIR function
– Construct the SFG from the filter equation

 Signal flow-graph can be implemented by several architectures
– Architecture choice depends on throughput, area, power specs

x(n)

y(n)

h0

Clock cycle
latency

(register)
z 1

×

z 1 z 1

h1 ×

+ +

hN 1 ×

7.13

0 1 2 1() (1) (2(.)) . . (1)Nx n h x n h x n h x n Ny n h

118 Chapter 7

Slide 7.15

Before we look at optimization
techniques for filter design, it is
useful to become familiar with the
compact signal-flow graph notation
commonly used to represent DSP
algorithms. The signal-flow graph
can be compressed to the line-
diagram notation shown at the
bottom of the slide. Arrows with
notations of z D over them are
clocked register elements, while
arrows with letters hi next to them
are notations for multiplication by
hi. When nodes come together,
they represent an add operation,

and nodes branching out from a point indicate fan-out in multiple directions.

Signal-flow graph manipulations can result in multiple architectures with the same algorithm
functionality. For example, we can fold the signal-flow diagram shown in the slide, since the
coefficients are symmetrical around the center. We can also move register delays around, resulting
in a retimed graph, which vastly reduces the critical path. Constant coefficient multiplications can
be implemented using hardwired shifts rather than multipliers, which results in significant area and
power reduction.

Slide 7.16

The first optimization technique we
look at is pipelining. It is one of
the simplest and most effective
ways to speed up any digital circuit.
Pipelining adds extra registers to
the feed-forward portions of the
signal-flow graph (SFG). These
extra registers can be placed
judiciously in the flow-graph, to
reduce the critical path of the SFG.
One of the overheads associated
with pipelining is the additional
I/O latency equal to the number of
extra registers introduced in the
SFG. Other overheads include

increased area and power due to the higher register count in the circuit. Before going into pipelining
examples, it is important to understand the definition of “cut-sets” [4] in the context of signal-flow
graphs. A cutest can be defined as a set of edges in the SFG that hold together two disjoint parts G1
and G2 of the graph. In other words, if these edges are removed, the graph is no longer a connected
whole, but is split into two disjoint parts. A forward cut-set is one where all the edges in the cut-set

FIR Filter: Simplified Notation

 A more abstract and efficient notation

z 1 z 1

h0 h1 h2

Assume an add when nodes merge

Multiply notation

+ +

z 1 z 1

×× ×

x(n)

y(n)

h0 h1 h2

x(n)

y(n)

7.15

Pipelining

 Direct-form architecture is throughput-limited
 Pipelining: can be used to increase throughput
 Pipelining: adding same number of delay elements in each forward

cut-set (in the data-flow graph) from the input to the output
– Cut-set: set of edges in a graph that if removed, graph becomes

disjoint
– Forward cut-set: all edges in the cut-set are in the same

direction
 Increases latency
 Register overhead (power, area)

7.16

[4] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons
Inc., 1999.

[4]

Digital Filters 119

are oriented in the same direction (either from G1 to G2 or vice versa). This will become clear with
the example in the next slide.

Slide 7.17

The figure shows an example of
pipelining using cut-sets. In the top
figure, the dashed blue line
represents the cut, which splits the
signal-flow graph into two distinct
parts. The set of edges affected by
the cut constitute the cut-set.
Pipeline registers can be inserted on
each of these edges without altering
the functionality of the flow graph.
The same number of pipeline
registers must be inserted on each
cut-set edge. In the bottom figure,
we see that one register is inserted
on the cut-set edges, which

increases the I/O latency of the signal-flow graph. The output of the bottom graph is no longer the
same as the top graph but is delayed by one clock cycle. The immediate advantage of this form of
register insertion is a reduction in the length of the critical path. In the top figure, the critical path
includes one multiply and two add operations, while in the second figure the critical path includes
only one multiply and add operation after pipelining. In general, this form of pipelining can reduce
the critical path to include only one add and one multiply operation for any number of filter taps N.
The tradeoff is the increased I/O latency of up to N clock cycles for an N-tap direct-form filter. The
second disadvantage is an excessive increase in area and power of the additional registers, when the
number of taps N is large.

Slide 7.18

Pipelining results in the insertion of
extra registers in the SFG, with the
objective of increasing throughput.
But it is also possible to move the
existing registers in the SFG to
reduce critical path, without altering
functionality or adding extra
registers. This form of register
movement is called retiming, and it
does not result in any additional
I/O latency. The objective of
retiming is to balance the
combinational logic between delay
elements to maximize the

High-Level Retiming

 Optimal placement of registers around the combinational logic
– Register movement should not alter SFG functionality

 Objective: equal logic between registers for maximum throughput

D D D Out

In

D

4 registers

7 registers

× × × ×

++ +

D D D Out

In

× × × ×

++ +

DDDD

7.18

Pipelining Example

+ +

z 1 z 1

×× ×

x(n)

y(n)

h0 h1 h2

Cut-set

+ +

z 1 z 1

×× ×

x(n)

y(n 1)

z 1

z 1

Pipeline
regs

tcritical = tmult + 2tadd

tcritical = tmult + tadd

h0 h1 h2

7.17

120 Chapter 7

throughput. The figure shows two signal-flow graphs, where the top graph has a critical path of one
adder and multiplier. The dashed black lines show register retiming moves for the top graph. After
retiming, we find that the second graph has a reduced critical path of one multiply operation. No
additional I/O latency was introduced in the process, although the number of registers increased
from 4 to 7.

Slide 7.19

We saw earlier that the main
bottleneck in the direct form
implementation of the FIR was the
final series of N−1 additions (N is
the number of filter taps). A more
efficient way to implement these
additions is by using a logarithmic
adder tree instead of the serial
addition chain used earlier. An
example of a logarithmic tree is
shown in the figure, where each
adder takes two inputs. The critical
path is now a function of
tadd·(log2(N)), a logarithmic
dependence on N.

Further optimization is possible through the use of compression trees to implement the final
N− 1 additions. The 3:2-compression adder, which was introduced in Chap. 5, takes 3 inputs and
generates 2 outputs, while the 4:2 compression adder takes in 4 inputs and generates 2 outputs. The
potential advantage is the reduction in the length of the adder tree from log2(N) to log3(N) or
log4(N). But the individual complexity of the adders also increase when compression adders are
used, resulting in a higher tadd value. The optimized solution depends on where the product of
logk(N) and tadd is minimum (k refers to the number of adder inputs).

Multi-Operand Addition

 A faster way to add is to use an adder tree instead of a chain
 Critical path is proportional to log2(N) instead of N

tcritical = tmult + (log2N)·tadd

+ +

D D

××

y(n)

h0 h1

x(n 1)

×h2

D

×h3

+

x(n 2) x(n 3)x(n)

log2N
adder
stages

7.19

Digital Filters 121

Slide 7.20

A major cost in implementing FIR
filters comes from the bulky
multiplier units required for
coefficient multiplication. If the
frequency response of the filter is
stringent (sharp roll-off) then the
number of taps can be quite large,
exceeding 100 taps in some cases.
Since the number of multiply
operations is equal to the number
of taps, such long FIR filters
become area and power hungry
even at slow operating frequencies.
One way to reduce this cost is the
use of power-of-two multiplication

units. If the coefficients of the filter can be expressed as powers-of-two, then the multiplication is
confined to shift and add operations. Shown in the figure is an example of one such coefficient
19/32. This coefficient can be written as 2−1 + 2−3 – 2−5 . The resultant shift-and-add structure is
shown in the figure on the right. It is to be noted that multiplications by powers of two are merely
hardwired shift operations which come for free, thus making the effective cost of the multiply
operation to be only 2 adder units.

Of course, it is not always possible to express all the coefficients in a power-of-two form. In
such cases, a common optimization technique is to round off the coefficients to the nearest power
of two, and analyze the performance degradation in the resulting frequency response. If the
frequency response is still acceptable, the cost reduction for the FIR can be very attractive. If not,
then some form of search algorithm [5] can be employed to round off as many coefficients as
possible without degrading the response beyond acceptable limits. The filter may also be
overdesigned in the first phase, so that the response is still acceptable after the coefficients are
rounded off.

Multiplier-less FIR Filter Implementation

 Power-of-two multiplications
– Obtained for free by simply shifting data buses
– Round off multiplier coefficients to nearest power of 2
– Little performance degradation in most cases
– Low complexity multiplier-less FIR

×

0.59375
= 19/32

In Out

+ +

2 1

In

Out

2 3 2 5

7.20

[5] H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters with
Powers-of-Two Coefficients," IEEE Trans. Circuits and Systems, vol. 36 , no. 7, pp. 1044-1047,
July 1989.

[5]

122 Chapter 7

Slide 7.21

Probably the most effective
technique for increasing the
throughput of FIRs, without
significant power or area overhead
is the use of transposition. This
concept comes from the
observation that reversing the
direction of arrows in a signal-flow
graph does not alter the
functionality of the system. The
diagram in this slide shows how
transposition works. The direction
of arrows in the direct-form
structure (left-hand side) is
reversed, resulting in the signal-flow

graph shown on the right-hand side. In the transposed architecture, the signal branching points of
the original SFG are replaced with adders and vice versa, also the positions of input and output
nodes are reversed, leading to the final transposed structure shown at the bottom of the slide.

The transposed form has a much shorter critical path. The critical path for this architecture has
reduced to tadd + tmult . Note that up to 2N− 2 pipeline register insertions were required to achieve
the same critical path for the direct-form architecture, while the transposed structure achieves the
same critical path with no apparent increase in area or power. One of the fallouts of using a
transposed architecture is the increased loading on the input x(n), since the input now branches out
to every multiplier unit. If the number of taps in the filter is large, then input loading can slow down
x(n) considerably and lower the throughput. To avoid this slow-down, the input can be buffered to
support the heavy loading, which results in some area and power overhead after all. Despite this
issue, the transposed architecture is one of the most popular implementations of the FIR filters.

Slide 7.22

Like pipelining, parallelism is
another architecture optimization
technique targeted for higher
throughput or lower power
applications. Low power is
achieved by speeding up the circuit
through the use of concurrency and
then scaling the supply voltage to
maintain the original throughput,
with a quadratic reduction in
power. For most feed-forward
DSP applications, parallelism can
result in an almost linear increase in
throughput.

Parallelism can be employed for

Transposing FIR

 Transposition:
– Reverse the direction of edges in a signal-flow graph
– Interchange the input and output ports
– Functionality unchanged

tcritical = tmult + tadd
(shortened)

Input
loading

increased

y(n)

x(n)

× × ×

+ +

h2 h1 h0

D D

x(n) D D

h2h1h0 h0 h1 h2

D D

y(n)

y(n)

x(n)

7.21

Unfolding / Parallel FIR Implementation
x(n)

y(n)

y(n) = a·x(n) + b·x(n 1) + c·x(n 2) + d·x(n 3)

D D D

y(2m) = a·x(2m) + b·x(2m 1)
+ c·x(2m 2) + d·x(2m 3)

y(2m+1) = a·x(2m+1) + b·x(2m)
+ c·x(2m 1) + d·x(2m 2)

tcritical = tadd + tmult

tcritical = 2tadd + tmult

tcritical/iter = tcritical / 2

= tadd + tmult / 2

7.22

d

+

c b a

+ +

x(2m+1)

y(2m+1)
D

d

+

c b a

+ +

y(2m)
D D

d

+

c b a

+ +

x(2m)

Digital Filters 123

both direct- and transposed-forms of the FIR. This slide shows parallelization of the transposed-
form filter. Parallel representation of the original flow graph is created by a formal approach called
“unfolding”. More details on unfolding will be discussed in Chap. 11. The figure shows a
transposed FIR filter at the top of the slide, which has a critical path of tadd + tmult. The figure on the
bottom is a twice-unfolded (parallel P =2) version of this filter. The parallel FIR will accept two
new inputs every clock cycle while also generating two outputs every cycle. Functional expressions
for the two outputs, y(2m) and y(2m + 1), are shown on the slide. The parallel filter takes in the
inputs x(2m) and x(2m + 1) every cycle. The multiplier inputs are delayed versions of the primary
inputs and can be generated using registers. The critical path of the unfolded filter is 2·tadd + tmult .
Since this filter produces two outputs per clock cycle while also taking in two inputs, x(2m) and
x(2m +1), every cycle, the effective throughput is determined by Tclk/2 = tadd + tmult/2, where Tclk is
the clock period (throughput).

The same concept can be extended to multiple parallel paths (P>2) for a greater increase in
throughput. A linear tradeoff exists between the area increase and the throughput increase for
parallel FIR filters. Alternatively, for constant throughput, we can use excess timing slack to lower
the supply voltage and reduce power quadratically.

Slide 7.23

After a detailed look at FIR
implementations, we will now
discuss the use of infinite impulse
response (IIR) filters. This class of
filters provides excellent frequency
selectivity, although the occurrence
of feedback loops constrains their
implementation.

Recursive Filters

124 Chapter 7

Slide 7.24

FIR filters have distinct advantages
in terms of ease of design and
guaranteed stability. The stability
arises from the fact that all the
poles of the system are inside the
unit circle in the z-domain. This is
because the poles of the z-domain
transfer function are all located at
the origin. Also, the phase response
of FIRs can be made linear by
ensuring that the tap coefficients
are symmetric about the central tap.
FIR filters are attractive when the
desired frequency response
characteristics are less stringent,

implying low attenuation and gentle roll-off characteristics. In the extreme case of realizing steep
roll-off filter responses, the FIR filter will end up having a large number of taps and will prove to be
very computationally intensive. In these cases, a more suitable approach is the use of infinite
impulse response (IIR) filters.

Slide 7.25

As the name suggests, IIR filters
have an infinite impulse response
ranging from −∞ to +∞ as shown
in the figure. The FIR filter was
completely feed-forward, in other
words, the output of the filter was
dependent only on the incoming
input and its delayed versions. In
the IIR filter, on the other hand,
the expression for the filter output
has a feed-forward as well as a
recursive (feedback) part. This
implies that the filter output is
dependent on both the incoming
input samples and the previous

outputs y(n i), i >0. It is the feedback portion of the filter that is responsible for the infinitely
long impulse response. The extra degree of freedom coming from the recursive part allows the filter
to realize high-attenuation, sharp roll-off frequency responses with relatively low complexity.

IIR Filters for Narrow-Band, Steep Roll-Off

 Finite impulse response filters:
– Easy to design, always stable
– Feed-forward, can be pipelined, parallelized
– Linear phase response

 Realizing narrow-band, steep roll-off filters
– FIR filters require large number of taps
– The area and power cost can make FIR unsuitable
– Infinite Impulse response (IIR) filters are more suited to achieve

such a frequency response with low area, power budget

steep roll-offnarrow band

7.24

++ /10/10

IIR Filters

 Generalized IIR transfer function

Feed-forwardFeedback

Response up to +Response up to

7.25

1 0

() ())(
N N

m p
m p

b y n mn ay x n p

Digital Filters 125

Slide 7.26

The z-domain transfer function
H(z) of a generic IIR filter is shown
in this slide. The numerator of
H(z) represents the feed-forward
section of the filter, while the
feedback part is given by its
denominator. A direct-form
implementation of this expression
is shown in the figure. The
derivation of the output expression
for y(n) from the filter structure
should convince the reader that the
filter does indeed implement the
transfer function H(z). As in the
FIR case, the direct-form structure

is intuitive to understand, but is far from being the optimal implementation of the filter expression.
In the next slide, we will look at optimization techniques to improve the performance of this filter
structure.

Slide 7.27

An interesting property of
cascaded, linear, time-invariant
systems lies in the fact that the
functionality of the system remains
unchanged even after the order of
execution of the blocks is changed.
In other words, if a transfer
function H(z) = H1(z)·H2(z)·H3(z),
then the output is not affected by
the position of the three units H1,
H2 or H3 in the cascaded chain. We
use this fact to our advantage in
transforming the signal-flow graph
for the IIR filter. The direct-form
structure is split into two cascaded

units H1 and H2, and their order of execution is swapped.

IIR Architecture

 The IIR transfer function in the z-domain can be expressed as

z 1

z 1

+

+

x(n)

a1

aN 1

z 1

z 1

+

+
b1

bM 1

y(n)
kDirect-form IIR

7.26

1 2 (1)
1 2 1

1 2 (1)
1 2 1

1 ...
1 ...

()
N

N
M

M

a z a z a z
b z b z b z

H z k

IIR Architecture Optimization

H1(z) H2(z)

Swap the order of execution

 Functionality unchanged if order of execution of H1, H2 swapped

z 1

z 1

x(n)

a1

aN 1

z 1

z 1b1

y(n)
k

bM 1

+

+

+

+

7.27

126 Chapter 7

Slide 7.28

After swapping the positions of
units H1 and H2, we can see that the
bank of registers in both the units
can be shared to form a central
register chain. It is, of course, not
mandatory that both units have the
same number of registers in them,
in which case the register chain will
have the maximum number
required by either unit. The
resultant architecture is shown in
the slide. Compared to the direct-
form implementation, we can see
that a substantial reduction in area
can be achieved by reducing the

register count.

Slide 7.29

IIR filters typically suffer from
various problems associated with
their recursive nature. The adder in
the feedback accumulator ends up
requiring long wordlengths,
especially if the order of recursion
(value of M) is high. The frequency
response of the IIR is very sensitive
to quantization effects. This would
mean that arbitrarily reducing the
wordlength of the adder or
multiplier units, or truncating the
coefficients can have a drastic effect
on the resultant frequency
response. These problems can be

mitigated to some extent by breaking the transfer function H(z) into a cascade of second- or first-
order sections, as shown in the slide. The main advantage of using second-order sections is the
reduced wordlength of the adder units in the feedback accumulator. Also, the cascaded realization is
less sensitive to coefficient quantization effects, making the filter more robust.

IIR Architecture Optimized

 H1, H2 can share the central register bank and reduce area
 For M N, the central register bank will have max(M,N) registers

y(n)x(n)

z 1

z 1b1

bM 1

kH2(z)

a1

aN 1

H1(z)
+

+

+

+

7.28

Cascaded IIR

 Implement IIR transfer function as cascade of 2nd order sections
– Shorter wordlengths in the feedback loop adders
– Less sensitive towards finite precision arithmetic effects
– More area and power efficient architecture

7.29

1 21 2
1 211 21

1 1 2 1 2
11 21 1 2

1
()

1
...

1 1
p p

p
p p

a z a za z a z
k

b z b z b z
k

z
z

b
H

z 1

z 1b11

b21

k1

a11

a21

+

+

+

+

z 1

z 1b1P

b2P

kP

a1P

a2P

+

+

+

+

Digital Filters 127

Slide 7.30

Another bottleneck associated with
recursive filters is their inability to
support pipelining. Inserting
registers in any feedback loop
changes the functionality of the
filter disallowing the insertion of
pipeline registers. For example, the
first-order IIR filter graph shown in
the left of the slide has one register
in the feedback loop. The input-
output relation is given by y1(n) =
b·a·y1(n −1) + b·a·x(n). An extra
register is inserted in the feedback

Recursive-Loop Bottlenecks

 Pipelining loops not possible
– Number of registers in feedback loops must remain fixed

y1(n) = b·w1(n)
w1(n) = a·(y1(n 1) + x(n))
y1(n) = b·a·y1(n 1) + b·a·x(n)

x(n)

y1(n)

D

a

w1(n)

b

Changing the number of delays in a loop alters functionality
y1(n) y2(n)

×+

×

y2(n) = b·w(n)
w(n) = a·(y2(n 2) + x(n 1))
y2(n) = b·a·y2(n 2) + b·a·x(n 1)

x(n)

y2(n)

D

a

w(n)

b

×+

×

D

7.30 shown on the right. This graph now
has an input-output relation given by y2(n) = b·a·y2(n−2) + b·a·x(n−1), which is different from the
filter on the left. Restriction on delay insertion, therefore, makes feedback loops a throughput
bottleneck in IIR filters.

loop for the signal-flow graph

Slide 7.31

Maximizing the throughput in IIR
systems entails the optimal
placement of registers in the
feedback loops. For example, the
two signal-flow graphs shown in the
slide are retimed versions of each
other. The graph shown on the left
has a critical path of 2tmult. Retiming
moves shown with red dashed lines
are applied to obtain the flow graph
on the right. The critical path for
this graph is tadd + tmult. This form of
register movement can ensure that
the filter functions at the maximum
possible throughput. Details on

algorithms to automate retiming will be discussed in Chapter 11.

High-Level Retiming of an IIR Filter

 IIR throughput is limited by the retiming in the feedback sections

 Optimal placement of registers in the loops leads to max speed

Retiming
moves

tcritical = 2tmult tcritical = tadd + tmult

x(n)

y(n)

D

a

b

×+

×

D
x(n)

y(n−1)

D

a

b

×+

×

D

7.31

128 Chapter 7

Slide 7.32

The feedback portions of the
signal-flow graph also restrict the
use of parallelism in IIR filters. For
example, the first-order IIR filter
shown in the slide is parallelized
with P=2. After unfolding, the
critical path for the parallel filter
doubles, while the number of
registers in the feedback loop
remains the same. Although we
generate two outputs every clock
cycle in the parallel filter, it takes a
total of 2·(tadd + tmult) time units to do
so. This will result in a throughput
of 1/(tadd + tmult) per output sample,

which is the same as that of the original filter. Hence, the maximum achievable throughput for the
IIR is still restricted by the optimal placement of registers in the feedback loops. More details on
unfolding IIR systems will be covered in Chap. 11.

Slide 7.33

In summary, IIR filters are a
computationally efficient way to
realize attenuation characteristics
that require sharp roll-off and high
attenuation. From an area and
power perspective, they are
superior to the corresponding FIR
realization. But the recursive nature
of the filter tends to make it
unstable, since it is difficult to
ensure that all poles of the system
lie inside the unit circle in the z-
domain. The filter phase response
is non-linear and subsequent all-
pass filtering may be required to

linearize the phase response. All-pass filters have constant amplitude response in the frequency
domain, and can compensate for the non-linear phase response of IIR filters. Their use, however,
reduces the area efficiency of IIR filters. The IIR filter structure is difficult to optimize for very high-
speed applications owing to the presence of feedback loops. Hence, a choice between FIR and IIR
realization should be made depending on system constraints and design objectives.

IIR Summary

 Pros
– Suitable when filter response has sharp roll-off, has narrow-

band, or large attenuation in the stop-band
– More area- and power-efficient compared to FIR realizations

 Cons
– Difficult to ensure filter stability
– Sensitive to finite-precision arithmetic effects (limit cycles)
– Does not have linear phase response unlike FIR filters
– All-pass filters required if linear phase response desired
– Difficult to increase throughput

● Pipelining not possible
● Retiming and parallelism has limited benefits

7.33

Unfolding: Constant Throughput

 Unfolding recursive flow graphs

– Maximum attainable throughput limited by iteration bound

– Unfolding does not help if iteration bound already achieved

y(n) = x(n) + ay(n−1)

y(2m) = x(2m) + ay(2m−1)

y(2m+1) = x(2m+1) + ay(2m)

tcritical = tadd + tmult

tcritical = 2tadd + 2tmult

tcritical/iter = tcritical / 2

x(n) a×+
D

y(n)

x(2m) a×+
D* = 2D

x(2m+1) a×+

y(2m)

y(2m+1)

7.32

Digital Filters 129

Slide 7.34

We now take a look at a new class
of filters used for sample-rate
conversion in DSP systems. Any
digital signal processing always
takes place at a predefined sample
rate fs . It is not mandatory,
however, for all parts of a system to
function at the same sample rate.
Often for the sake of lower
throughput or power consumption,
it becomes advantageous to operate
different blocks in a system at
different sampling frequencies. In
this scenario, sample-rate
conversion has to be done without

loss in signal integrity. Multi-rate filters are designed to enable such data transfers.

Slide 7.35

Multi-rate filters can be subdivided
into two distinct classes. If the data
transfer takes place from a higher
sample rate fs1 to a lower sample
rate fs2, then the process is called
“decimation.” On the other hand,
if the transfer is from a lower rate fs1
to a higher rate fs2, then the process
is called “interpolation.” For
integer-rate conversion (i.e., fs1/fs2
I+), the rate conversion process can
be interpreted easily.

Decimation implies a reduced
number of samples. For example, if
we have 500 samples at the rate of

500MHz (fs1), then we can obtain 250 samples at the rate of 250MHz (fs2) by dropping alternate
samples. The ratio fs1/fs2 = 2, is called the “decimation factor.” But only skipping alternate samples
from the original signal sequence does not guarantee reliable data transfer. Aliasing occurs if the
original frequency spectrum has data content beyond 250 MHz. We will talk about solutions to this
problem in the next slide.

Similarly, interpolation can be interpreted as increasing the number of samples. Stuffing zeros
between the samples of the original signal sequence can obtain this increase. For example, a data
sequence at 500MHz can be obtained from a sequence at 250MHz by stuffing zeros between
adjacent samples to double the number of samples in the data stream. However, this process will
also result in images of the original spectrum at multiples of 250MHz. We will take a look at these
issues in the next few slides.

Multi-Rate Filtering

Multi-Rate Filters

 Data transfer between systems at different sampling rate
– Decimation

● Higher sampling rate fs1 to lower rate fs2

– Interpolation
● Lower sampling rate fs2 to higher rate fs1

 For integer fs1/fs2

– Drop samples when decimating
● Leads to aliasing in the original spectrum

– Stuff zeros when interpolating
● Leads to images at multiples of original sampling frequency

7.35

130 Chapter 7

Slide 7.36

In digital systems, the frequency
spectrum of a signal is contained
within the band –fs/2 to fs/2, where
fs is the sampling frequency. The
same spectrum also repeats at

This occurs because the Fourier
transform used to compute the
spectrum of a periodic signal is also
periodic with fs. The reader is
encouraged to verify this property
from the Fourier equations
discussed in the next chapter. After
decimation to a lower frequency fs2,
the same spectrum will repeat at

intervals of fs2 as shown in Fig. (b). A problem arises if the bandwidth of the original data is larger
than fs2. This will lead to an overlap between adjacent spectral images, shown by the yellow regions
in Fig. (b). This overlap or aliasing can corrupt the data sequence, so care should be taken to
avoid such an overlap. The only alternative is to remove any spectral content beyond bandwidth fs2
from the original spectrum, to avoid aliasing. Decimation filters, discussed in the next slide, are used
for this purpose.

Slide 7.37

The decimation filter must ensure
that no aliasing corrupts the signal
after rate conversion. This would
require the removal of any signal
content beyond the bandwidth of
fs2, making the decimation filter a
low-pass filter. Figure (a) shows the
original spectrum of the data at
sampling frequency fs1. The
multiples of the original spectrum
are formed at frequency fs1. Before
decimating to sampling frequency
fs2, the signal is low-pass filtered to
restrict the bandwidth to fs2. This
will ensure that no aliasing occurs

after down sampling by a factor D, as shown in Fig. (b). The low-pass filter is usually an FIR, if the
decimation factor is small (2–4). For large decimation factors, the filter response has a sharp roll-off.
Implementing FIR filters for such a response can get computationally expensive. For large
decimation factors, a viable alternative is the use of IIR filters to realize the sharp roll-off frequency
response. However, the non-linear phase in IIR filters may require the use of additional all-pass
filters for phase compensation. An alternative implementation is the use of cascade integrated comb

D

Decimation

 Samples transferred from higher rate fs1 to lower rate fs2

 Frequency-domain representation
– Spectrum replicated at intervals of fs1 originally
– Spectrum replicated at intervals of fs2 after decimation
– Aliasing of spectrum lying beyond B/W fs2 in original spectrum

 Decimation filters to remove data content beyond bandwidth fs2

3fs1/2 +3fs1/2fs1/2 +fs1/2 3fs2/2 +3fs2/2fs2/2 +fs2/2

Fig. (a) Fig. (b)

Decimate

7.36

Decimation Filters

 Low-pass filters used before decimation
– Usually FIR realization
– IIR if linear phase is not necessary
– Cascade integrated comb filter for hardware efficient

realization
● Much cheaper to implement than FIR or IIR realizations
● Less attenuation, useful in heavily over-sampled systems

3fs1/2 +3fs1/2fs1/2 +fs1/2 3fs2/2 +3fs2/2fs2/2 +fs2/2

Fig. (b)

Decimate

Fig. (a)
7.37

D

intervals of fs , as shown in Fig (a).

Digital Filters 131

(CIC) filters. CIC filters are commonly used for decimation due to their hardware-efficient
realization. Although their stop-band attenuation is small, they are especially useful in decimating
over-sampled systems. More details on CIC filtering will be discussed in Part IV of the book.

Slide 7.38

Interpolation requires the
introduction of additional data
samples since we move from a
lower sampling frequency to a
higher one. The easiest way to do
this is the zero-stuffing approach.
For example, when moving from
sampling frequency fs2 to a higher
rate fs1 3 ·= fs2, we need three samples

sample in the original data
sequence. This can be done by
introducing two zeros between
adjacent samples in the data
sequence. The main problem with

this approach is the creation of spectral images at multiples of fs2. Figure (a) shows the spectrum of
the original data sampled at fs2. In Fig. (b) the spectrum of the new data sequence after zero stuffing
is shown. However, we find that images of the original spectrum are formed at –fs2 and +fs2 in Fig.
(b). This phenomenon occurs because zero-stuffing merely increases the number of samples without
additional information about the values of the added samples. If we obtain a Fourier transform of
the zero-stuffed data we will find that the spectrum is periodic with sample rate fs2. The periodic
images have to be removed to ensure that only the central replica of the spectrum remains after
interpolation. The solution is to low-pass filter the new data sequence and remove the images. The
use of interpolation filters achieves this image rejection. Low-pass filtering will ensure that the zeros
between samples are transformed into a weighted average of adjacent samples, which gives an
approximation of the actual value of the input signal at the interpolated instances.

in the interpolated data for every one

Interpolation

Samples transferred from lower rate fs2 to higher rate fs1
Frequency domain representation
– Spectrum spans bandwidth of fs2 originally
– Spectrum spans bandwidth of fs1 after interpolation
– Images of spectrum at intervals of fs2 after interpolation

Interpolation filters to remove images at multiples of fs2

−fs1 /2 fs1/2−fs2/2 +fs2/2

Fig. (b)

−fs2/2 +fs2/2

Fig. (a)

Zero-stuff

7.38

U

132 Chapter 7

Slide 7.39

The interpolation filter is essentially
a low-pass filter that must suppress
the spectral images in the zero-
stuffed data sequence. A typical
frequency response of this filter is
shown in red in Fig. (b). For small
interpolation factors (2–4), the
frequency response has a relaxed
characteristic and is usually realized
using FIR filters. IIR realizations
are possible for large up-sampling
ratios (U), but to achieve linear
phase additional all-pass filters may
be necessary. However, this
method would be preferable to the

corresponding FIR filter, which tends to become very expensive with sharp roll-off in the response.
Another alternative is the use of the cascade integrated comb (CIC) filters that were discussed
previously. CIC filters are commonly used for interpolation due to their hardware-efficient
realization. Although their stop-band attenuation is small, they are useful in up-sampling by large
factors (e.g. 10–20 times). More details on CIC filters, particularly their implementation, will be
discussed in Chap. 14.

Slide 7.40

Let us now go back to the original
problem of designing radio systems
and look at the application of digital
filters in the realization of
equalizers. The need for
equalization stems from the
frequency selective nature of the
communication channel. The
equalizer must compensate for the
non-idealities of the channel
response. The equalizer examples
we looked at earlier assumed a
time-invariant channel, which
makes the tap-coefficient values of
the equalizer fixed. However, the

channel need not be strictly time-invariant. In fact, wireless channels are always time-variant in
nature. The channel frequency response then changes with time, and the equalizer must also adjust
its tap coefficients to accurately cancel the channel response. In such situations the system needs
adaptive equalization, which is the topic of discussion in the next few slides. The adaptive
equalization problem has been studied in detail, and several classes of these types of equalizers exist
in literature. The most prominent ones are zero-forcing and least-mean-square both of which are

Interpolation Filters

 Low-pass filter used after interpolation
– Suppress spectrum images at multiples of fs2

– Usually FIR realizations
– IIR realization if linear phase not necessary
– Cascade integrated comb filter for hardware efficient

realization
● Much cheaper to implement than FIR or IIR realizations
● Less attenuation, useful for large interpolation factors (U)

fs1/2 fs1/2fs2/2 +fs2/2
Fig. (b)

fs2/2 +fs2/2
Fig. (a)

Zero-stuff

7.39

U

Application Example:
Adaptive Equalization

Digital Filters 133

feed-forward structures. The feedback category includes decision feedback equalizers. We will also
take a brief look at the more advanced fractionally spaced equalizers.

Slide 7.41

The figure in this slide shows a
channel impulse response with non-
zero values at multiples of the
symbol period T. These non-zero
values, marked by dashed ovals, will
cause the adjacent symbols to
interfere with the symbol being
sampled at the instant t0. The
expression for the received signal r
is given at the bottom of the slide.
The received signal includes the
contribution from inter-symbol
interference (ISI) as well as additive
white noise from the channel.

Slide 7.42

The most basic technique for
equalization is creating an equalizer
transfer function, which nullifies
the channel frequency response.
This method is called the zero-
forcing approach. Although this
will ensure that the equalized data
has no inter symbol interference, it
can lead to noise enhancement for a
certain range of frequencies. Noise
enhancement can degrade the bit
error rate performance of the
decoder, which follows the
equalizer. For example, the left
figure in the slide shows a typical

low-pass channel response. The figure on the right shows the zero-forcing equalizer response. The
high-pass nature of the equalizer response will enhance the noise at higher frequencies. For this
reason, zero forcing is not popular for practical equalizer implementations. The second algorithm
we will look at is the least-mean-square, or LMS, algorithm.

Introduction

ISI noise

ISI

7.41

 Inter-symbol interference (ISI)
– Channel response causes delay spread in transmitted symbols
– Adjacent symbols contribute at sampling instants

 ISI and additive noise modeling

0 0 0 0() () () ()k j
j k

r t kT x h t x h t kT jT n t kT

t0 – 2T

t0 – T
t0

t0 + T

t0 + 2T

t0 + 3T

t0 + 4T

h(t)

time

Zero-Forcing Equalizer

Q(e j T)

0

WZFE(e j T)

0

Noise enhancement

7.42

 Basic equalization techniques
– Zero-forcing (ZF)

● Causes noise enhancement

 Adaptive equalization
– Least-mean square (LMS) algorithm

● More robust

T T

134 Chapter 7

Slide 7.43

The least-mean-square algorithm
adjusts the tap coefficients of the
equalizer so as to minimize the
error between the received symbol
and the transmitted symbol.
However, in a communication
system, the transmitted symbol is
not known at the receiver. To
solve this problem a predetermined
training sequence known at the
receiver can be transmitted
periodically to track the changes in
the channel response and re-
calculate the tap coefficients. The
expression for the error value ek and

the objective function are listed in the slide. The equalizer is feed-forward with N taps denoted by cn,
n є {0,1,2,…,N}, and the set of N tap coefficients at time k is denoted by cn(k). Minimizing the
expected error requires solving N equations where the partial derivative of E[ek

2] with respect to
each of the N tap coefficients is set to zero. Solving these equations give us the value of the tap
coefficient at time k.

To find the partial derivative of the objective function, we have to express the error ek as a
function of the tap coefficients. The error ek is the difference between the equalized signal zk and
the transmitted signal xk, which is a constant. The equalized signal zk, on the other hand, is the
convolution of the received signal rk and the equalizer tap coefficients cn. This convolution is shown
at the end of the slide. Now we can take the derivative of the expectation of error with respect to
the tap coefficients cn. This computation will be illustrated in the next slides.

Slide 7.44

The block diagram of the LMS
equalizer is shown in the slide. The
equalizer operates in two modes.
In the training mode, a known
sequence of transmitted data is used
to calculate the tap coefficients. In
the active operational mode, normal
data transmission takes place and
equalization is performed with the
pre-computed tap coefficients.
Shown at the bottom of the slide is
the curve for the mean square error
(MSE), which is convex in nature.
The partial derivative of the MSE
curve with respect to any tap

coefficient is a tangent to the curve. When we set the partial derivative equal to zero, we reach the

Adaptive Equalization

 Achieve minimum mean-square error (MMSE)
– Equalized signal: zk, transmitted signal: xk

– Error: ek = zk xk

– Objective:
– Minimize expected error, min E[ek

2]
– Equalizer coefficients at time instant k: cn(k), n {0,1,…,N}
– For real optimality: set

7.43

 Equalized signal zk given by:
zk = c0rk + c1rk 1 + c2rk 2 + … + cn 1rk n+1

 zk is convolution of received signal rk with tap coefficients

2[]
0

()
k

n

E e
c k

LMS Adaptive Equalization

 Achieve minimum mean-square error (MMSE)

MSE = ek
2

cn(k)

reduces

{cn}r(t)

t0 + kT zk

ek

xk

+

equalizer decision device

error

Train

Training
sequence
generator

7.44

xk

2

()
k

n

e
c k

Digital Filters 135

bottom flat portion of the convex curve, which represents the position of the optimal tap coefficient
(red circle in the figure). The use of steepest-descent method in finding this optimal coefficient is
discussed next.

Slide 7.45

The gradient function is a vector of

being the partial derivative of the
function argument with respect to cj.
The (+) symbol represents the
convolution operator and r is the
vector of received signals from time
instant k−N+1 to k. From the
mathematical arguments discussed,
we can see that the gradient
function for the error ek is given by
the received vector r where r =[rk,
rk−1,…,rk−N+1]. The expression for
the partial derivative of the
objective function E with respect to

cn is given by 2ekrk−n, as shown in the slide. Now, ∂E[ek
2]/∂cn(k) is a vector, which points towards the

steepest ascent of the cost function. To find the minimum of the cost function, we need to take a
step in the opposite direction of ∂E[ek

2]/∂cn(k), or, in other words, to make the steepest descent. In
mathematical terms, we get the coefficient update equation given by:

(1) () (), 0,1,..., 1n n kc k c k e r k n n N .

Here ∆ is the step size by which the gradient is scaled and used in the update equation. If the
step size ∆ is small then a large number of iterations are required to converge to the optimal
coefficients. If ∆ is large, then the number of iterations is small. However, the tap coefficients will
not converge to the optimal points but to somewhere close to it. A good approximation of the tap
coefficients is found when the error signal power for the LMS coefficients becomes less than or
equal to the zero-forcing error-signal power.

LMS Adaptive Equalization (Cont.)

 Alternative approach to minimize MSE
– For computational optimality

● Set: E[ek
2]/ cn(k) = 2ekrk–n = 0

– Tap update equation: ek = zk – xk

– Step size:
– Good approximation if using:

cn(k+1) = cn(k) – ekr(k – n), n = 0, 1, …, N – 1

● Small step size
● Large number of iterations

– Error-signal power comparison: LME
2 ZF

2

7.45

dimension N with the j th element

136 Chapter 7

Slide 7.46

Up until now we have looked at the
FIR realization of the equalizer.
The FIR filter computes the
weighted sum of a sequence of
incoming data. However, a symbol
can be affected by inter-symbol
interference from symbols
transmitted before as well as after
it. The interference caused by the
symbols coming before in time is
referred to as “pre-cursor ISI,”
while the interference caused by
symbols after is termed “post-
cursor ISI.” An FIR realization can
remove the pre-cursor ISI, since the

preceding symbols are available and can be stored in registers. However, removal of post-cursor ISI
will require some form of feedback or recursion. The post-cursor ISI translates to a non-causal
impulse response for the equalizer, which requires recursive cancellation. Such equalizers are known
as “decision-feedback equalizers.” The name stems from the fact that the output of the
decoder/decision device is fed back into the equalizer to cancel post-cursor ISI. The accuracy of
equalization is largely dependent upon the accuracy of the decoder in detecting the correct symbols.
The update equation for the feedback coefficients is once again derived from the steepest-descent
method and is shown on the slide. Instead of using the received signal rk−n, the update equation uses
previously detected symbols dk−m.

Slide 7.47

The decision-feedback equalizer
(DFE) is shown on this slide. The
architecture has two distinct parts;
the feed-forward filter with
coefficients cn to cancel the pre-
cursor ISI, and the feedback filter
with coefficients bm to cancel the
post-cursor ISI. The DFE has less
noise enhancement as compared to
the zero-forcing and LMS
equalizers. Also, the feed-forward
equalizer need not remove the ISI
fully now that the feedback portion
is also present. This offers more
freedom in the selection of the

feed-forward coefficients cn. Error propagation is possible if previously detected symbols are
incorrect and the feedback filter is unable to cancel the post-cursor ISI correctly. This class of
equalization is known to be robust and is very commonly used in communication systems.

Decision-Feedback Equalizers

 To cancel the interference from previously detected symbols
– Pre-cursor channel taps and post-cursor channel taps
– Feed-forward equalizer

● Remove the pre-cursor ISI
● FIR (linear)

– Feedback equalizer
● Remove the post-cursor ISI
● Like a ZF equalizer

– If previous symbol detection is correct
– Feedback equalizer coefficient update equation:

7.46

bm+1(k+1) = bm(k) ekdk m
x–3

x–2
x–1

x0
x1 x2 x3

Decision-Feedback Equalizers (Cont.)
 Less noise enhancement compared with ZF or LMS
 More freedom in selecting coefficients of feed-forward equalizer
– Feed-forward equalizer need not fully invert channel response

 Symbol decision may be incorrect
– Error propagation (slight)

7.47

TIn

c0 c1

... T

cN 1

Decision
device

bM

T ... T

b1

T
dk dk M dk 1

+

et
Training

signal
+

Digital Filters 137

To avoid these issues, a common solution is to over-sample the incoming signal at rates higher
than 1/T, for example at twice the rate of 2/T. This would mean that the equalizer impulse
response is spaced at a time period of T/2 and is called a “fractionally-spaced equalizer.” Over-
sampling will lead to more computational requirements in the equalizer, since we now have two
samples for a symbol instead of one. However it simplifies the receiver design since we now avoid
the problems associated with spectral aliasing, which is removed with the higher sampling frequency.
The sensitivity to the phase of the sampling clock is also mitigated since we now sample the same
symbol twice. The attractiveness of this scheme has resulted in most equalizer implementations
being at least 2x faster than the symbol rate. The equalizer output is still T-spaced, which makes
these equalizers similar to decimating or re-sampling filters.

Slide 7.49

To summarize, we have looked at
the application of FIR and feedback
filters as equalizers to mitigate the
effect of inter-symbol interference
in communication systems. The
equalizer coefficients can be
constant if the channel is time-
invariant. However, for most
practical cases an adaptive equalizer
[6] is required to track the changes
in a time-variant channel. Most
equalizers use the least-mean-square
(LMS) criterion to converge to the
optimum tap coefficients. The
LMS equalizer has an FIR structure

Summary

 Use equalizers to reduce ISI and achieve high data rate
 Use adaptive equalizers to track time-varying channel response
 LMS-based equalization prevails in MODEM design
 Decision feedback equalizer makes use of previous decisions to

estimate current symbol
 Fractionally spaced equalizers resilient to sampling phase

variation
 Properly select step size for convergence

7.49

[6] S. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387,
Sep. 1985.

Fractionally-Spaced Equalizers

 Sampling at symbol period
–
– Sensitive to sampling phase

 Can over-sample (e.g. 2x higher rate)
– Avoid spectral aliasing at the equalizer input
– Sample the input signal of Rx at higher rate (e.g. 2x faster)
– Produce equalizer output signal at symbol rate
– Can update coefficients at symbol rate
– Less sensitive to sampling phase

7.48

cn(k+1) = cn(k) ek·r(t0 + kT – NT/2)

Equalizes the aliased response

Slide 7.48

Until now we have looked at
equalizers that sample the received
signal at the symbol period T.
However, the received signal is not
exactly limited to a bandwidth of

 ,
40% larger bandwidth after passing
through the frequency-selective
channel. Hence, sampling at symbol
period T can lead to signal
cancellation and self-interference
effects that arise when the signal
components alias into a band of
1/T. This sampling is also
extremely sensitive to the phase of

the sampling clock. The sampling clock should always be positioned at the point where the eye
pattern of the received signal is the widest.

1/T. In fact, it usually spans a 10 –

138 Chapter 7

and is capable of cancelling pre-cursor ISI generated from preceding symbols. The decision-
feedback equalizer (DFE) is used to cancel post-cursor ISI using feedback from previously detected
symbols. Error propagation is possible in the DFE if previously detected symbols are incorrect.
Fractionally-spaced equalizers which sample the incoming symbol at rates in excess of the symbol
period T, are used to reduce the problems associated with aliasing and sample phase variation in the
received signal.

Slide 7.50

FIR filters may consume a large
amount of area when a large
number of taps is required. For
applications where the sampling
speed is low, or where the speed of
the underlying technology is
significantly greater than the
sampling speed, we can greatly
reduce silicon area by resource
sharing. Next, we will discuss an
area-efficient filter implementation
technique based on distributed
arithmetic.

Slide 7.51

In cases when the filter
performance requirement is below
the computational speed of
technology, the area of the filter can
be greatly reduced by bit-level
processing. Let’s analyze an FIR
filter with N taps and an input
wordlength of W (index W –1
indicates MSB, index 0 indicates
LSB). Each of the xk−n terms from
the FIR filter response formula can
be expressed as a summation of
individual bits. Assuming |xk−n|≤
1, the bit-level representation of
xk −n is shown on the slide. Next,

we can interchange the summations and unroll filter taps.

Implementation Technique:
Distributed Arithmetic

Distributed Arithmetic: Concept

 FIR filter response

 Equivalent representation
– Bit-level decomposition

 Filter parameters
– N: number of taps
– W: wordlength of x
– |xk n| 1

MSB Remaining bits

 Next step: interchange summations, unroll taps

7.51

1

0

·
N

k n k n
n

y h x

1 1

, 1 , 1
0 1

·(·2)
N W

i
k n k n W k n W i

n i

y h x x

Digital Filters 139

Slide 7.52

After the interchange of
summations and unrolling of the
filter taps, we obtain an equivalent
representation expressed as a sum
over all filter coefficients (n=0, …,
N −1) bit-by-bit, where xk −N ,j

In other words, we create a bit-wise
expression for the filter response
where each term HW−1− i in the bit-
sum has contributions from all N
filter taps. In this notation, i is the
offset from the MSB (i=0, …, W
–1), and H is the weighted bit-level
sum of filter coefficients.

Slide 7.53

Here’s an example of a 3-tap filter
where input wordlength is also W =
3. Consider bit slice i. As
described in the previous slide, Hi is
the bit-level sum of filter
coefficients hk, as shown in the
truth table on this slide. The last
column of the table can be treated
as memory, whose address space is
defined by the bit values of filter
input. For example, at bit position
i, where x = [0 0 1], the value of
bit-wise sum of coefficients is equal
to h2. The filter can, therefore, be
simply viewed as a look-up table

containing pre-computed coefficients.

Distributed Arithmetic: Concept (Cont.)

 FIR filter response: bit-level decomposition

 Interchange summations, unroll taps into bits

MSB

Other
bits

tap 1 tap Ntap 2

tap 1 tap Ntap 2 Bit: MSB i

7.52

1 1 1

, 1 , 1
0 1 0

· · ·2
N W N

i
k n k n W n k n W i

n i n

y h x h x

1 , 1 1, 1 1, 1H (x _ ; x ; ...; x)W k W k W k N W

1

1 , 1 1, 1 1, 1
1

(; ;...;)·2
W

i
W i k W i k W i k N W i

i

H x x x

MSB Remaining bits

1 1

, 1 , 1
0 1

·(·2)
N W

i
k n k n W k n W i

n i

y h x x

Example: 3-tap FIR

xk xk 1 xk 2 Hi (bit slice i)

0 0 0 0

0 0 1 h2

0 1 0 h1

0 1 1 h1 + h2

1 0 0 h0

1 0 1 h0 + h2

1 1 0 h0 + h1

1 1 1 h0 + h1 + h2

xk

xk 1

xk 2

0 … 0 … 0

0 … 0 … 1

0 … 1 … 1

MSB LSBi
0
h2

…
h0 + h1 + h2

0

1

7

3 bits

address

LUT

Hi is the weighted
bit-level sum of
filter coefficients

7.53

1 1 1
0 1 2 1((...(0)·2)·2 ...)·2k W Wy H H H H

represents j th bit of coefficient xk−N.

140 Chapter 7

Slide 7.54

The basic filter architecture is
shown on this slide. A W-bit
parallel data stream x sampled at
rate fsample forms an N-bit address
(xk, …, xk−N+1) for the LUT
memory. In each clock cycle, we
shift the address by one bit and add
(subtract if the bit is the MSB) the
result. Since we sample the input at
fsample and process one bit at a time,
we need to up-sample the
computation W times. All blocks in
red boxes operate at rate W·fsample.
Due to the bit-serial nature of the
computation, it takes W clock

cycles to do one filtering operation. While this architecture provides a compact realization of the
filter, the area savings from the bit-serial approach may be outweighed by the large area of the LUT
memory. For N taps we need 2 N words. If N=16, for example, LUT memory with 64k words is
required! Memory size grows exponentially with the number of taps. There are several ways to
address this problem.

Slide 7.55

Memory partitioning can be used to
address the issue of the LUT area.
The concept of memory
partitioning is illustrated in this
slide. Assume N=6 taps and M=
2 partitions. A design with N=6
taps would require 26 = 64 LUT
words without partitioning.
Assume that we now partition the
LUT memory into M=2 segments.
Each LUT segment uses 3 bits for
the address space, thus requiring 23
= 8 words. The total number of
words for the segmented memory
architecture is 2·23 = 16 words.

This is a 4x (75%) reduction in memory size as compared to the direct memory realization.
Segmented memory requires an adder at the output to sum the partial results from the segments.

Basic Architecture

i

…

i

…

xk xk N+1

N bits

address

LUT
precomputed
coefficients

Add / Sub >>

LSB

Out select

yk

Clock rate:
(W·fsample)

Add/Sub

2N words for
an N-tap filter
N = 6: 64
N = 16: 64k

MSB

LSB

Reg

Parallel data stream
(fsample)

(fsample)Issue: memory size grows quickly!
7.54

#1: LUT Memory Partitioning

xk

xk−1

xk−2

…

…

…

3 bits

address

xk−3

xk−4

xk−5

…

…

…

3 bits

address

LUT
Part 1

(h0, h1, h2)

LUT
Part 2

(h3, h4, h5)

+

N = 6 taps, M = 2 partitions

7.55

[7] M. Ler, An Energy Efficient Reconfigurable FIR Architecture for a Multi-Protocol Digital Front-End,
M.S. Thesis, University of California, Berkeley, 2006.

Digital Filters 141

Slide 7.56

Another idea to consider is memory
code compression. The idea is to
use signed-digit offset binary coding
that maps the {1, 0} base into {1,
−1} base for computations. Using
the newly formed base, we can
manipulate bit-level expressions
using the x = 0.5·(x – (−x))
identity.

Slide 7.57

Substituting the new representation
into the yk formula yields the
resulting bit-level coefficients. The
bit-level coefficients could take 2N−1
values. Compared to the original
formulation that maps the
coefficients into a 2N-dimensional
space, code compression yields a 2x
reduction in the required memory.
Code compression can be
combined with LUT segmentation
to minimize LUT area.

#2: Memory Code Compression

 Idea:

 Bit-level expression

cW 1

cW 1 i

 Signed-digit offset binary coding: {1, 1} instead of {1, 0}

 Next step: plug this inside expression for yk

7.56

1
[()]

2
x x x

x

1 1
1

[()]
2 W Wx x x

1
(1)

1 1
1

1
[()·2 2]

2

W
i W

W i W i
i

x x

#2: Memory Code Compression (Cont.)

 Use:

 Another representation of yk

 Term HW 1 i has only 2N 1 values
– Memory requirement reduced from 2N to 2N 1

7.57

1
(1)

1
0

1
·2 2

2

W
i W

W i
i

x c

1 1
(1)

, 1
0 0

1
·2 2

2

N W
i W

k n k n W i
n i

y h c

1

1 , 1 1, 1 1, 1
0

(; ;...;)·2
W

i
W i k W i k W i k N W i

i

H c c c

(1)(0;0;...;0)·2 WH

142 Chapter 7

Slide 7.58

An example of memory code
compression is illustrated in this
slide [3]. For a 3-tap filter (3-bit
address), we can observe similar
entries in memory locations
corresponding to MSB=0 and
MSB=1. The only difference is
the sign change. In terms of gate-
level implementation, the sign bit
can be arbitered by the MSB bit
(shown in red) and two XOR gates
that control reduced address space.

Slide 7.59

Digital filters are important building
blocks in DSP systems. FIR filters
can be realized in direct or
transposed form. The direct form
realization has long critical-path
delay (if no pipelining is used) while
transposed form has large input
loading. Multiplier coefficients can
be approximated with a sum of
power-of-two numbers to simplify
the implementation. IIR filters are
used where sharp roll-off and
compact realization are required.
Multi-rate decimation and
interpolation filters, which are

standard in wireless transceivers, are briefly introduced. The chapter finally discussed FIR filter
implementation based on distributed arithmetic. The idea is to compress coefficient memory by
performing bit-serial arithmetic.

Memory Code Compression: Example

 Example:
3-tap filter, 6-bit coefficients

7.58

[7] M. Ler, An Energy Efficient Reconfigurable FIR Architecture for a Multi-Protocol Digital Front-End,
M.S. Thesis, University of California, Berkeley, 2006.

x[n]

x[n 1]

x[n 2]

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

6-bit input data

x[n]

x[n 1]

x[n 2]

6-bit input data

0 1 1 0 1 0

0 1 0 1 0 0

1 1 0 0 0 1

x[n] x[n 1] x[n 2] F
0 0 0 (c1+c2+c3)/2
0 0 1 (c1+c2 c3)/2
0 1 0 (c1 c2+c3)/2
0 1 1 (c1 c2 c3)/2
1 0 0 (c1 c2 c3)/2
1 0 1 (c1 c2+c3)/2
1 1 0 (c1+c2 c3)/2
1 1 1 (c1+c2+c3)/2

x[n] xor
x[n 1]

x[n 1] xor
x[n 2] F

0 0 (c1+c2+c3)/2
0 1 (c1+c2 c3)/2
1 0 (c1 c2+c3)/2
1 1 (c1 c2 c3)/2

3-bit
address

2-bit
address

[7]

Summary

 Digital filters are key building elements in DSP systems
 FIR filters can be realized in direct or transposed form
– Direct form has long critical-path delay
– Transposed form has large input loading
– Multiplications can be simplified by using coefficients that can

be derived as sum of power-of-two numbers
 Performance of recursive IIR filters is limited by the longest loop

delay (iteration bound)
– IIR filters are suitable for sharp roll-off characteristics
– More power and area efficient than FIR

 Multi-rate filters are used for decimation and interpolation
 Distributed arithmetic can effectively reduce the size of

coefficient memory in FIR filters by using bit-serial arithmetic

7.59

Digital Filters 143

References

 J. Proakis, Digital Communications, (3rd Ed), McGraw Hill, 2000.

 A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice
Hall, 2009.

 J.G. Proakis and D.K. Manolakis, Digital Signal Processing, 4th Ed, Prentice Hall, 2006.

 K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley & Sons Inc., 1999.

 H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters
with Powers-of-Two Coefficients," IEEE Trans. Circuits and Syst., vol. 36 , no. 7 , pp. 1044-
1047, July 1989.

 S. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387,
Sep. 1985.

 M. Ler, An Energy Efficient Reconfigurable FIR Architecture for a Multi-Protocol Digital
Front-End, M.S. Thesis, University of California, Berkeley, 2006.

Additional References

 R. Jain, P.T. Yang, and T. Yoshino, "FIRGEN: A Computer-aided Design System for High
Performance FIR Filter Integrated Circuits," IEEE Trans. Signal Processing, vol. 39, no. 7, pp.
1655-1668, July 1991.

 R.A. Hawley et al., "Design Techniques for Silicon Compiler Implementations of High-speed
FIR Digital Filters," IEEE J. Solid-State Circuits, vol. 31, no. 5, pp. 656-667, May 1996.

Slide 8.1

In this chapter we will discuss the
methods for time frequency analysis
and the DSP architectures for
implementing these methods. In
particular, we will use the FFT and
the wavelet transform as our
examples for this chapter. The well-
known Fast Fourier Transform
(FFT) is applicable to the frequency
analysis of stationary signals.
Wavelets provide a flexible time-
frequency grid to analyze signals
whose spectral content changes
over time. An analysis of algorithm
complexity and implementation is

presented.

Slide 8.2

The Discrete Fourier Transform
(DFT) was discovered in the early

century by the German
mathematician Carl Friedrich
Gauss. More than 150 years later,
the algorithm was rediscovered by
the American mathematician James
Cooley, who came up with a
recursive approach for calculating
the DFT in order to reduce the
computation time and make the
algorithm more practical.

The FFT is a fast way to
compute DFT. It transforms a
time-domain data sequence into

frequency components and vice versa. The FFT is one of the key building blocks in digital signal
processors for wireless communications, media/image processing, etc. It is also used for the
analysis of spectral content in Electroencephalography (EEG) for brain-wave studies and many
other applications.

Many FFT implementation techniques exist to tradeoff the power and area of the hardware. We
will first look into the basic architectural tradeoffs for a fixed FFT size (i.e., fixed number of discrete
points) and then extend the analysis to programmable FFT kernels, for applications such as
software-defined and cognitive radios.

FFT: Background

 A bit of history
– 1805 - algorithm first described by Gauss
– 1965 - algorithm rediscovered (not for the first time) by Cooley

and Tukey

 Applications
– FFT is a key building block in wireless communication receivers
– Also used for frequency analysis of EEG signals
– And many other applications

 Implementations
– Custom design with fixed number of points
– Flexible FFT kernels for many configurations

8.2

Time-Frequency Analysis:
FFT and Wavelets

Chapter 8

with Rashmi Nanda and Vaibhav Karkare,
University of California, Los Angeles

nineteenth

 DOI 10.1007/978-1-4419-9660-2_8, © Springer Science+Business Media New York 2012
145D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

146 Chapter 8

Slide 8.3

The Fourier transform
approximates a function with a
weighted sum of basis functions.
Fourier transform uses sinusoids as
the basis functions. The Fourier
formulas for the time-domain x(t)
and frequency-domain X()
representations of a signal x are
given by the equations on this slide.
The equations assume that the
spectral or frequency content of the
signal is time-invariant, i.e. that x is
stationary.

Slide 8.4

The FFT is used to calculate the
DFT with reduced numerical
complexity. The key idea of the
FFT is to recursively compute the
DFT by breaking a sequence of
discrete samples of length N into
sub-sequences N1, N2, …, Nm such
that N = N1·N2·…·Nm. This
recursive procedure results in a
greatly reduced computation time.
The time complexity is O(N·logN)
as compared to O(N2) for the direct
computation.

Consider the various transform
lengths shown in the table. The

number of operations for the DFT and the FFT is compared for N = 64 to 65,536. For a 1,024-
point FFT, which is typical in advanced communication systems and EEG analysis, the FFT
achieves a 100x reduction in the number of arithmetic operations as compared to DFT. The savings
are even higher for larger N, which can vary from a few hundred in communication applications, to
a million in radio astronomy applications.

Fourier Transform: Concept

 A complex function can be approximated with a weighted sum of
basis functions

 Fourier used sinusoids with varying frequencies as the basis
functions

 This representation provides the frequency content of the
original function

 Fourier transform assumes that all spectral components are
present at all times

8.3

1
() ()

2
j tX x t e dt

1
() ()

2
j tx t X e d

The Fast Fourier Transform (FFT)

 Efficient method for calculating discrete Fourier transform (DFT)

 N = length of transform, must be composite
– N = N1·N2·…·Nm

8.4

Transform length DFT ops FFT ops DFT ops / FFT ops
64 4,096 384 11

256 65,536 2,048 32
1,024 1,048,576 10,240 102

65,536 4,294,967,296 1,048,576 4,096

Time-Frequency Analysis: FFT and Wavelets 147

Slide 8.5

The DFT algorithm converts a
complex discrete-time sequence
{xn} into the discrete samples {Xk}
which represent its spectral content,
as given by the formula near the top
of the slide. As discussed before,
the FFT is an efficient way to
compute the DFT. A direct-sum
DFT evaluation would take O(N2)
operations, while the FFT takes
O(N·logN) operations. The same
algorithm can also be used to
compute inverse-FFT (IFFT), i.e. to
convert frequency-domain symbol
{Xk} back into the time-domain

sample {xn}, by changing the sign of the exponent and adding a normalization factor of 1/N before
the sum, as given by the formula at the bottom of the slide. The similarity between the two formulas
also means that the same hardware can be programmed to perform either FFT or IFFT.

Slide 8.6

The FFT is based on a divide-and-
conquer approach, where the
original problem (a sequence of
length N) is decomposed into
several sub-problems (i.e. sub-
sequences of shorter durations),
such that the total cost of the sub-
problems plus the cost of mapping
is less than the cost of the original
problem. Let’s begin with the
original DFT, as described by the
formula for Xk on this slide. Here
Xk is a frequency sample of X(z) at
z = WN

k, where {xn} and {Xk} are
N-periodic sequences.

The DFT Algorithm

 Converts time-domain samples into frequency-domain samples

8.5

k = 0, …, N 1

complex number

 Implementation options
– Direct-sum evaluation: O(N2) operations
– FFT algorithm: O(N·logN) operations

 Inverse DFT: frequency-to-time conversion
– DFT with opposite sign in the exponent
– A 1/N factor

21

0

N j nk
N

k n
n

X x e

21

0

1 N j nk
N

k n
n

x X e
N

k = 0, …, N 1

The Divide-and-Conquer Approach

 Map the original problem into several sub-problems in such a
way that the following inequality holds:

8.6

Cost(sub-problems) + Cost(mapping) < Cost(original problem)

 DFT:

– Xk = evaluation of X(z) at z = WN
k

– {xn} and {Xk} are periodic sequences

 So, how shall we divide the problem?

1

0

N
nk

k n N
n

X x W
1

0

()
N

n
n

n

X z x zk = 0, …, N 1

148 Chapter 8

Slide 8.7

The DFT computation is organized
by firstly partitioning the samples
into sub-sets, taking the DFT of
these subsets and finally
reconstructing the DFT from the
intermediate results. The first step
is to define the subsets. Suppose
that we have a partitioning It (t = 0,
1, …, r −1) which defines G
subsets with It elements in their
respective subsets. The original
sequence can then be written as
given by the first formula on this
slide. In the second step, we
normalize the powers of z in each

subset It, as shown by the second formula. Finally, we replace z by wN
k for compact notation.

Slide 8.8

Using the notation from the
previous slide, we can express a
sequence of N samples as a
composition of two sub-sequences
N1 and N2 such that N = N1 N2.
The original sequence is divided
into N2 sequences In1 = {n2 N1 +
n1} with n2=0, 1, …, N2, as given
by the formula for Xk, (8.1).
Note that , as in
(8.2). Substituting (8.2) into
(8.1), we obtain an expression
for Xk that consists of N1 DFTs of
length N2. Coefficients are

called “twiddle factors.”

The Divide and Conquer Approach (Cont.)

 Procedure:
– Consider sub-sets of the initial sequence
– Take the DFT of these sub-sequences
– Reconstruct the DFT from the intermediate results

8.7

 #1: Define: It, t = 0, …, r – 1 partition of {0, …, N – 1} that defines G
different subsets of the input sequence

 #2: Normalize the powers of z w.r.t. x0t in each subset It

– Replace z by wN
k in the inner sum

1 1

0 0

()
t

N r
i i

i i
i t i I

X z x z x z

0

0

1

0

() t

t

r
i i

i i
t t

X z z x z

Cooley-Tukey Mapping

 Consider decimated versions of the initial sequence, N = N1·N2

8.8

n1 = 0, …, N1 – 1; n2 = 0, …, N2 – 1n1
I = {n2·N1 + n1}

 Equivalent description:

(8.1)

(8.2)

 Substitute (2) into (1)

DFT of length N2

1 2
1 2 1

2 1 1

1 2

1 1

0 0

·
N N

n k n N k
k N n N n N

n N

X W x W

1

1 2

2

22
iiN jjiN N iN

N NW e e W

1 2
1 2

2 1 1 2

1 2

1 1

0 0

·
N N

n k n k
k N n N n N

n N

X W x W

Time-Frequency Analysis: FFT and Wavelets 149

Slide 8.9

The result from the previous slide
can be re-written by introducing

 as a short notation for the k

samples Xk can be expressed as
shown on the slide. Given that the
partitioning of the sequence N =
N1∙N2, can be taken modulo
N2. This implies that all of the Xk
for k being congruent modulo N2
are from the same group of N1
outputs of . This
representation is also known as
Cooley-Tukey mapping.
Equivalently, Xk can be described

by the formula on the bottom of the slide, by taking N2 DFTs of length N1 and applying them to
. The Cooley-Tukey mapping allows for practical implementation of the DFT.

Slide 8.10

The Cooley-Tukey FFT can be
graphically illustrated as shown on
this slide for N =15 samples [1].
The computation is divided into
length-3 (N1=3) and length-5 (N2
=5) DFTs. The first stage (inner
sum) computes three 5-point
DFTs, the second stage performs
multiplication by the twiddle
factors, and the third stage (outer
sum) computes five 3-point DFTs
to combine the partial results. Note
that the ordering of the output
samples (indices) is different from
the ordering of the input samples,

so re-ordering is needed to match the corresponding samples.

Cooley-Tukey Mapping (Cont.)

 Y can be taken modulo N2

8.9

n1,k

Define: Y = kth output of n1
th length-N2 DFTn1,k

 Equivalent description:

k = k1N2 + k2
k1 = 0, …, N1 – 1
k2 = 0, …, N2 – 1

All the Xk for k being congruent
modulo N2 are from the same
group of N1 outputs of Yn1,k

Y = Y since k can be taken modulo N2n1,k n1,k2

From N2 DFTs of length N1 applied to Y’n1,k2Y’n1,k2

1
1

1

1

1

,
0

N
n k

k n k N
n

X Y W

2 2

2 2 2 2 2
·N k Nk k k

N N N N NW W W W W

1 1
1 1 2 2 1 2 1 1

1 2 2 1 1 2 1

1 1

1 1
()

, ,
0 0

N N
n k N k n k n k

k N k n k N n k N N
n n

X Y W Y W W

Cooley-Tukey Mapping, Example: N1 = 5, N2 = 3

8.10

x12

x9

x6

x5

x4

x3

x2

x1

x0 DFT-5

DFT-5

DFT-5

DFT-3
DFT-3

DFT-3
DFT-3

DFT-3

1-D mapped
to 2-D

1

N1 = 3 DFTs of
length N2 = 5

2 Twiddle-factor
multiply

3 N2 = 5 DFTs of
length N1 = 3

4

x4

x9

x14

x13

x12

x11
x10

x0

x1

x2

x3

x5

x6

x7

x8

[1] P. Duhamel and M. Vetterli, "Fast Fourier Transforms - A Tutorial Review and a State-of-the-art,"
Elsevier Signal Processing, vol. 4, no. 19, pp. 259-299, Apr. 1990.

[1]

th
output of the n1

th DFT. Frequency

150 Chapter 8

Slide 8.11

This slide shows the 1D to 2D
mapping procedure for the cases of
N1=3, N2=5 and N1 =5, N2=3.
The samples are organized
sequentially into N1 columns and
N2 rows, column by column. As
shown on the slide, N1 N2 =3 5
and N1 N2=5 3 are not the same,
and one cannot be obtained from
the other by simple matrix
transposition.

Slide 8.12

For the special case of N1=2, N2
=2 N 1 divides the input sequence
into the sequences of even and odd
samples. This partitioning is called
“decimation in time” (DIT). The
two sequences are given by the
equations on this slide. Samples Xk2
and Xk2+N/2 are obtained by radix-2
DFTs on the outputs of N/2-long
DFTs. Weighting by twiddle
factors (highlighted by the dashed
boxes) is needed for the Xk2
sequence.

N1 = 3, N2 = 5 versus N1 = 5, N2 = 3

8.11

x12x9x6x3x0
x13x10x7x4x1
x14x11x8x5x2

x10x5x0
x11x6x1
x12x7x2
x13x8x3
x14x9x4

 N1 = 3, N2 = 5  N1 = 5, N2 = 3

x4x3x2x1x0 x8x7x6x5 x12x11x10x9 x14x13

 Original 1-D sequence

1-D to 2-D mapping

 1D-2D mapping can’t be obtained by simple matrix transposition

2 2 2 2

2 2 2

2 2

/2 1 /2 1

/2 2 /2 2 1 /2
0 0

· ·
N N

n k n k
N k n N N n N

n n

X x W W x W

2 2 2 2 2

2 2 2

2 2

/2 1 /2 1

2 /2 2 1 /2
0 0

· ·
N N

n k k n k
k n N N n N

n n

X x W W x W

Radix-2 Decimation in Time (DIT)

 N1 = 2, N2 = 2N 1 divides the input sequence into the sequence of
even- and odd-numbered samples (“decimation in time” (DIT))

8.12

 Xk2 and Xk2+N/2 obtained by 2-pt DFTs on the outputs of length
N/2 DFTs of the even- and odd-numbered sequences, one of
which is weighted by twiddle factors

Time-Frequency Analysis: FFT and Wavelets 151

Slide 8.13

The previously described
decimation-in-time approach is
graphically illustrated on the left for
N=8. It consists of 2 DFT-4
blocks, followed by twiddle-factor
multiplies and then N/2=four
DFT-2 blocks at the output. The
top DFT-4 block takes only even
samples {x2i} while the bottom
block takes only odd samples
{x2i+1}. By reversing the order of
the DFTs (i.e., moving the 2-point
DFTs to the first stage and the
N/2-point DFTs to the third stage),
we get decimation in frequency

(DIF), as shown on the right. The output samples of the top DFT-4 block are even-ordered
frequency samples, while the outputs of the bottom DFT-4 blocks are odd-ordered frequency
samples, hence the name “decimation in frequency.” Samples must be arranged, as shown on the
slide, to ensure proper decimation in time/frequency.

Slide 8.14

For compact representation, signal-
flow-graph (SFG) notation is
adopted. Weighed edges represent
multiplication while vertices
represent addition. A delay by k
samples is annotated by a z k along
the edge. This simple notation
allows for quick modeling and
comparison of various FFT
architectures.

Decimation in Time and Decimation in Frequency

8.13

DFT-4

DFT-4

W8
2

{x2i}

{x2i+1}

DFT-2

DFT-2

DFT-2

DFT-2

W8
1

W8
3

x1

x0

x3

x2

x5

x4

x7

x6

x4

x0

x5

x1

x6

x2

x7

x3

DFT-4

DFT-4

{x2i}

{x2i+1}

DFT-2

DFT-2

DFT-2

DFT-2
W8

3

x1

x0

x3

x2

x5

x4

x7

x6

x2

x0

x6

x4

x3

x1

x7

x5

W8
1

W8
2

 Reverse the role of N1, N2 (duality between DIT and DIF)

N1 = 2 DFTs of
length N2 = 4

Twiddle-
factor
multiply

N2 = 4 DFTs
of length
N1 = 2

N2 = 4 DFTs of
length N1 = 2

Twiddle-
factor
multiply

N1 = 2 DFTs
of length
N2 = 4

Decimation in Time (DIT) Decimation in Frequency (DIF)

Signal-Flow Graph (SFG) Notation

 In generalizing this formulation, it is most convenient to adopt a
graphic approach
 Signal-flow-graph notation describes the three basic DSP

operations:
– Addition

– Multiplication by a constant

– Delay

x[n]

y[n]
x[n] + y[n]

x[n]
a

a·x[n]

x[n] x[n k]
z k

8.14

152 Chapter 8

Slide 8.15

Using the SFG notation, a radix-2
butterfly can be represented as
shown in this slide. The
expressions for decimation in time
and frequency can be further
simplified by taking the common
expression B W and by rewriting
A W–B W as (A–B) W. This
reduces the number of multipliers
from 2 to 1. As a result of
expression sharing, both the DIT
and the DIF operations can be
computed with just 1 complex
multiplier and 2 complex adders.

Radix-2 Butterfly

 It does not make sense to
compute B·W twice, Z = B·W

8.15

Decimation in Time (DIT) Decimation in Frequency (DIF)
X = A + B·W
Y = A – B·W

A

B

X

YW

X = A + B
Y = (A – B)·W

A

B

X

YW

Z = B·W
X = A + Z
Y = A – Z

1 complex mult
2 complex adds

X = A + B
Y = (A – B)·W

1 complex mult
2 complex adds

Abbreviation: complex mult = c-mult

Radix-4 DIT Butterfly

 Multiply by “j”  swap Re/Im, possibly a negation

8.16

A

B

C

D

V

W

X

YWd

V = A + B∙Wb + C∙Wc + D∙Wd

W = A – j∙B∙Wb – C∙Wc + j∙D∙Wd

X = A – B∙Wb + C∙Wc – D∙Wd

Y = A + j∙B∙Wb – C∙Wc – j∙D∙Wd

V = A + B’ + C’ + D’

W = A – j∙B’ – C’ + j∙D’

X = A – B’ + C’ – D’

Y = A + j∙B’ – C’ – j∙D’

B’ = B∙Wb

C’ = C∙Wc

D’ = D∙Wd

3 c-mults

3 c-mults

12 c-adds

1 radix-4 BF is equivalent to 4 radix-2 BFs

3 c-mults 4 c-mults

12 c-adds 8 c-adds

Reduces to 8 c-adds with
intermediate values:

A + C’

A – C’

B’ + D’

j∙B’ – j∙D’

Slide 8.16

Similarly, the radix-4 butterfly can
be represented using a SFG, as
shown in this slide. The radix-4
butterfly requires 3 complex-
multiply and 12 complex-add
operations. Taking into account the
intermediate values (A + C’, A − C’,
B’ + D’, and j∙B’ − j∙D’), the number
of add operations can be reduced
from 12 to 8. In terms of numerical
complexity, one radix-4 operation is
roughly equivalent to 4 radix-2
operations. The numbers of atomic
add and multiply operations can be
used for quick comparison of

different FFT architectures, as shown on the slide.

Time-Frequency Analysis: FFT and Wavelets 153

Slide 8.17

Radix-4 is numerically simpler than
radix-2 since it requires the same
number of additions but only needs
75% the number of multipliers.
Higher radices (>4) are also
possible, but the use of higher
radices alone or mixed with lower
radices has been largely unexplored.
Radix 2 and 4 are most commonly
in FFT implementations. The
computational complexity of an
FFT can be quickly estimated from
the number of multipliers, since
multipliers are much larger than
adders, which is O(N log2N).

These estimates can be further refined by also accounting for the number of adders.

Slide 8.18

Considering the number of multiply
and add operations, we can quickly
estimate the numerical complexity
of an FFT block for varying
numbers of points. The table
compares FFTs with 256, 512, and
4,096 points for radices of 2, 4, 8,
and 16. We can see that the
number of real multipliers
monotonically decreases with
increasing radix while the number
of adders has a minimum as a
function of radix. The number of
multipliers and adders are of the
same order of magnitude, so we can

quickly approximate the hardware cost by the number of multipliers. Also of note is that the
number of points N dictates the possible radix factorizations. For example, N=512 can be realized
with radix 2 and radix 8. Mixed-radix implementations are also possible and offer more degrees of
freedom in the implementation as compared to single-radix designs. Mixed-radix realizations will be
discussed in Part IV of the book.

Comparison of Radix-2 and Radix-4

 Radix-4 has about the same number of adds and 75% the number
of multiplies compared to radix-2

 Higher radices
– Possible, but rarely used (complicated control)
– Additional frequency gains diminish for r > 4

 Computational complexity:
– Number of mults = reasonable 1st estimate of algorithmic

complexity
M = logr(N)  Nmults = O(M·N)

– Add Nadds for more accurate estimate

 1 complex mult = 4 real mults + 2 real adds
8.17

FFT Complexity

8.18

N FFT Radix # Re mults # Re adds
256 2 4096 6,144
256 4 3072 5,632
256 16 2,560 5,696
512 2 9,216 13,824
512 8 6,144 13,824

4096 2 98,304 147,456
4096 4 73,728 135,168
4096 8 65,536 135,168
4096 16 61,440 136,704

Decreases
monotonically

with radix
increase

Decreases,
reaches min,

increases

For M = logr(N)
Nmult = O(M·N)

154 Chapter 8

Slide 8.19

Further simplifications are possible
by observing regularity in the values
of the twiddle factors. This slide
illustrates twiddle factors for N =8.
We can see that w8

0, w8
2, w8

4, and w8
6

reduce to trivial multiplications by
±1 and ±j, which can be
implemented with simple sign
inversion and/or swapping of real
and imaginary components. Using
these observations leads to a
simplified implementation and
reduced hardware area.

Slide 8.20

The SFG diagram of an 8-point
FFT is illustrated here. With a
radix-2 implementation, an N-point
FFT requires log2(N) stages. Each
stage has N/2 butterflies. The
overall complexity of the FFT is
N/2·log2(N) butterfly operators.
The input sequence has to be
ordered as shown to produce the
ordered (0, 1, …, N –1) output
sequence.

Further Simplifications

8.19

+

+x1

x0

X1

X0

W
n = 1, k = 1 in this example

 Example: N = 8

W8
0

W8
1

W8
2

W8
3

W8
4

W8
5

W8
6

W8
7

 Considerably simpler
– Sign inversion
– Swap Re/Im

(or both)
Re

Im

2 nkj
NW e

The Complete 8-Point Decimation-in-Time FFT

8.20

x0

x4

x2

x6

x1

x5

x3

x7

X0

X1

X2

X3

X4

X5

X6

X7

Time-Frequency Analysis: FFT and Wavelets 155

Slide 8.21

This slide shows the radix-2
organization of the FFT algorithm.
Each branch is divided into two
equal radix-2 partitions. Due to the
power-of-2 factorization, an N-
point FFT requires log2(N) butterfly
stages. The total numerical
complexity for an N-point FFT is
N∙log2(N). As discussed previously,
radix-2 is a simple implementation
approach, but may not be the least
complex. Multiple realizations have
to be considered for large N to
minimize hardware area.

Slide 8.22

Higher radices reduce the number
of operations as shown in the table
on this slide. The radix-r design has
a complexity of N·logr(N). Higher
radices also come with a larger
granularity of the butterfly
operation, making them suitable
only for N=2r. To overcome the
granularity issue, implementations
with mixed radices are possible.
This is also known as the split-radix
FFT (SRFFT). The SRFFT has the
lowest numerical complexity (see
table), but it is the most complex to
design due to a variety of building

blocks. While radix-2 may not give a lower operation count, its structure is very simple. The
modularity of the radix-2 architecture makes it attractive for hardware realization. For this reason,
radix-2 and radix-4 realizations are the most common in practice. In Part IV, we will discuss an
optimized SRFFT implementation with radices ranging from 2 to 16 to be used in a multi-band
radio DSP front end.

FFT Algorithm

N2 complex multiplications and additions

N 2/4 complex multiplications
and additions

N 2/4 complex multiplications
and additions

N 2/16 complex multiplications
and additions

N 2/16 complex multiplications
and additions

N
·lo

g 2
(N

) c
om

pl
ex

ity

8.21

1 ·2

0

()·()
nN j k
N

n

x nX ek

1 22 ·2

0

(2)·

N
mj k
N

m

x m e
1 2 12 ·2

0

(2 1)·

N
mj k
N

m

x m e

Higher Radix FFT Algorithms

Radix-2 is the most symmetric structure and best suited for folding

Radix 2 Radix 4

N·log2(N) complexity N·log4(N) complexity

FFT
size

Real Multiplications Real Additions
Radix Radix

N 2 4 8 srfft 2 4 8 srfft
64 264 208 204 196 1032 976 972 964
128 712 516 2504 2308
256 1800 1392 1284 5896 5488 5380
512 4360 3204 3076 13566 12420 12292

8.22

156 Chapter 8

Slide 8.23

This slide shows the direct
realization of a 512-point FFT
architecture targeting a 2.5GS/s
throughput. The design consists of
4360 multipliers and 13566 adders
that are organized in nine stages. This
direct-mapped design will occupy
several square millemeter of silicon

kind of design. This simple design
took about 8hr to synthesize
using standard chip design tools,
because of difficulty in meeting the

timing. The top-level retiming operation on the design did not converge after 2.5 days!

The FFT is a good example of an algorithm where high sample rate can be traded off for area
reduction. The FFT takes in N samples of discrete data and produces N output samples in each
iteration. Suppose, the FFT hardware functions at clock rate of fclk, then the effective throughput
becomes N· fclk samples/second. For N =512 and f clk =100MHz, we would have an output sample
rate of 51.2Gs/s which is larger than required for most applications. A common approach is to
exploit the modular nature of the architecture and re-use hardware units like the radix-2 butterfly. A
single iteration of the algorithm is folded and executed in T clock cycles instead of a single cycle.
The number of butterfly units would reduce by a factor of T, and will be re-used to perform distinct
operations in the SFG in each of these T cycles. The effective sample rate now becomes N·fclk/T.
More details on folding will be discussed in Part III of the book.

To estimate power and performance for an FFT it is best to explore hierarchy. We will next
discuss hierarchical estimation of power and performance of the underlying butterfly units.

512-pt FFT: Synthesis-Time Bottleneck

 Direct-mapped architecture took about 8 hours to synthesize,
retiming was unfinished after 2.5 days
 It is difficult to explore the design space if synthesis is done for

every implementation

43
60

 R
ea

l M
ul

tip
lic

at
io

ns 13566 Real Additions

8.23

are making it practically infeasible.
The logic synthesis process itself will
be extremely time intensive for this

Time-Frequency Analysis: FFT and Wavelets 157

Slide 8.24

Exploiting design hierarchy is
essential for efficient hardware
mapping and architectural
optimization. Each stage of the FFT
can be treated as a combination of
radix-2 modules. An 8-point FFT
module is shown in the slide to
illustrate this concept. The radix-2
blocks are highlighted in each of the
three stages. The butterfly stages
have different twiddle factors and
wiring complexity. Modeling area,
power, and performance of these
butterfly blocks aids in estimation
of the FFT hardware.

Slide 8.25

Each radix-2 butterfly unit consists
of 4 real multipliers and 6 real
adders. The area of the butterfly
block is modeled by adding up the
areas of the individual components.
A better/smaller design can be
made if multipliers are implemented
with carry-save adders (CSAs).
These implementation parameters
are included in the top-level model
of the radix-2 block in order to
evaluate multiple architectural
realizations. The interconnect area
can be also included in these block-
level estimates. This concept can be

hierarchically extended.

Exploiting Hierarchy

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

W8
0

W8
1

W8
2

W8
3

Stage 1 Stage 2 Stage 3

 Each stage can be treated as a combination of butterfly-2
structures, with varying twiddle factors

8.24

x0

x1

x2

x3

x4

x5

x6

x7

x0

x4

x2

x6

x1

x3

x5

x7

Modeling the Radix-2 Butterfly: Area

+

+

+

+

Re In1

Im In1

Re In2 x
Re tw

Im In2 x
Im tw

+ -1

x

x

+ -1

Re Out1

Im Out1

Re Out2

Im Out2

AreabaseAreamult

Carry save adder

a1 a2 a3

Carry save adder

a4 a5 a6

Carry save adder

a7 a8 a9

Carry save adder Carry save adder

Carry save adder

Carry save adder

Carry Propagate Adder

Out

c s c s s

s s

s

c c

c

c s

c

Multiplication with CSA
Shifted version of the input

Areatotal = Areabase + Areamult

8.25

158 Chapter 8

Slide 8.26

In addition to the baseline radix-2-
butterfly block, we need to estimate
hardware parameters for twiddle
factors. The twiddle factors are
typically stored in memory and read
out when required as inputs for the
butterfly units. Their storage
contributes substantially to the area
of the whole design and should be
optimized as far as possible. In a
512-point FFT, there are 256
twiddle factors, but there are
regularities that can be exploited.
First, the twiddle factors are
symmetric around index 128, so we

need to consider only 128 factors. Second, among these 128 factors, there is significant regularity in
the number of non-zero bits in the sine and cosine terms, as shown on the plots. The histograms
indicate that 5 non-zero bits occur with the highest frequency. These observations can be used to
develop analytical models for the twiddle-factor area estimation.

Slide 8.27

Twiddle factor area estimation can
be performed by calculating the
cost of each non-zero bit. Logic
synthesis is performed and the area
estimates are used to develop
analytical models for all possible
coefficient values. Results from
this modeling approach are shown
on this slide for the sine term with
non-zero sine bits ranging from 1
to 4 and non-zero cosine bits
varying from 1 to 4 (the sub-plots).
The results show a 5% error
between the synthesis and analytical
models.

Twiddle-Factor Area Estimation

 Non-zero bits range from 0-8 for the sine and cosine term

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Twiddle Factor Index

N
on

-z
er

o
bi

ts
 in

 th
e

co
si

ne
 te

rm

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Twiddle Factor Index

N
on

-z
er

o
bi

ts
 in

 th
e

si
ne

 te
rm

-1 0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

Number of non-zero bits in the cosine term

N
um

be
r o

f t
w

id
dl

e
fa

ct
or

s

-1 0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

Number of non-zero bits in the sine term

N
um

be
r o

f t
w

id
dl

e
fa

ct
or

s

8.26

Area Estimates from Synthesis

1 2 3 4 5

4000

6000

8000

10000

12000

14000

Number of non-zero bits in the sine term

A
re

a

Estimated Area
Synthesized Area

1 2 3 4 5
6000

7000

8000

9000

10000

11000

12000

13000

Number of non-zero bits in the sine term

A
re

a

Estimated Area
Synthesized Area

0 1 2 3

2000

4000

6000

8000

10000

Number of non-zero bits in the sine term

A
re

a

Estimated Area
Synthesized Area

2 3 4 5
1

1.05

1.1

1.15

1.2

1.25

1.3
x 104

Number of non-zero bits in the sine term

A
re

a

Estimated Area
Synthesized Area

cosine nz bits = 1 cosine nz bits = 2

cosine nz bits = 3 cosine nz bits = 4

Average error in area estimate: ~ 5%
8.27

Time-Frequency Analysis: FFT and Wavelets 159

Slide 8.28

The butterfly structure is also
analyzed for timing since the
butterfly performance defines the
performance of the FFT. The
critical path in each stage is equal to
the delay of the most complex
butterfly computation in that stage
(twiddle factors and wiring
included). There could be variations
in delay across stages, which would
necessitate retiming. For an 8-point
design in a 90nm CMOS
technology, the critical-path delay
varies between 1.6ns and 2ns per
stage. Retiming or pipelining can

then be performed to balance the path delay to improve performance and/or to reduce power
through voltage scaling.

Slide 8.29

Finally, we can create a compact
analytical model for energy
consumption. Energy estimation is
limited by accurate estimation of
activity factors on the switching
nodes in the design. The activity
factor can be estimated by switch-
level simulations in MATLAB or by
gate-level simulations in the
synthesis environment, both of
which are very time consuming.
Instead, we can derive analytical
expressions for energy in each
butterfly as a function of input
switching activity and the number

of non-zero bits in the twiddle factor. One such computation is highlighted in the slide for the
second-stage butterfly, which takes p2(1) and p2(3) as inputs. This approach is propagated through
the entire FFT to compute the transition probabilities of the intermediate nodes. With node
switching probabilities, area (capacitance), and timing information, we can estimate the top-level
power/energy of the datapath elements.

FFT Timing Estimation

 Critical path in each stage equal to delay of most complex butterfly
 For 3 stages delay varied between 1.6 ns to 2 ns per stage (90-nm CMOS)
 Addition of pipeline registers between stages reduces the delay

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

W8
0

W8
1

W8
2

W8
3

Stage 1 Stage 2 Stage 3

8.28

x0

x1

x2

x3

x4

x5

x6

x7

x0

x4

x2

x6

x1

x3

x5

x7

FFT Energy Estimation

 Challenge: Difficult to estimate hierarchically. Carrying out switch level simulations in
MATLAB or gate level simulation in RC is time consuming.

 Solution: Derive analytical expressions for energy in each butterfly as a function of
input switching activity and nonzero bits in twiddle factor.

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

-1

-1

W8
0

W8
0

W8
0

W8
2

-1

-1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

W8
0

W8
1

W8
2

W8
3

Stage 1 Stage 2 Stage 3
p1(0)

p1(4)

p1(2)

p1(6)

p1(1)

p1(3)

p1(5)

p1(7)

p2(0)?

p2(1)?

p2(2)?

p2(3)?

p2(4)?

p2(5)?

p2(6)?

p2(7)?

8.29

x0

x1

x2

x3

x4

x5

x6

x7

x0

x4

x2

x6

x1

x3

x5

x7

160 Chapter 8

Slide 8.30

The Fourier transform is a tool that
is widely used and well known to
electrical engineers. However, it is
often overlooked that the Fourier
transform only gives us information
about the spectral content of the
signal while sacrificing time-domain
information. The Fourier transform
of a signal provides information
about which frequencies are present
in the signal, but it can never tell us
which frequencies are present in the
signal at which times. Thus, the
Fourier transform cannot give an
accurate representation of a signal

whose spectral content changes with time. These signals are also known as non-stationary signals.
There are many examples of non-stationary signals, such as neural action potentials and seismic
signals. These signals have time-varying spectra. In order to accurately represent these signals, a
method to analyze time-varying spectral content is needed. The wavelet transform that we will
discuss in the remaining portion of this chapter is one such tool for time-frequency analysis.

Slide 8.31

Let us look at an example that
illustrates how the Fourier
transform cannot accurately
represent time-varying spectral
content. We consider two signals
x1(t) and x2(t) described as follows:

x1(t) = 2∙sin(2 ∙50t) for 0 < t ≤ 6
and x1(t) = 2∙sin(2 ∙120t) for 6 < t
≤ 12

Thus, in each of these individual
periods the signal is a monotone.

x2(t) = sin(2 ∙50t) + sin(2 ∙120t)
In this signal both tones of 50Hz

and 120Hz are present at all times.

The plots in this slide show the power spectral density (PSD) of x1 and x2. As seen from the
plots, both signals have identical PSDs although they are completely different signals. Thus, the
Fourier transform is not a good way to represent signal x1(t), since we cannot express the change of
frequency with time seen in x1(t).

Shortcomings of the Fourier Transform (FT)

 FT gives information about the spectral content of the signal but
loses all time information
– FT assumes all spectral components are present at all times
– Time-domain representation does not provide information

about spectral content of the signal

 Non-stationary signals whose spectral content changes in time
cannot be supported by the Fourier-domain representation
– Non-stationary signals are abundant in nature
– Examples: Neural action potentials, seismic signals, etc.

 In order to have an accurate representation of these signals,
a time-frequency representation is required

 In this section, we review the wavelet transform and analyze VLSI
implementations of the discrete wavelet transform

8.30

Ambiguous Signal Representation with FT

8.31

 The power spectral density (PSD) is similar, illustrating the
inability of the FT to handle non-stationary spectral content

0 < t 6s
6s < t 12s

2·sin(2 ·50t)
2·sin(2 ·120t)

x1(t) =

x2(t) = sin(2 ·50t) + sin(2 ·120t)

Not all spectral
components
exist at all times

X1(f) X2(f)

Time-Frequency Analysis: FFT and Wavelets 161

Slide 8.32

A possible solution to the previous
limitation is to apply windowing
functions to divide up the time
scale into multiple segments and
perform FFT analysis on each of
the segments. This concept is
known as the short-time Fourier
transform (STFT). It was the
subject of considerable research for
about 30 years, from the 1940s to
the 1970s, where researchers
focused on finding suitable
windowing functions for a variety
of applications. Let’s illustrate this
with an example.

Slide 8.33

The STFT executes FFTs on time-
partitions of a signal x(t). The time
partitioning is implemented by
multiplying the signal with different
time-shifted versions of a window
function ω(t–), where is the time
shift. In the example from Slide
8.31, we can use a window that is 6
seconds wide. When the window is
at =0, the STFT would be a
monotone at 50Hz. When the
window is at =6, the STFT would
be a monotone at 120Hz.

Support for Non-Stationary Signals

 A work-around: modify FT to allow analysis of non-stationary
signals by slicing in time – Short-time Fourier transform (STFT)

– Segment in time by applying windowing functions and analyze
each segment separately

– Many approaches (between late 1940s and early 1970s)
differing in the choice of windowing functions

8.32

Short-Time Fourier Transform (STFT)

 Time-frequency representation

8.33

w(t): windowing function

: translation parameter

 Multiply signal by a window and then take a FT of the result
(segment into stationary short-enough pieces)
– S(, f) is STFT of x(t) at frequency f and translation

 Translate the window to get spectral content of signal at
different times
– w(t) does time-segmentation of x(t)

* 2(,) () () j ftS f x t w t e dt

* 2() (,) () j ft

f
x t S f w t e d df

162 Chapter 8

Slide 8.34

The problem with the approach
described on the previous slide is
that, since it uses the same
windowing function, it assumes
uniform resolution for all
frequencies. There exists a
fundamental tradeoff between the
frequency and the time resolution.
When a signal has high-frequency
content for a short time span, a
narrow window is needed for time
resolution, but this results in wider
frequency bands and, hence, poor
frequency resolution. On the other
hand, if the signal has low-

frequency content of longer time span, a wider window is needed, but this results in narrow
frequency bands and, hence, poor time resolution. This time-frequency resolution tradeoff is a
demonstration of Heisenberg’s uncertainty principle. The continuous wavelet transform, which we
shall now describe, provides a way to avoid the problem of fixed resolution posed by the STFT.

Slide 8.35

This slide mathematically illustrates
the continuous wavelet transform
(CWT). The wavelet function Ψ*
plays a dual role of the window and
basis functions. Parameter b is the
translation parameter (providing
windowing) and parameter a is the
scaling parameter (providing multi-
resolution). The wavelet coefficients
are evaluated as the inner products
of the signal with the scaled and
translated versions of Ψ*, which is
referred to as the mother wavelet.
Shifted and translated versions of
the mother wavelet form the basis

functions for the wavelet transform. For a complete theoretical representation of a signal, we need
infinitely many values of a and b, which is not practically feasible. For practical realization, a and b
are varied in finite steps based on a priori knowledge of the signal in a way that provides adequate
resolution. The basis functions implement multi-resolution partitioning of the time and frequency
scales as shown on the plot on the right. The practical case of simple binary partitioning is shown in
the plot.

Heisenberg's Uncertainty Principle

 The problem with previous approach is uniform resolution for all
frequencies (same window for x(t))

 There is a tradeoff between the resolution in time and frequency
– High-frequency components for a short time span require a

narrow window for time resolution, but this results in wider
frequency bands (cost: poor frequency resolution)

– Low-frequency components of longer time span require a wider
window for frequency resolution, but this results in wider time
bands (cost: poor time resolution)

 This is an example of Heisenberg's uncertainty principle
– FT is an extreme case where all time domain information is lost

to get precise frequency information
– STFT offers fixed time/frequency resolution, which needs to be

chosen keeping the above tradeoff in mind
8.34

*1
(,) ()

t b
W a b x t dt

aa

Continuous Wavelet Transform

 Addresses the resolution problem of STFT by evaluating the
transform for scaled versions of the window function
– Varying time and frequency resolutions are varied by using

windows of different lengths
– The transform is defined by the following equation

– a > 0, b: scale and translation parameters

 Design problem: find the range of a and b
– Ideally, infinitely many values of a and b would be required to

fully characterize the signal
– Can limit the range based on a priori knowledge of the signal

Mother wavelet

8.35

Time

Fr
eq

ue
nc

y

Time-Frequency Analysis: FFT and Wavelets 163

Slide 8.36

This slide gives a simplified
illustration of the time-frequency
scales used in Fourier and wavelet
analyses [2]. The Fourier transform
assumes the presence of all
frequency components (basis
functions) at all times, as shown on
the left. The wavelet transform
removes this restriction to allow for
the presence of only a subset of
the frequency components at any
given time. Wavelet partitioning
thus allows for better time-
frequency representation of non-
stationary signals.

The plot on this slide illustrates the difference between the wavelet transform and the STFT. The
STFT has a fixed resolution in the time and the frequency domain as shown in the plot on the left.
The wavelet transforms overcomes this limitation by assigning higher time resolution for higher
frequency signals. This concept is demonstrated in the plot on the right.

Slide 8.37

While the CWT provides multiple
time-frequency resolutions, it does
not generally provide concise signal
representation. This is because the
inner product with the wavelet at
different scales carries some
redundancy. In other words, basis
functions are non-orthogonal. In
order to remove this redundancy we
need to construct a set of
orthogonal basis functions. Several
wavelets have been derived that
meet this requirement. The Morlet
wavelet shown on this slide is an
example of such a wavelet. It is a

constant subtracted from a plane-wave and multiplied by a Gaussian window. The wavelet provides
an orthonormal basis, thereby allowing for efficient signal representations. In some sense,
application-specific wavelets serve as matched filters that seek significant features of the signal. The
wavelet functions need to be discretized for implementation in a digital chip.

Fourier vs. Wavelet Transform

Fourier basis functions Wavelet basis functions

8.36

Time

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

y

[2] A. Graps, "An Introduction to Wavelets," IEEE Computational Science and Engineering, pp. 50-61,
Summer 1995.

[2]

Orthonormal Wavelet Basis

8.37

Morlet Wavelet
1

0.5

0

0.5

1
4 2 0 2 4

 The Morlet wavelet is an
example of an orthonormal
wavelet

 Wavelet representation, in general, has redundant data
representation

 We would like to find a mother wavelet that when translated and
scaled leads to orthonormal basis functions

 Several orthonormal wavelets have been developed
– Morlet, Meyer, Haar, etc.

Time

Am
pl

itu
de

164 Chapter 8

Slide 8.38

A discrete-wavelet series can be
obtained by discretizing parameters
a and b in the mother wavelet. The
scaling parameter is quantized as a
=2 j and the translation parameter is
quantized as b =k∙2 j. Since the
parameters are varied in a dyadic
(powers-of-two) series, the discrete
wavelet series is also referred to as
the dyadic discrete wavelet series.

Discretization of the mother
wavelet is necessary, but not
sufficient for digital
implementation. The input is still a
continuous-time signal and it also

needs to be discretized. Further, the quantization of a and b reduces the infinite set of continuous
values of a and b to an infinite set of discrete values. This means that we still have to evaluate the
inner products for an infinite set of values. In order to arrive at a digital implementation of the
wavelet transform, we seek an implementation that efficiently limits the numbers of scales required
for the wavelet transform. As such, the transform needs to be modified to support discrete-time
implementation.

Slide 8.39

In practice, each wavelet function
can be seen as a band-pass filter of
progressively narrower bandwidth
and lower center frequencies. Thus
the wavelet transform can be
implemented with constant Q filter
banks. In the example shown on
the slide, bandwidth of 1 is twice
the bandwidth of 2, etc. The
standard wavelet series (1, 2, 3,

4, etc.) nicely covers all but very
low frequencies; taken to the limit,
an infinitely large n is needed to
represent DC. To overcome this
issue, a cork function is used to

augment wavelet spectra at low frequencies.

Discrete Wavelet Series

 We need discrete-domain transforms for digital implementation
 Discretize the translation and scale parameters (a, b)
– Example: Daubechies (a = 2j, b = 2jk)

 Can this be implemented on
digital a circuit?
– Input signal is not yet discretized
– Number of scaling and translation parameters are still infinite

 Key to efficient digital implementations
– Need to limit the number of scales used in the transform
– Allow support for discrete-time signals

8.38

TimeFr
eq

ue
nc

y
(lo

g)

Towards Practical Implementations

 How to limit the number of scales for analysis?

 Each wavelet is a like a constant – Q filter

 Scaling function

8.39

1234

j = nj = n + 1n+2n+3

Scaling function spectrum ()
cork Wavelet spectra ()

nnnn
1
2

1
4

1
8

1
()

| |
F f at F

a a

Time-Frequency Analysis: FFT and Wavelets 165

Slide 8.40

Mallat’s wavelet is one of the most
attractive wavelets for digital
implementation, because it
describes the wavelet transform in
terms of digital filtering and
sampling. The filtering is done
iteratively using low-pass (h) and
high-pass (g) components, whose
sampling ratios are powers of 2.
The equations define high-pass and
low-pass filtering operations. A
cascade of HP/LP filters leads to
simple and modular digital
implementations. Due to the ease
of implementation, this is one of

the most popular forms of the discrete wavelet transform.

Slide 8.41

The concept described on the
previous slide is illustrated here in
more detail [3]. The filter bank for
the wavelet transform is shown on
the right. The original signal, which
has a bandwidth of (0, π) (digital

through two half-band filters. The
high-pass filter has a transfer
function denoted by G(z) and
impulse response g(n). The low-pass
filter has a transfer function
denoted by H(z) and an impulse
response denoted by h(n). The
output of G(z) has a bandwidth

from (π/2, π), while the output from H(z) occupies (0, π/2). The down-sampled output of the first-
stage HPF is the first level of wavelet coefficients. The down-sampled LPF output is applied to the
next stage, which splits the signal content into frequency bands (0, π/4) and (π/4, π/2). At each
stage, the HPF output calculates the DWT coefficients for that level/stage.

This architecture is derived from the basics of quadrature-mirror filter theory. In his seminal
paper on the implementation of wavelets, Mallat showed that the wavelet transform of a band-
limited signal can be implemented using a bank of quadrature-mirror filters.

Mallat’s Multi-Resolution Analysis

 Describes wavelet transform in terms of digital filtering and
sampling operations
– Iterative use of low-pass and high-pass filters,

subsequent down-sampling by 2x

8.40

g(k)

h(k)

2

2

j 1

j 1

j

HP

LP

 Leads to an easier implementation where wavelets are
abstracted away!

The popular form of DWT

1
1(2) () (2)j j

j
k

t h k t k 1
1(2) () (2)j j

j
k

t g k t k

[1] (1) []kh N n g n

Mallat’s Discrete Wavelet Transform

 Mallat showed that a sub-
band coding structure can
implement the wavelet
transform

 The resultant filter structure
is the familiar Quadrature
Mirror Filter (QMF)

 Filter coefficients are decided
based on the wavelet being
used

8.41

HPF
g(n)

x(n), f = (0,)

LPF
h(n)

2

Level 1
DWT Coeffs.

f = (/2,)

2
f = (0, /2)

HPF
g(n)

2

Level 2
DWT Coeffs.

f = (/4, /2)

LPF
h(n)

2

…..

f = (0, /4)

[3] S. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,"
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 7, July 1989.

[3]

frequency at a given fs) is passed

166 Chapter 8

Slide 8.42

Let us illustrate the design of the
filter bank with the Haar wavelet
filter. It can be implemented using
the filter bank discussed in the
previous slide. The filters for the
Haar wavelet are simple 2-tap FIR
filters given by g(n)=1/sqrt(2)*[1
−1] and h(n)=1/sqrt(2)* [1 1].
The Haar wavelet is sometimes
used for spike detection of neural
signals.

Slide 8.43

This figure shows one stage of the
Haar wavelet filter. Several stages
are cascaded to form a Haar
wavelet filter. The depth is decided
based on the application. Since the
stage shown above is replicated
many times, any savings in
power/area of a single stage will
linearly affect the total filter
power/area. Figure (a) shows the
direct-mapped implementation of
the wavelet filter, which consists of
4 multipliers, 2 adders, 2 delays and
2 down-samplers. We can exploit
the symmetric nature of the

coefficients in the Haar wavelet filter to convert the implementation in (a) to the one in (b), which
uses only 1 multiplier. The number of adders, delays and down-samplers remains the same. This
simplification in multiplication has a considerable effect on the area since the area of a multiply is
much greater than that of an adder or register. We can also look into further possibilities for area
reduction in adders and down-samplers.

Haar Wavelet

8.42

 One of the simplest and most popular wavelets

 It can be implemented as a
filter bank shown on the
previous slide

 g(n) and h(n) are 2-tap FIR
filters with
g(n) = [0.70701 0.7071]
h(n) = [0.70701 0.7071]

 Let us look into the design of the filter in more detail

Haar Wavelet: Direct-Mapped Implementation

8.43

(a) (b)

 We can exploit the symmetry in the coefficients to share a single
multiplier for a stage

x(n)

2

1
2

1
2

z-1

Level 1
DWT Coeffs.

2

z-1

1
2

x(n)

2

z-1

Level 1
DWT Coeffs.

2

z-1

1
2

 Part (a) shows direct-mapped implementation of a single stage of
the Haar wavelet filter

Time-Frequency Analysis: FFT and Wavelets 167

It is often desirable to interleave the filter architecture to support multiple streams. The down-
sampler in (a) can be modified as shown in (b) to support multiple data streams. The counter is
replicated in order to allow for the selection of odd/even samples on each stream and to allow for
non-continuous data for both streams.

Slide 8.45

The down-sampling operation in
the DWT implies that half of the
outputs are discarded. Since half of
the outputs are discarded eventually
we can avoid half the computations
altogether. The “polyphase”
implementation of the DWT filter
bank indeed allows us to do this. In
the polyphase implementation, the
input data stream is split into odd
and even streams upfront. The filter
is modified such that only the
outputs that need to be retained are
computed. The mathematical
formulation for a polyphase

implementation is described as:

H(z) = He(z2) + z 1Ho(z2),

G(z) = Ge(z2) + z 1Go(z2).

Polyphase Filters for DWT

The wavelet filter computes outputs for each sample, half of
which are discarded by the down-sampler

Polyphase implementation

– Splits input to odd and even streams

– Output combined so as to generate only the output which
would be needed after down-sampling

Split low-pass and high-pass functions as

Efficient computation strategy: reduces switching power by 50%

8.45

H(z) = He(z2) + z 1Ho(z2)

G(z) = Ge(z2) + z 1Go(z2)

Down-Sampler Implementation

8.44

(a) (b)

z
-1Filter

Output Down-sampled

Output

en

CTR

z
-2Interleaved

Filter Output Down-sampled

Output

en

CTR

en

CTR

Data

Valid

S
e

le
c
t

 Down-sampler implementation

– Allows for selection of odd/even samples by controlling enable
(en) signal of the 1-bit counter

 Interleaved down-sampler implementation

– Allows odd / even sample selection with different data arrival
time for each channel

Select

Slide 8.44

Let’s now consider the down-
sampler implementation for single
and multiple data streams. Figure (a)
shows the single-stream architecture.
The multiplexer selects between the
current (select = 0) and the previous
(select = 1) sample of the filter
output. A one-bit counter toggles
the select line each clock cycle, thus
giving a down-sampled version of
the input stream at the output. The
down-sampler thus requires a
register (N flip-flops for an N-bit
word), a 1-bit counter (implemented
as a flip-flop) and a multiplexer

(~3N AND gates). Thus, the down-sampler has the approximate complexity of a delay element (N
flip-flops). This implementation of the down-sampler allows us to control the sequence of bits that
are sent to the output, even when the data is discontinuous. A “data valid” signal can be used to
trigger the enable of the counter with a delay to change between odd/even bit streams.

168 Chapter 8

The filters H(z) and G(z) are decomposed into filters for the odd and even streams. The
polyphase implementation decreases the switching power by 50%.

Slide 8.46

Let us now examine the polyphase
implementation of the Haar
wavelet. Consider the section of the
Haar wavelet filter highlighted by
the red box in this figure. While the
adder and the delay toggle every
clock cycle, the down-sampler at
the output of the adder renders
half of the switching energy
wasted, as it discards half of the
outputs. The polyphase
implementation allows us to work
around the issue of surplus energy
consumption.

Slide 8.47

This slide shows the value of x (n)
= x(n)/sqrt(2) at each clock cycle.
The output of the adder is x (n) +
x (n −1) while the down-sampler
only retains x (2n +1)+x (2n) fo r
n = 0, 1 , 2, … Thus half the
outputs (marked in red) in the table
are discarded. In the polyphase
implementation, the input is split
into odd and even streams as
shown in the second table. The
adder then operates on a divide-by-
2 clock and only computes the
outputs that would eventually be
retained in the first table. Thus

there are no redundant computations, giving us an efficient implementation.

Polyphase Implementation of Haar Wavelet

 Consider the highlighted section of the Haar DWT filter

8.46

x(n)

2

z-1

Level 1
DWT Coeffs.

2

z-1

1
2

x’(n)

 Due to down-sampling half of the computations are unnecessary

 Need for a realization that computes only the outputs that would
be needed after down-sampling

Haar Wavelet: Sequence of Operations for h(n)

 Consider the computation for h(n) in the Haar wavelet filter

 Computations in red are redundant
 Polyphase implementations

– Split input into odd / even streams
– No redundant computations performed

8.47

x'(n) x'(1) x'(2) x'(3) x'(4) x'(5)
x'(n 1) x'(0) x'(1) x'(2) x'(3) x'(4)

x'(n) + x'(n 1) x'(1) + x'(0) x'(2) + x'(1) x'(1) + x'(0) x'(2) + x'(1) x'(5) + x'(4)
2 x'(1) + x'(0) x'(3) + x'(2) x'(5) + x'(4)

x'(2n+1) x'(1) x'(3) x'(5)
x'(2n) x'(0) x'(2) x'(4)

x'(2n) + x'(2n+1) x'(1) + x'(0) x'(3) + x'(2) x'(5) + x'(4)

Time-Frequency Analysis: FFT and Wavelets 169

Slide 8.48

The discrete wavelet transform
(DWT) has several applications. It
is useful in neural spike sorting, in
detection and feature-extraction
algorithms. DWT also provides a
very efficient way of image
compression. The DWT
coefficients need far fewer bits than
the original image while retaining
most of the information necessary
for good reconstruction of the
image. The 2-D DWT is the
backbone of the JPEG 2000 image
compression standard. It is also
widely used by the FBI in the

compression of fingerprint images. As opposed to the Fourier transform, the DWT allows us to
choose a basis best suitable for a given application. For instance while Haar wavelet is best suitable
for neural-spike feature extraction, the cubic-spline wavelet is most suitable for neural-spike
detection.

Slide 8.49

Fast Fourier transform (FFT) is a
well-known technique for frequency
analysis of stationary signals. FFT is
a standard building block in radio
receivers and many other
applications. FFT is an economical
implementation of discrete Fourier
transform (DFT). FFT based on
the use of shorter sub-sequences to
realize DFT. FFT has a compact
hardware realization, but does not
work for non-stationary signals.
Wavelet is a technique used for
analysis of stationary signals.
Wavelets are based on orhonormal

basis functions that provide varying time and frequency resolution. They can be implemented as a
series of decimation filters and are widely used in fingerprint recognition, image compression, neural
spike sorting and other applications. Having analyzed basic DSP algorithms, next four chapters will
focus on modeling and optimization of DSP architectures.

Applications of DWT

 Spike Sorting
– Useful in detection and feature extraction

 FBI fingerprints
– Efficient compression of finger prints without loosing out on

information needed to distinguish between finger prints

 Image compression
– 2D wavelet transform provide efficient representation of

images

 Generality of the WT lets us take a pick for the wavelet used
– Since a large number of wavelets exist, we can pick the right

wavelet useful for the application

8.48

Summary

 FFT is a technique for frequency analysis of stationary signals
– It is a key building block in radio systems and many other apps
– FFT is an economical implementation of DFT that leverages

shorter sub-sequences to implement DFT on N discrete samples
– Key building block of an FFT is butterfly operator, which can be

realized with 2N radix (2 and 4 being the most common)
– FFT does not work well with non-stationary signals

 Wavelet is a technique for time-frequency analysis of non-
stationary signals
– Multi-resolution in time and frequency is used based on

orthonormal wavelet basis functions
– Wavelets can be implemented as a series of decimation filters
– Used in applications such as fingerprint recognition, image

compression, neural spike sorting, etc.
8.49

170 Chapter 8

References

 P. Duhamel and M. Vetterli, "Fast Fourier Transforms - A Tutorial Review and a State-of-
the-art," Elsevier Signal Processing, vol. 4, no. 19, pp. 259-299, Apr. 1990.

 A. Graps, "An Introduction to Wavelets," IEEE Computational Science and Engineering, pp. 50-
61, Summer 1995.

 S. Mallat, "A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 2, no. 7, July 1989.

Additional References

 R. Polikar, "The Story of Wavelets," in Proc. IMACS/IEEE CSCC, 1999, pp. 5481-5486.

 T.K. Sarkar et al., "A Tutorial on Wavelets from an Electrical Engineering Perspective, Part 1:
Discrete Wavelet Techniques," IEEE Antennas and Propagation Magazine, vol. 40, no. 5, pp. 49-
70, Oct. 1998.

 V. Samar et al., "Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial," Brain
and Language 66, pp. 7–60, 1999.

Part III

Architecture Modeling and Optimized Implementation

Slide 9.2

DSP algorithms are defined by
iterations of a set of operations,
which repeat in real time to
continuously generate the algorithm
output [1]. More complex
algorithms contain multiple
independent inputs and multiple
outputs. An iteration can be
graphically represented using block
diagram (BD), signal-flow graph
(SFG), data-flow graph (DFG) or
dependence graph (DG). These
representations capture the signal-
flow properties and operations of
the algorithm. The slide shows an

example of an iteration for a 3-tap FIR filter. The inputs are x(n) and delayed versions of x(n). Each
iteration executes 2 additions and 3 multiplications (a, b, c are operands) to compute a single output
y(n). In the rest of the chapter we look at some of these graphical representations and their
construction in Simulink.

Iteration

 Iterative nature of DSP algorithms
– Executes a set of operations in a defined sequence
– One round of these operations constitutes an iteration
– Algorithm output computed from result of these operations

 Graphical representations of iterations [1]

– Block diagram (BD)
– Signal-flow graph (SFG)
– Data-flow graph (DFG)
– Dependence graph (DG)

 Example: 3-tap filter iteration
– y(n) = a·x(n) + b·x(n 1) + c·x(n 2), n = {0, 1, …, }
– Iteration: 3 multipliers, 2 adders, 1 output y(n)

9.2

[1] K.K. Parhi, VLSI Digital Signal Processing
Systems: Design and Implementation, John
Wiley & Sons Inc., 1999.

Data-Flow Graph Model

Chapter 9

with Rashmi Nanda
University of California, Los Angeles

 DOI 10.1007/978-1-4419-9660-2_9, © Springer Science+Business Media New York 2012
173D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 9.1

This chapter discusses various
representations of DSP algorithms.
We study how equations describing
the algorithm functionality are
translated into compact graphical
models. These models enable
efficient implementation of the
algorithm in hardware while also
enabling architectural
transformations through matrix
manipulations. Common examples
of graphical representations are
flow graphs and block diagrams. An
example of block diagrams using
Simulink models will be shown at

the end of the chapter.

174 Chapter 9

Slide 9.3

The slide shows the block diagram
for the 3-tap filter discussed
previously. The block diagram
explicitly shows all computations
and delay elements in the algorithm.
This diagram is similar to an actual
hardware implementation of the
filter. Such block diagram
representations are also used in
Simulink to model DSP algorithms
as will be shown later in the
chapter. We next look at the more
symbolic signal-flow graph.

Slide 9.4

Signal-flow graphs primarily
indicate the direction of signal
flows in the algorithm. Signal-flow
graphs are useful in describing
filtering operations, which are
mainly composed of additions and
constant multiplications. Other
graphical methods such as block
diagrams and data-flow graphs
better describe DSP algorithms
with non-linear operations. The
nodes in the graph represent signal
sources, sinks and computations.
When several inputs merge at a
node, they indicate an add

operation. A node without an input is a signal source, while one without an output branch is a sink.
Nodes with a single input and multiple outputs are branch nodes, which distribute the incoming
signal to multiple nodes. Constant multiplication and delay elements are treated as linear transforms,
which are shown directly on the edges. An example of an SFG for a 3-tap FIR is shown.

Block Diagram Representation

9.3

mult add delay/reg

y(n) = a·x(n) + b·x(n 1) + c·x(n 2), n = {0, 1, …, }

x(n)

a b c

y(n)

 Block diagram of 3-tap FIR filter

+ z 1

z 1 z 1

++

Signal-Flow Graph Representation

9.4

constant multiplication (a)
or register (z 1) on edges

edge

j k

 Network of nodes and edges
– Edges are signal flows or paths with non-negative # of regs

● Linear transforms, multiplications or registers shown on edges
– Nodes represent computations, sources, sinks

● Adds (> 1 input), sources (no input), sinks (no output)

a / z 1

3-tap FIR filter signal-flow graph
z 1 z 1

a b c

y(n)

x(n)

source node: x(n)
sink node: y(n)

Data-Flow Graph Model 175

Slide 9.6

This slide compares three
representations of a first-order IIR
filter. The main difference between
block diagrams and flow graphs lies
in the compact nature of the latter
owing to the use of symbolic
notation for gain and delay
elements. The DFG differs from
the SFG. The DFG does not
include explicit source, sink or
branch nodes, and depicts multiply
operations through dedicated
nodes. The DFG can optionally
show the normalized computation
time of each node in brackets. We

use the DFG notation extensively in Chap. 11 to illustrate the automation of architectural
transformations. A key reason for this choice is that the DFG connectivity information can be
abstracted away in matrices (Slides 9 and 10), which are amenable to transformations. The DFG will
be discussed at length in the rest of the chapter.

9.5

 Transposed SFG functionally equivalent
– Reverse direction of signal flow edges
– Exchange input and output nodes
– Commonly used to reduce critical path in design

z 1 z 1

a b c

y(n)

x(n)

Transposition of a SFG

z 1 z 1

a b c
x(n)

y(n)

Original SFG

Transposed SFG

tcrit = 2tadd + tmult

tcrit = tadd + tmult

Slide 9.5

SFGs are amenable to transposition
simply by reversing the direction of
the signal flow on the branches. An
example of transposition is shown
in the slide for the 3-tap FIR filter.
The transposed SFG replaces the
branch nodes with additions and
vice versa while maintaining the
algorithm functionality. The input
source nodes are exchanged with
the output sink nodes, while the
direction of signal flow on all the
branches is reversed. The
transposed SFG in the slide is
equivalent in functionality to the

original SFG. The main advantage of such a transposition in FIRs is a near constant critical path
independent of the number of filter taps (ignoring the input loading), while the original design has a
critical path that grows linearly with the number of taps.

Different Representations

9.6

z−1a

y(n)x(n)

SFG

x(n) y(n)

a
BD

A

B

(1)

(2)

x(n) y(n)

DFG

 Block Diagram (BD)

– Close to hardware

– Computations, delays shown
through blocks

 Signal-flow graph (SFG)

– Multiplications, delays
shown on edges

– Source, sink, add are nodes

 Data-flow graph (DFG)

– Computations on nodes A, B

– Delays shown on edges

– Computation time in
brackets next to the nodes

D

+

z−1

+

176 Chapter 9

Slide 9.8

This slide summarizes the formal
model of the DFGs. Vectors V, E
and w are one-dimensional lists of
the vertices, edges and edge-weights
respectively. The logic delay (not to
be confused with register delay) is
stored in the vector d where d(vi) is
the logic delay of node vi. The
operations in the graph are
associated with timing delays, which
have to be taken in as input during
architecture optimization in order
to guarantee that the final design
meets timing constraints. The logic
delay can either be in absolute units

(nanoseconds, picoseconds, etc.), or normalized to some reference like a clock period. The latter
normalization is useful during time multiplexing, when operations are executed on pipelined
hardware units. It is important to note that the edges express the precedence relation of the DSP
function. They define the sequence in which the operations must be executed to keep the
functionality unchanged. This edge constraint can either be an inter-iteration constraint, where
w(ei) = 0, or an intra-iteration constraint, where w(ei) > 0. For example, the edge e3 on the graph has a
delay on it indicating inter-iteration constraint. This means that the output of node v3 is taken as
input to node v4 after one iteration of the algorithm.

Data-Flow Graphs

 Graphical representation of signal flow in an algorithm

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3 Z-1 D

Nodes (vi) operations
(+/ /×/÷)

Registers Delay (D)

Node-to-node
communication,

edges (ei)

Iterative input

Iterative output

Registered edge,
edge-weight = # of regs

Edges define
precedence constraints

b/w operations
9.7

+

z 1

Formal Definition of DFGs

A directed DFG is denoted as G = <V,E,d,w>

• V: Set of vertices (nodes) of G. The vertices
represent operations.

• d: Vector of logic delay of vertices. d(v) is the
logic delay of vertex v.

• E: Set of directed edges of G. A directed edge e
from vertex u to vertex v is denoted as e:u v.

•w(e) : Number of sequential delays (registers)
on the edge e, also referred to as the weight of
the edge.

• p:u v: Path starting from vertex u, ending in
vertex v.

• D: Symbol for registers on an edge.
e1: Intra-iteration edge
e3 : Inter-iteration edge

w(e1) = 0, w(e3) = 1

9.8

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1
D

+

Slide 9.7

To begin, let’s look again at data-
flow-graph models, and explain the
terminology that will be used
throughout this chapter. In a DFG,
the operations will be referred to as

nodes and denoted as vi, i  {1, 2, 3,

…}; the edges ei, i  {1, 2, 3, …},
indicate the signal flow in the
graph. The signal flow can be
between the nodes or flow from/to
the input/output signals. For
iterative DSP functions, certain
edges on the flow graph can have
registers on them. These registers
are referred to as delays and are

denoted by D. The number of registers on any edge is referred to as the weight of the edge w(ei).

Data-Flow Graph Model 177

Slide 9.9

The figures in the slide show
example DFGs for the direct and
transposed form of the 3-tap FIR
filter discussed earlier in the
chapter. Nodes associated with
names and computation times
represent the operations in the filter
equation. The registers are
represented by delay elements D
annotated next to their respective
edges. We will see more examples
of DSP data-flow graphs and their
manipulations in Chap. 11, when
we discuss architectural
transformations.

Example: DFGs for a 3-tap FIR Filter

9.9

Direct form

Transposed form

x(n)

v1

y(n)

v2 v3
(2) (2) (2)

v4 (1) (1)v5

D D

x(n)

v1

y(n)

v2 v3
(2) (2) (2)

v4 (1) (1)v5

D D

++

++

Matrix Representation

 DFG matrix A, dimension |V|×|E|

– aij = 1, if edge ej starts from node vi

– aij = −1, if edge ej ends in node vi

– aij = 0, if edge ej neither starts, nor
ends in node vi

w(e1) = 0
w(e2) = 0
w(e3) = 1



1 0 0

0 1 0

1 1 1

0 0 1



















Matrix A for graph G Data-flow graph G

9.10

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, June 2008.

Slide 9.10

There are several ways to implement
the data-flow-graph model using
data structures. Structures like arrays
or linked lists make it easy to
implement and automate the
execution of the architectural
transformation algorithms. We
discuss a simple array/matrix based
representation [2]. The DFG matrix
A is of dimension |V|x|E|, where
the operator |·| is the number of
elements in the vector. The column
ai of the matrix defines the edge ei of
the graph. For edge ei: vk → vj, the
element aki = 1 (source node) and

element aji = −1 (destination node). All other entries in the column ai are set to 0. For example, the
edge e3: v3 → v4 is represented by column a3 = [0 0 1 −1]T in the matrix A.

178 Chapter 9

Slide 9.11

The other three vectors of interest
are the weight vector w, the logic
delay vector d and the pipeline
vector du. The weight and logic
delay vectors remain the same as
described in the DFG model.
Though closely related, the pipeline
vector du is not the same as the
logic-delay vector d. This vector
can be assigned values only after
the operations have been mapped
to hardware units. For example, if a
multiply operation vi is to be
executed on a hardware unit which
has two pipeline stages, then all

edges ei with source node vi will have du(ei)=2. In other words, we characterize the delay of the
operations not in terms of their logic delay, but in terms of their pipeline stages or register delay.
The value of du changes depending on the clock period, since for a shorter clock period the same
operation will have to be mapped onto a hardware unit with an increased number of pipeline stages.
For example, in the graph G the add and multiply operations have logic delays of 200 and 100 units,
respectively, which makes the vector d =[200 200 100 200]T. The add and multiply operations are
mapped onto hardware units with one and two pipeline stages, making the value of du=2 for edges
e1 and e2 and du = 1 for e3.

To provide a user-friendly approach, an automated flow can be used to extract these matrices
and vectors from a Simulink block diagram. We look at construction of Simulink block diagrams in
the next slides.

Simulink DFG Modeling

 Drag-and-drop Simulink flow

 Allows easy modeling

 Predefined libraries contain
DSP macros
– Xilinx XSG
– Synplify DSP

 Simulink goes a step beyond
modeling macros
– Functional simulation of

complex systems possible
– On-the-fly RTL generation

through Synplify DSP

9.12

Synplify DSP block library

Matrix Representation

 Weight vector w

– dimension |E |×|1|

– wj = w(ej), weight of edge ej

 Pipeline vector du

– dimension |E|×|1|

– duj = pipeline depth of source
node v of edge ej

0

0

1

















Vector w Data-flow graph G

0

0

1

















Vector du
9.11

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

Slide 9.12

Simulink allows for easy
construction and verification of
block diagrams using a drag-and-
drop push-button flow. The
Simulink libraries have several
predefined macros like FFT, signal
sources, and math operations etc.,
commonly used in creating DSP
systems. Commercially available
add-ons like Xilinx System
Generator (XSG) and Synplify DSP

used to setup a cycle-accurate,
finite-wordlength DSP system. A
snapshot of the Synplify DSP

library is shown on the right side of the slide. A big advantage of having predefined macros available

(now Synphony HLS) can also be

Data-Flow Graph Model 179

is the ease with which complex systems can be modeled and verified. An example of this will be
shown in the next slide. On-the-fly RTL generation for the block diagrams is also made simple with
the push-button XSG or Synplify DSP tools.

Slide 9.13

the boundaries between the full-
precision Simulink blocks and the
finite-wordlength Synplify DSP
blocks. The input ports quantize
the full-precision input data while
the output port converts the finite-
wordlength data back to integer or
double format. The Simulink
blockset has provisions for AWGN

noise sources, random number generators, etc., as well as discrete eye-diagram plotters required for
simulating the model. The low-pass filter, which limits the transmitted signal bandwidth, is
implemented using a raised-cosine FIR block in Synplify DSP.

Slide 9.14

To summarize, this chapter
describes the graphical
representations for iterative DSP
algorithms. Examples of block
diagrams and signal-flow graphs
were shown. The data-flow graphs
are discussed in some length, since
they are the preferred
representation used in Chap. 11.
The matrix abstraction of DFGs
was briefly mentioned and will be
discussed again later. An example
of system modeling and simulation
in Simulink was introduced near the
end of the chapter for

completeness. More complex system modeling using Simulink will also be addressed later.

DFG Example

9.13

 QAM modulation and demodulation
 Combination of Simulink and Synplify DSP blocks

Summary

 Graphical representations of DSP algorithms
– Block diagrams
– Signal-flow graphs
– Data-flow graphs

 Matrix abstraction of data-flow graph properties
– Useful for modeling architectural transformations

 Simulink DSP modeling
– Construction of block diagrams in Simulink
– Functional simulation, RTL generation
– Data-flow property extraction

9.14

output ports in the model define

This figure shows an example of a
quadrature amplitude modulation
(QAM) design. The model uses
full-precision Simulink blocks as
sources and sinks. The input and

180 Chapter 9

References

 K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley & Sons Inc., 1999.

 R. Nanda, DSP Architecture Optimization in Matlab/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

Slide 10.1

This chapter discusses wordlength
optimization. Emphasis is placed
on automated floating-to-fixed
point conversion. Reduction in the
number of bits without significant
degradation in algorithm
performance is an important step in
hardware implementation of DSP
algorithms. Manual tuning of bits is
often performed by designers. Such
approach is time-consuming and
results in sub-optimal results. This
chapter discusses an automated
optimization approach.

Slide 10.2

Mathematical computations are
generally computed by humans in
decimal radix due to its simplicity.
For the example shown here, if b=
5.6 and =3.1416, we can
compute a with relative ease.
Nevertheless, most of us would
prefer not to compute using binary
numbers, where b=
1’b101.1001100110 and =
1’b11.0010010001 (a prefix of 1’b is
used here to distinguish binary
from decimal numbers). With this
abstraction, many algorithms are
developed without too much

consideration for the binary representation in actual hardware, where something as simple as 0.3+
0.6 can never be computed with full accuracy. As a result, the designer may often find the actual
hardware performance to be different from expected, or that implementations with sufficient
precision incur high hardware costs [1]. The hardware cost of interest depends on the application,
but it is generally a combination of performance, energy, or area for most VLSI and DSP designs.
In this chapter, we discuss some methods of optimizing the number of bits (wordlength) used in
every logic block to avoid excessive hardware cost while meeting the precision requirement. This is
the basis of wordlength optimization.

Number Systems: Algebraic

High level abstraction
Infinite precision
Often easier to understand
Good for theory/algorithm development
Hard to implement

Algebraic Number
e.g. a = + b

10.2

[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley,
2004.

[1]

Wordlength Optimization

Chapter 10

with Cheng C. Wang
University of California, Los Angeles

and Changchun Shi
Independent Researcher, Incline Village, NV

 DOI 10.1007/978-1-4419-9660-2_10, © Springer Science+Business Media New York 2012
181D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

182 Chapter 10

Slide 10.3

Let us first look into how numbers
are represented by computers. A
common binary representation is
floating point, where a binary

fractional bits, and exponent bits.
The sign bit of 0 or 1 represents a
positive or negative number,
respectively. The exponents have an
associated pre-determined bias for
offset adjustment. In the example
here, a bias of 3 is chosen, which
means the exponent bits of 1 b000
to 1 b111 (0 to 7) represent actual
exponent of −3 to 4. The fractional

bits always start with an MSB of 2−1, and the fraction is multiplied by 2Exponent−Bias for the actual
magnitude of the number.

It is apparent here that a floating-point representation is very versatile, and that the full precision
of the fractional bits can often be utilized by adjusting the exponent. However, in the case of
additions and subtractions, the exponents of the operands must be the same. All the operands are
shifted so that their exponents match the largest exponent. This causes precision loss in the
fractional bits (e.g. 1’b100101×2−2 needs to shift to 1’b001001×2 0 if it is being added to a number
with an exponent of 0).

This representation is commonly used in CPUs due to its wide input range, as general-purpose
computers cannot make any assumptions about the dynamic range of its input data. While versatile,
floating point is very expensive to implement in hardware and most modern CPU designs require
dedicated floating-point processors.

Slide 10.4

In most hardware designs, a high-
precision floating-point
implementation is often a luxury.
Hardware requirements such as area
and power consumption, and
operating frequency demand more
economical representation of the
signal. A lower-cost (and higher
hardware performance) alternative
to floating-point arithmetic is fixed
point, where the binary point is
“fixed” for each datapath. The bit-
field is divided into a sign bit, WInt
integer bits, and WFr fractional bits.

Number Systems: Floating Point

A short floating-point number
0 1 1 0 0 0 11 0 1

Frac ExpSign

=

Bias=3

10.3

Value = (1)Sign × Fraction × 2(Exponent – Bias)

IEEE 754 standard Sign Exponent Fraction Bias
Single precision [31:0] 1 [31] 8 [30:23] 23 [22:0] 127

Double precision [63:0] 1 [63] 11 [62:52] 52 [51:00] 1023

Widely used in CPUs
Floating precision
Good for algorithm
study and validation

= (1)0 × (1×2 1 + 1×2 2 + 0×2 3 + 0×2 4 + 1×2 5 + 0×2 6)

× 2 = 3.125(1×22 + 0×21 + 1×20 3)

Number Systems: Fixed Point

Economical implementation
WInt and WFr suitable for predictable range
o-mode (saturation, wrap-around)
q-mode (rounding, truncation)
Economic for implementation
Useful built-in MATLAB functions: e.g. fix,
round, ceil, floor, dec2bin,bin2dec,etc.

2’s complement

0 0 1 1 0 1 00 0 1

WInt WFrSign

=

Unsigned magnitude

0 1 1 0 1 00 0 1

WInt WFr

= 0

Overflow-mode Quant.-mode Overflow-mode Quant.-mode

In MATLAB:
dec2bin(round(pi*2^6),10)
bin2dec(above)*2^-6

10.4

= 0×23 + 0×22 + 1×21 + 0×2 1 + 0×2 2

+ 1×2 3 + 0×2 4 + 0×2 5 + 1×2 6

= 3.140625

 Simulink SynDSP and SysGen

number is divided into a sign bit,

Wordlength Optimization 183

The maximum precision is 2 FrWFrWF , and the dynamic range is limited to 2 IntW . While these limitations
may seem unreasonable for a general-purpose computer (unless very large wordlengths are used), it

requirements are well-defined.

Information regarding the binary point of each fixed-point number is stored separately. For
manual conversions between decimal and binary, make sure the decimal point is taken into account:
a scaling factor of 26 is needed in this example, since the binary point (WFr) is 6 bits. Simulink blocks
such as Synplify DSP and Xilinx System Generator perform the binary-point alignment
automatically for a given binary point.

In the Simulink environment, the designer can also specify overflow and quantization schemes
when a chosen numerical representation has insufficient precision to express a value. It should be
noted, however, that selecting saturation and rounding modes increase hardware usage.

Slide 10.5

Most algorithms are built assuming
infinite (or sufficient) precision,
either from a floating-point or a
long-wordlength fixed-point
system. From a design perspective,
to efficiently convert a floating-
point design to a fixed-point design
requires careful allocation of
wordlengths. Excessive wordlength
leads to slower performance, larger
area and higher power, while
insufficient wordlength introduces
large quantization errors, and can
heavily degrade the precision of the
system or even cause system failure

(such as divide-by-0 due to insufficient WFr in the denominator).

Floating-point to fixed-point conversion is an important task, and a series of questions rises from
this process: How many fractional bits are required to meet my precision requirement? Is it cost-
effective to perform rounding to gain the extra LSB of precision, or is it better to add fractional bits
in the datapath and use truncation? How to determine the dynamic range throughout the system to
allocate sufficient integer bits? Is it cost-effective to perform saturation and potentially use fewer
integer bits, or should I determine the maximum-possible integer bits to avoid adding the saturation
logic? Answering these questions for each design requires numerous iterations, and meeting the
quantization requirements while minimizing wordlengths throughout the system becomes a tedious
task, imposing a large penalty on both man-hour and time-to-market, as each iteration is a change in
the system-level, and system-level specifications ought to be frozen months before chip fabrication.
A systematic tool has therefore been developed to automate this conversion process, and is
discussed in this chapter.

Motivation for Floating-to-Fixed Point Conversion

10.5

Floating-pt
algorithm

Quantization

Fixed-pt
algorithm

OK?
No

Yes

>
1

m
on

th

Idea

Hardware
mapping

OK?
No

Yes

Algorithms designed in
algebraic arithmetic,

verified in floating-point
or very large fixed-point

arithmetic

a = + b

VLSI Implementation in
fixed-point arithmetic

S 0 1 1 0 1 00 0 1

WInt WFrSign

Overflow-mode Quant.-mode

=

Time
consuming
Error
prone

is acceptable for many dedicated-application designs where the input-range and precision

184 Chapter 10

Slide 10.6

In the recent 15 years or so, much
attention was given to addressing
the wordlength optimization
problem. Before the investigation
of analytical approaches, we will
review representative approaches
from earlier efforts.

One past technique for
determining both WInt and WFr is
Fixed-point pRogrammIng DesiGn
Environment (FRIDGE) [2]. To
find WInt, the user is required to
provide a set of test vectors that
resemble worst-case operating
conditions (i.e. cases that cause

maximum wordlengths), or provide enough practical test vectors so the maximum wordlengths can
be estimated with sufficient confidence. For each logic block, WInt is determined by placing a range-
detector at its output to record its maximum value. Since each internal node is only driven by one
logic block, WInt of every internal node can be determined by only one simulation of the test
vector(s). One drawback of this conservative approach is that occasional overflows are not allowed.
However, since overflows tend to have a much greater effect on quantization error than truncation,
attempting to save 1 MSB by allowing overflow may not be a less conservative method. The user
can still manually reduce the optimized wordlength by 1 to observe the effect of overflow through
simulations.

Optimization Techniques: FRIDGE

10.6

Unjustified input WFr
Overly conservative

+ Conservative but good
for avoiding overflow

Pre-assigned WFr at all inputs

Deterministic
propagation

WFr in all internal nodes

Set of test vectors for inputs

Range-detection
through simulation

WInt in all internal nodes

WInt WFr

[2] H. Keding et al., "FRIDGE: A Fixed-point Design and Simulation Environment," in Proc. Design,
Automation and Test in Europe, Feb. 1998, pp. 429–435.

[2]

FRIDGE optimizes WFr using deterministic propagation. The user specifies WFr at every input
node, and then every internal node is assigned a WFr large enough to avoid any further quantization
error. As examples, WFr for an adder is the maximum of its inputs’ WFr’s and WFr of a multiplier is
the sum of its inputs’ WFr’s. This wordlength propagation approach is also overly conservative and
has numerous drawbacks: First, the input WFr is chosen by the user. Because this is unverified by the
optimization tool, choosing different WFr at the input can lead to sub-optimal results. In addition,
not all WFr can be determined through propagation, so some logic blocks (e.g., a feedback multiplier)
require user interaction. Due to the limitations of the FRIDGE technique, it is only recommended
for WInt optimization. Methods of WFr optimization will be discussed next.

Wordlength Optimization 185

Slide 10.7

Another approach for WFr
optimization is through iterative
bit-true simulations by Sung et al. [3,
4]. The fixed-point system can be
modeled using software (e.g., C or
SystemC) or Simulink (SynDSP,
XSG) with the WFr for every node
described as a variable. With each
simulation, the quantization error
of the system (e.g., bit-error rate,
signal-to-noise ratio, mean-squared
error) is evaluated along with the
hardware costs (e.g., area, power,
delay), which is computed as a
function of wordlengths. Since the

relationship between wordlength and quantization is not characterized for the target system,
wordlengths for each iteration are determined in an ad-hoc fashion, and numerous iterations are
often needed to determine the wordlength-critical blocks [5]. Even after these blocks are located,
more iterations are required to determine their suitable wordlength vaiables.

Optimization Techniques: Robust Ad Hoc

10.7

bit-true
sim.

[3] W. Sung and K.-I. Kum, "Simulation-based Word-length Optimization Method for Fixed-point
Digital Signal Processing Systems," IEEE Trans. Sig. Proc., vol. 43, no. 12, pp. 3087-3090,
Dec. 1995.

[4] S. Kim, K.-I. Kum, and W. Sung, "Fixed-Point Optimization Utility for C and C++ Based on Digital
Signal Processing Programs," IEEE Trans. Circuits and Systems-II, vol. 45, no. 11, pp. 1455-1464,
Nov. 1998.

[5] M. Cantin, Y. Savaria, and P. Lavoie, "A Comparison of Automatic Word Length Optimization
Procedures," in Proc. Int. Symp. Circuits and Systems, vol. 2, May 2002, pp. 612-615.

Fix-point system as
black-box

Logic block WLs

System
specifications

Hardware cost

Ad hoc search [3] or procedural [4]

– Long bit-true simulation, large number of iterations [5]

– Impractical for large systems

It is apparent that this kind of iterative search is impractical for large systems. However, two
important concepts are introduced here. First is the concept of bit-true simulations. Although
algorithms are generally developed in software, it is not difficult to construct the same functions in
fixed-point, such MATLAB/Simulink blocks. The benefit of Simulink is the allowance of bit-true
and cycle-true simulations to model actual hardware behavior using functional blocks, and third-
party blocksets such as Xilinx System Generator and Synopsys Synphony HLS. These tools allow
direct mapping into hardware-description language (HDL), which eliminates the error-prone process
of manually converting software language into HDL. Another important optimization concept is
“cost efficiency”, where the goal of each iteration is to minimize the hardware cost (as a function of
wordlengths) while meeting the quantization error requirements. To achieve a wordlength-optimal
design, it is necessary to locate the logic blocks that provide the largest hardware-cost reduction with
the least increase in quantization error. The formulation for wordlength optimization is founded on
this concept, but a non-iterative approach is required to achieve acceptable results within a
reasonable timeframe.

186 Chapter 10

Slide 10.8

The details of the theory behind the
optimization approach are given
extensively in [1]. Here we
summarize key results used in
practice. The framework of the
wordlength optimization problem is
formulated as follows: a hardware
cost function is created as a
function of every wordlength
(actually every group of wordlengths;
more on this later). This function is
to be minimized subject to all
quantization error specifications.
These specifications may be defined
for more than one output, in which

case all j requirements need to be met. Since the optimization focuses on wordlength reduction, a
design that meets the quantization-error requirements is required to start the optimization. Since a
spec-meeting design is not guaranteed from users, a large number is chosen to initialize WFr of every
block in order to make the system practically full-precision. This leads to a feasibility requirement
where a design with wordlength N must meet the quantization error specification, else a more
relaxed specification or a larger N is required. As with most optimization programs, tolerance a is
required for the stopping criteria. A larger a decreases optimization time, but in wordlength
optimization, simulation time far outweighs the actual optimization time. Since WInt and the use of
overflow mode are chosen in one simulation, this optimization is only required to determine
quantization modes and WFr.

Slide 10.9

To avoid iterative simulations, it is
necessary to model the quantization
noise of interest (generally at the
output) as a function of
wordlengths. Based on the original
perturbation theory [6], we observe
that such MSE follows an elegant
formula for the fixed-point
datatypes. In essence, the theory
linearizes a smooth non-linear time-

Problem Formulation: Optimization

10.8

From now on, concentrate on WFr

Minimize hardware cost:
f(WInt,1, WFr,1; WInt,2, WFr,2; …; o-q-modes)

Subject to quantization-error specifications:
Sj (WInt,1, WFr,1; WInt,2, WFr,2; …; o-q-modes) < spec, j

Feasibility:
N Z+ , s.t. Sj (N, N; …; any mode) < spec, j

Stopping criteria:
f < (1 + a) fopt where a > 0.

[1] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley,
2004.

[1]

Perturbation Theory On MSE

Output MSE Specs:

10.9

 = 2(Infinite -precision-output Fixed-point -outpuM E [t)S]

,2

1

2 Fr i

p
WT

i
i

B c ,p pB C p

,

,

1
 datapath

2
fix-pt() , c

,

on2 st ,

Fr i

Fr i

W
i

i
W

i i i

q w

c c c

round-off
1, truncati
0,

o

niq

for a datapath of p, WL

[6] C. Shi and R.W. Brodersen, "A Perturbation Theory on Statistical Quantization Effects in Fixed-
point DSP with Non-stationary Input," in Proc. IEEE Int. Symp. Circuits and Systems, vol. 3,
May 2004, pp. 373-376.

[6]

varying system. The result states
that the MSE error, as defined here,
can be modeled as a function of all
the fractional wordlengths, all the
quantization modes, and all the

Wordlength Optimization 187

constant coefficients to be quantized in the system. The non-negative nature of MSE implies that B
is positive semi-definite and C is non-negative. Both B and C depend on the system architecture and
input statistics, but they can be estimated numerically.

While a large design could originally contain hundreds or thousands independent wordlengths to
be optimized at the beginning, we will see that the design complexity can be drastically reduced by
employing grouping of related blocks to have the same wordlength. In practice, after reducing the
number of independent wordlengths, a complex system may only have a few or few tens of
independent wordlengths. The new matrix B and vector C are directly related to the original B and C
by combining the corresponding terms. In the FFC problem, we often are only interested in
estimating the new B and C that has considerably less number of entries to estimate, which reduces
the number of simulations required.

Many details, including the reason for adopting a MSE-based specification with justifications for
assuming non-correlation based on the perturbation theory, are included in [1].

Slide 10.10

Once the B and C are estimated,
the MSE can be predicted at
different combinations of practical
wordlengths and quantization
modes. This predicted MSE should
match closely to the actual MSE as
long as the underlying assumptions
used in perturbation theory still
apply reasonably. The actual MSE is
estimated by simulating the system
with the corresponding fixed-point
datatypes. This slide demonstrates
the validity of the non-correlation
assumption. Shown here is an
adaptive filter design and an SVD

design where simulations are used to fit the coefficients B and C, which in turn are used to directly
obtain the “computed” MSE. The actual MSE in the x-axis is from simulation of the corresponding
fixed-point data-types. By varying the fixed-point data-types we see that the computed MSE from
the once estimated B and C fits well with the actual MSE across the broad range of MSEs. A more
accurate calculations can be achieved by including correlation, which requires B and C to both be
positive-semi-definite matrices. This increases both simulation requirements and computation
complexity, and it is usually unnecessary.

Actual vs. Computed MSE

10.10

11-tap LMS Adaptive Filter SVD U-Sigma

• More simulations required
• Usually not necessary

, , , ,
, , ,

[] []
j n j n

j n

T T
i T m T i T m T

i T m T

E b EMSE b CB]
j n, ,j nj, ,,] T] TT

,with , and , 2 Fr iWp
iB C and , and p
i

Further improvement can be made considering correlation

188 Chapter 10

Slide 10.11

Having an accurate MSE model is
not sufficient for wordlength
optimization. Recapping from Slide
10.8, the optimization goal is to
minimize the hardware cost (as a
function of wordlength) while
meeting the criteria for MSE.
Therefore hardware cost is
evaluated just as frequently as MSE
cost, and needs to be modeled
accurately. When the design target
is an FPGA, hardware cost
generally refers to area, but for
ASIC designs it is generally power
or performance that defines the

hardware cost.

Traditionally, the only method for area estimation is design mapping or synthesis, but such
method is very time consuming. The Simulink design needs to be first compiled and converted to a
Verilog or VHDL netlist, then the logic is synthesized as look-up-tables (LUTs) and cores for
FPGA, or standard-cells for ASIC. The design is then mapped and checked for routability within the
area constraint. Area information and hardware usage can then be extracted from the mapped
design. This approach is very accurate, for it only estimates the area after the design is routed, but
the entire process can take minutes to hours, and needs to be re-executed with even the slightest
change in the design. These drawbacks limit the utility of design mapping in our optimization, where
fast and flexible estimation is the key – each resource estimation step cannot consume more than a
fraction of a second.

Slide 10.12

To avoid repetitive design mapping
to estimate area, a model-based
resource estimation is developed to
provide area estimations based on
cost functions. Each cost function
returns an estimated area based on
its functionality and design
parameters such as input and
output wordlengths, overflow and
quantization modes, and the
number of inputs. These design
parameters are automatically
extracted from Simulink. The total
area is determined by iteratively
accumulating the individual area

FPGA Hardware Resource Estimation

Design Mapping

Fast and flexible resource estimation is important for FFC!
Tool needs to be orders of magnitude faster

10.11

Accurate

X Sometimes unnecessarily accurate

X Slow (minutes to hours)

X Excessive exposure to low-end tools

X No direct way to estimate subsystem

X Hard to realize for incomplete design

Designs In SysGen/SynDSP

Simulink Compiler

Netlister

Synthesis Tool

VHDL/Core Generation

Mapper

Map Report with Area Info

Model-based Resource Estimation

10.12

Total area accumulated from individual area
functions (register_area, accum_area, etc…)

Individual MATLAB function created for each type of logic
MATLAB function estimates each logic-block area based on
design parameters (input/output WL, o, q, # of inputs, etc…)
Area accumulates for each logic block

[*] by C. Shi and Xilinx Inc. (© Xilinx)

Xilinx area functions are proprietary, but ASIC area functions can
be constructed through synthesis characterizations

[*]

Wordlength Optimization 189

functions. This dramatically speeds up the area-estimation process, as only simple calculations are
required per logic block.

Although the exact area function of each XSG logic block is proprietary to Xilinx, the end-user
may create similar area functions for ASIC designs by characterizing synthesis results, as shown on
the next slide.

Slide 10.13

For FPGA applications, area is the
primary concern, but for ASIC
applications, the cost function can
also be changed to model energy or
circuit performance. Due to the
core usage and LUT structures on
the FPGA, the logic area on FPGA
may differ significantly from ASIC,
where no cores are used and all
logic blocks are synthesized in
standard-cell gates. This means an
area-optimal design for the FGPA
flow is not necessarily area-optimal
for the ASIC flow.

ASIC area functions also depend
on design parameters such as wordlengths and quantization modes, but they are dependent on
circuit performance as well. For example, the area of a carry-ripple adder is roughly linear to its
wordlength, but the area of a carry-look-ahead adder tends to be on the order of O(N∙logN).
Therefore, it is recommended that three data points be gathered for each design parameter: a high-
performance (HP) mode that requires maximum performance, a low-power (LP) mode that requires
minimum area, and a medium performance (MP) mode where the performance criteria is roughly
1/3 to 1/2 between HP and LP. The area functions for each performance mode can be fitted into a
multidimensional function of its design parameters by using a least-squares curve-fit in MATLAB.
Some parameters impact the area more than others. For the adder example, the longer input
wordlength and output wordlength have the largest impact on area. They are roughly linearly
proportional to the area. For the multiplier, the two input wordlengths have the largest impact on
area, and the relationship is roughly quadratic. Rounding can increase area by as much as 30%. For
many users, ASIC power is more important than area, therefore the area function can be used to
model energy-per-operation instead of area.

Alternatively, the user may create area, energy, or delay cost-functions based on standard-cell
documentations to avoid extracting synthesis data for each process technology. From the area or
power information of each standard-cell, some estimation can be modeled. For example, an N-bit
accumulator can be modeled as the sum of N full-adder cells and N registers, a N-bit, M-input mux
can be modeled as N M 2-input muxes, and a N-bit by M-bit multiplier can be modeled as N M
full-adder cells. The gate sizes can be chosen based on performance requirements. Low-power
designs are generally synthesized with gate sizes of 2× (relative to a unit-size gate) or smaller, while
high-performance designs typically require gate sizes of 4× or higher. Using these approximations,

0
10

20
30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

x 10
4

Mult Input WL 1Mult Input WL 2

M
ult

 A
rea

ASIC Area Estimation

ASIC logic block area is a multi-dimensional function of its
input/output WL and speed, constructed based on synthesis
Each WL setting characterized for LP, MP, and HP
Perform curve-fitting to fit data unto a quadratic function

0
10

20
30

4

0

10

20

30

40
0

200

400

600

800

Adder Input WordlengthAdder Output Wordlength

Ad
de

r A
re

a

Adder Area Multiplier Area

Output WL max(Input WL) Input2 WL Input1 WL
10.13

190 Chapter 10

ASIC area can be modeled very efficiently. Although the estimation accuracy is not as good as the
fitting from the synthesis data, it is often sufficient for wordlength optimization purposes.

Slide 10.14

The hardware-cost function can be
modeled as a quadratic function of
WFr, assuming all other design
parameters are fixed. Such
assumption is reasonable given that
WInt and overflow-modes are
determined prior to WFr
optimization. Coefficient matrices
H1 and H2 and vector h3 are fitted
from the area estimations. From the
plot on the left, it is apparent that a
quadratic-fit provides sufficient
accuracy, while a linear-fit is subpar.
Linear fitting is only recommended
when the quadratic estimation takes

too long to complete. Since the area and energy for most ASIC blocks can also be modeled as
quadratic functions of wordlengths, the quadratic hardware-cost function f(W) also fits nicely for
ASIC designs, as shown in the plot on the right.

With adequate models for both MSE cost and hardware cost, we can now proceed with
automated wordlength optimization. The remainder of the chapter will cover both the optimization
flow and usage details of the wordlength optimization tool.

Slide 10.15

Each design imported for
wordlength optimization is
processed with a fixed
methodology. An outline of the
wordlength optimization flow is
shown here. Some key steps such as
integer wordlength analysis,
hardware cost analysis, and MSE
analysis were already introduced in
previous slides. Each step will be
discussed individually in the
following slides. The tool is publicly
available for download [7].

350 400 450 500 550 600 650 700 750 800 850
350

400

450

500

550

600

650

700

750

800

850
g

Quadratic-fit

Linear-fit

Ideal-fit

Actual hardware-cost

Q
ua

dr
at

ic
-fi

th
ar

dw
ar

e-
co

st

0.5 1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3
x 10

4 Check Hardware-cost Fitting Behavior

Quadratic-fit

Linear-fit

Ideal-fit

Analytical Hardware-Cost Function: FPGA

10.14

FPGA ASIC

ASIC area modeled by the same f (W)

Quadratic-fit
Linear-fit
Ideal-fit

Quadratic-fit
Linear-fit
Ideal-fit

Actual hardware-cost

Q
ua

dr
at

ic
-fi

th
ar

dw
ar

e-
co

st

If all design parameters (latency, o, q, etc.) and all WInt’s are
fixed, then the FPGA area is roughly quadratic to WFr

1 2 3 ,1 ,2 wher() e (, ,., ..)T T
Fr FrW Wf W W H W H W Wh

Wordlength Optimization Flow

10.15

Simulink Design in
XSG or SynDSP

Initial Setup (10.16)
WL Analysis &

Range Detection (10.18)

Optimal WInt

WL Connectivity & WL
Grouping (10.19-20)

Create cost-function
for FPGA (10.12)

MSE-specification
Analysis (10.22)

HW Models for ASIC
Estimation (10.13)

Data-fit to Create HW
Cost Function (10.21)

Create Cost-function
for ASIC (10.12)

Data-fit to Create MSE
Cost Function (10.22)

Wordlength Optimization

Optimization Refinement (10.23) Optimal WFr

HW-acceleration /
Parallel Sim.

Under Development

[7] See the book website
for tool download.

Wordlength Optimization 191

Slide 10.16

Before proceeding to the
optimization, an initial setup is
required. A setup block needs to be
added from the optimization
library, and the user should open
the setup block to specify
parameters. The area target of the
design (FPGA, or ASIC of HP,
MP, or LP) should be defined.
Some designs have an initialization
phase during start-up that should
not be used for MSE
characterization, so the user may
then specify the sample range of
outputs to consider: if the design

has 1,000 samples per second, and the simulation runs for 10 seconds, then the range [2,000, 1,0000]
specifies the timeframe between 2 and 10 seconds for MSE characterization. If left at [0, 0], the
characterization starts at 25% of the simulation time. The optimization rules apply to wordlength
grouping and are introduced in Slide 10.20. Default rules of [1.1 3.1 4 8.1] is a good set.

The user needs to specify the wordlength range to use for MSE characterization. For example, [8,
40] specifies a WFr of 40 to be “full-precision”, and each MSE iteration will “minimize” one WFr to 8
to determine its impact on total MSE. Depending on the application, a “full-precision” WFr of 40 is
generally sufficient, though smaller values improve simulation time. A “minimum” WFr of 4 to 8 is
generally sufficient, but designs without high sensitivity to noise can even use minimum WFr of 0. If
multiple simulations are required to fully characterize the design, the user needs to specify the input
vector for each simulation in the parameter box.

The final important step is the placement of specification markers. The tool characterizes MSE
only at the location where Spec Marker is placed, therefore it is generally useful to place markers at
all outputs, and at some important intermediate signals as well. The user should open each Spec
Marker to ensure that a unique number is given for each marker, else an optimization error may
occur.

Initial Setup

10.16

Insert a FFC setup block from the library – see notes
Insert a “Spec Marker” for every output requiring MSE analysis
– Generally every output needs one

Slide 10.17

where the wordlength parameter is
set to “Automatic”, it is necessary to
back-trace to the block-source to
determine the wordlength needed
for the block. For example, a
register should have the same
wordlength as its input, while a 2-

input adder would require a wordlength of max(WInt,input)+1. Sometimes it may be necessary to trace
back several blocks to find a block with a specified wordlength. An illustration of the back-trace
process is shown on the left inset: the wordlength of the mux is set to “Automatic”, so the tool back-
traces to the register, then to the multiplier to gather the wordlength. In cases where back-tracing
reaches the input of a submodule, a hierarchical back-trace is required. In the right inset, the
wordlength from input port “In1” is determined by the mux from the previous logic block.

In the current tool, overflow/saturation and rounding/truncation options are chosen by the user,
and are not yet a part of the optimization flow, and the tool chooses overflow and truncation by
default.

Slide 10.18

During wordlength analysis, a
“Range Detector” is inserted at each
active node automatically. Passive
nodes such as subsystem input and
output ports, along with constant
numbers and non-datapath signals
(e.g. mux selectors, enable/valid
signals) are not assigned a range-
detector.

Based on the FRIDGE
algorithm in Slide 10.6, the
wordlength analyzer determines WInt
based on a single iteration of the
provided test-vector(s). Therefore, it
is important that the user provides
input test vectors that cover the

entire input range. Failure to provide adequate information can result in the removal of bits.

Wordlength Reader

10.17

Captures the WL information of each block
– If user specifies WL, store the value
– If no specified WL, back-trace the source block until a specified

WL is found
If source is the input-port of a block, find source of its parent

Wordlength Analyzer

10.18

Determines the integer WL of every block
– Inserts a “Range Detector” at every active/non-constant node
– Each detector stores signal range and other statistical info
– Runs 1 simulation, unless specified multiple test vectors

Xilinx SynDSP
Range Detectors

192 Chapter 10

The wordlength reader gathers WInt
and WFr, along with
overflow/saturation and
rounding/truncation information
from every block. The simplest case
is when the wordlength of the block
is specified by the user. Its
information can be obtained from
the block parameters. In cases

Wordlength Optimization 193

its maximum value, whichever is greater. If the calculated WInt is greater than the original WInt, then
the original WInt is used. Signed outputs have WInt of at least 1, and WInt of constants are determined
based on their values.

Due to the optimization scheme, the wordlength analyzer does not correct overflow errors that
occur in the original design. As a result, the user must ensure that the design behaves as expected
before using this tool.

Slide 10.19

With WInt determined by the
wordlength analyzer, the remaining
effort aims to optimize WFr in the
shortest time possible. Since the
number of iterations for optimizing
WFr is proportional to the number
of wordlengths, reducing the
number of wordlengths is attractive
for speeding up the optimization.
The first step is to determine the
wordlength-passive blocks, which
are blocks that do not have physical
area, such as input and output ports
of submodules in the design, and
can be viewed as wordlength feed-

throughs.

These connectivity optimizations essentially flatten the design so every wordlength only defines
an actual hardware block. As a result, the number of wordlengths is reduced. Further reduction is
obtained by wordlength grouping.

Wordlength Connectivity

Connected

10.19

Connect wordlength information through WL-passive blocks
– Back-trace until a WL-active block is reached
– Essentially “flattens” the design hierarchy
– First step toward reducing # of independent WLs

Connected

The range-detector block gathers information such as the mean, variance, and the maximum value
at each node. The number of integer bits is determined by the 4th standard-deviation of the value, or

Slide 10.20

The purpose of the wordlength
grouping function is to locate
wordlength dependencies between
blocks and group the related blocks
together under one wordlength
variable. Deterministic wordlength
grouping includes blocks whose
wordlength is fixed, such as mux-
select, enable, reset, address,
comparator and constant signals.
These wordlengths are marked as
fixed, as shaded in yellow. Some
blocks such as shift registers, up-
and down-samplers do not result in
a change in wordlength. The

wordlengths of these blocks can be grouped with their drivers, as shaded in gray.

Another method of grouping wordlengths is by using a set of heuristic wordlength rules.
Grouping these inputs into the same wordlength can further reduce simulation time, though at a
small cost of design optimality. For example, in the case of a multiplexer, allowing each data input of
a mux to have its own wordlength group may result in a slightly more optimal design, but it can
generally be assumed that all data inputs to a multiplexer have the same wordlength. The same case
applies to adders and subtractors. Grouping these inputs into the same wordlength can further reduce
simulation complexity, albeit at a small cost to design optimality. These heuristic wordlength
groupings are defined as eight general types of “rules” for the optimization tool, with each rule type
subdivided to more specific rules. Currently there are rules 1 through 8.1. These rules are defined in
the tool’s documentation [9], and can be selectively enabled in the initialization block.

Slide 10.21

To accurately estimate the hardware
cost of the current design, it is
necessary to first build a cost
function based on all existing blocks
in the design. This function-builder
tool will build a cost function that
returns the total area as the sum of
the areas from each block. The area-
estimation function discussed on
Slide 10.12 is used here. The
resource-estimation tool examines
every block in the design and first
obtains its input and output
wordlength information, which
could be fixed numbers or

wordlength variables. Each block is then assigned a resource-estimation function to estimate its area.

Resource-Estimation Function, Analyze HW Cost

10.21

Slide
10.12,
10.14

Creates a function call for each block

HW cost is analyzed as a function of WL
– One or two WL group is toggled with other groups fixed

Quadratic iterations for small # of WLs
Linear iterations for large # of WLs

Wordlength Grouping

10.20

Deterministic
– Fixed WL (mux select, enable, reset, address, constant, etc)
– Same WL as driver (register, shift reg, up/down-sampler, etc)

Heuristic (WL rules)
– Multi-input blocks have the same input WL (adder, mux, etc)
– Tradeoff between design optimality and simulation complexity

Fixed

Heuristic
Deterministic

194 Chapter 10

Wordlength Optimization 195

As shown in the slide, each type of block has its own resource-estimation function, which returns the
hardware cost of that block based on its input and output wordlength information, along with
properties such as number of inputs, latency, and others.

The constructed resource estimation function is then evaluated iteratively by the hardware-cost
analyzer. Since each wordlength group defines different logic blocks, they each contribute differently
towards the total area. It is therefore necessary to iterate through different wordlength combinations
to determine the sensitivity of total hardware cost to each wordlength group. Quadratic number of
iterations is usually recommended for a more accurate curve-fitting of the cost function (Slide 10.14).
In each iteration only two wordlength variables are changed while the other variables remain constant
(usually fixed at minimum or maximum wordlength). However, if there are too many wordlength
groups (e.g. more than 100), a less accurate linear fit will be used to save time. In this instance only
one variable will be changed per iteration. There are continuous research interests to extend the
hardware cost function to include power estimation and speed requirement. Currently these are not
fully supported in our FFC tool, but can be implemented without structural change to the
optimization flow.

Slide 10.22

The MSE-specification analysis is
described in Slides 10.9 and 10.10.
While the full B matrix and C
vector are needed to be estimated
to fully solve the FFC problem, this
would imply an order of O(N2)
number of simulations for each test
vector, which sometimes could still
be too slow to do. However, it is
often possible to drastically reduce
the number of simulations needed
by exploring design-specific
simplifications. One such example
is if we are only interested in
rounding mode along the datapath.

Ignoring the quantization of constant coefficients for now, the resulting problem is only related to
the C vector, thus only O(N) simulations are needed for each test vector. For smaller designs and
short test vectors, the analysis is completed within minutes, but larger designs may take hours or
even days to complete this process, though no intermediate user interaction is required. Fortunately,
all simulations are independent of each other, thus many runs can be performed in parallel. Parallel-
simulation support is currently being implemented. FPGA-based acceleration is a much faster
approach, but requires mapping the full-precision design to an FPGA first, and masking off some of
the fractional bits to 0 to imitate a shorter-wordlength design. The masking process must be
performed by programming registers to avoid reforming synthesis with each change in wordlength.

After MSE-analysis, both MSE and hardware cost functions are available. The user is then
prompted to enter an MSE requirement for every Spec Marker in the design. It is advised to have a
more stringent MSE for control signals and important datapaths. The details of choosing MSE

Analyze Specifications, Analyze Optimization

10.22

Computes MSE’s sensitivity to each WL group
– First simulate with all WL at maximum precision
– WL of each group is reduced individually

Once MSE function and HW cost function are computed, user
may enter the MSE requirement
– Specify 1 MSE for each Spec Marker

Optimization algorithm summary
1) Find the minimum WFr for a given group (others high)
2) Based on all the minimum WFr’s, increase all WL to meet spec
3) Temporarily decrease each WFr separately by one bit, only

keep the one with greatest HW reduction and still meet spec
4) Repeat 3) until WFr cannot be reduced anymore

Slide 10.9, 10.10

requirements are in [2]. A good general starting point is 10−6 for datapath and 10−10 for control
signals.

The MSE requirements are first examined for feasibility in the “floating point” system, where
every wordlength variable is set to its maximum value. Once the requirements are considered
feasible, the wordlength tool employs the following algorithm for wordlength reduction:

While keeping all other wordlengths at the maximum value, each wordlength group is reduced
individually to find the minimum-possible wordlength while still meeting the MSE requirements.
Each wordlength group is then assigned its minimum-possible wordlength which is likely to be an
infeasible solution that does not meet the MSE requirements. In order to find a feasible solution all
wordlengths are increased uniformly. Finally, the wordlength for each group is reduced temporarily,
and the group that results in the largest hardware reduction while meeting the MSE requirements is
chosen. This step is then iterated until no further hardware reduction is feasible, and the
wordlength-optimal solution is created. There are likely other more efficient algorithms to explore
the simple objective function and constraint function, but since we now have the analytical format
of the optimization problem, any reasonable optimization procedure will yield the near-optimal
point.

Slide 10.23

The MSE requirement may require
a few refinements before arriving at
a satisfactory design, but one key
advantage of this wordlength
optimization tool is its ability to
rapidly refine designs without
restarting the characterization and
simulation process, because both
the hardware and MSE cost are
modeled as simple functions. In
fact, it is now practical to easily
explore the tradeoff between
hardware cost and MSE
performance.

Furthermore, given an
optimized design for the specified MSE requirement, the user is then given the opportunity to
simulate and examine the design for suitability. If unsatisfied with the result, a new MSE
requirement can be entered, and a design optimized for the new MSE is created immediately. This
step is still important as the final verification stage of the design to ensure full compliance with all
original system specifications.

A simple 1/sqrt() design is shown as an example. Note that both WInt and WFr are reduced, and a
large saving of FPGA slices is achieved through wordlength reduction.

Optimization Refinement and Result

The result is then examined by user for suitability
– Re-optimize if necessary, only takes seconds

(16,12)

(12,9)

(16,11)(16,11)

(14,9)

(24,16)
(24,16)

(24,16)
(16,11)

(8,4)

(13,8)
(11, 6)

(10,6)
(11,7)

(10,7)

(13,11)

(8,7) (8,7)Legend:
red = WL optimal 409 slices
black = fixed WL 877 slices

10.23

Example: 1/sqrt() on an FPGA

About 50% area reduction

196 Chapter 10

Wordlength Optimization 197

Slide 10.24

Since the ASIC area estimation is
characterized for adders, multipliers,
and registers, a pipelined 6-tap FIR
filter is used as a design example [8].
The design is optimized for an MSE
of 10−6, and area savings from the
optimized design is more than 60 %
compared to all-16-bit design. The
entire optimization flow for this
FIR design is under 1 minute. For
more complex non-linear systems
characterization may take overnight,
but no intermediate user interaction
is required.

ASIC Example: FIR Filter

Original Design Area = 48916 m2

Optimized for MSE = 10 6 Area = 18356 m2

10.24
[8] C.C. Wang, Design and Optimization of Low-power Logic, M.S. Thesis, UCLA, 2009. (Appendix A)

[8]

Example: Jitter Compensation Filter

10.25

0

5

10

15

20

25

30

35

40

S
N

R
(d

B
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (us)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

35

40

Time (us)

S
N

R
(d

B
)

29.4 dB 30.8 dB

HPF LPF + Mult

Derivative

[9]

[9] Z. Towfic, S.-K. Ting, A. Sayed, "Sampling Clock Jitter Estimation and Compensation in ADC
Circuits," in Proc. IEEE Int. Symp. Circuits and Systems, June 2010, pp. 829-832.

Slide 10.25

The design of a state-of-the art jitter
compensation unit using high-
frequency training signal injection
[9] is shown. Its main blocks include
high-pass and low-pass filters,
multipliers, and derivative
computations. The designer spent
many iterations in finding a suitable
wordlength, but is still unable to
reach a final SNR of 30 dB, as
shown in lower left. This design
consumes ~14k LUTs on a Virtex-5
FPGA. Using the wordlength
optimization tool, we finalized on a
MSE of 4.5×10–9 after a few simple

refinements. Shown in lower right, the optimized design is able to achieve a final SNR greater than 30
dB while consuming only 9.6k LUTs, resulting in a 32% savings in area and superior performance.

Slide 10.26

The final detailed example is a high-
performance reconfigurable digital
front end for cellular phones. Due
to the GHz-range operational
frequency required by the
transceiver, a high-precision design
simply cannot meet the
performance requirement. The
authors had to explore the possible
architectural transformations and
wordlength optimization to make
the performance feasible. Since
high-performance designs often
synthesize to parallel logic
architectures (e.g. carry look-ahead

adder), the wordlength-optimized design results in 40% savings in area.

We now explore the tradeoff between MSE and hardware cost, which in this design directly
translates to power, area, and timing feasibility. Since this design has two outputs (sine and cosine
channels), the MSE at each output can be adjusted independently. The adjacent-channel-power-ratio

of the wordlength-optimal design is shown in upper-right. Further wordlength reduction from
higher MSE (7×10−3) violates ACPR requirement (lower-right).

Slide 10.27

Wordlength optimization is an
important step in algorithm
verification. Reduction in the
number of bits can have
considerable effect on the chip
power and area and it is the first
step in algorithm implementation.
Manual simulation-based tuning is
time consuming and infeasible for
large systems, which necessitates
automated approach. Wordlength
reduction can be formulated as
optimization problem where
hardware cost (typically area or
power) is minimized subject to MSE

error due to quantization. Integer bits are determined based on the dynamic range of input data by
doing node profiling to determine the signal range at each node. Fractional bits can be automatically
determined by using perturbation-based approach. The approach is based on comparison of outputs

Tradeoff: MSE vs. Hardware-Cost

10.26

10
-6

10
-4

10
-2

10
-6

10
-4

10
-2

2

3

4

5

6

7

MSEsin
MSE

cos

H
W

C
os

t(
kL

U
Ts

)

WL-Optimal Design

Acceptable MSE
ACPR (MSE=6×10-3)

46
dB

ACPR (MSE=7×10-3)

Summary

Wordlength minimization is important in the implementation of
fixed-point systems in order to reduce area and power
– Integer wordlength can be simply found by using range

detection, based on input data
– Fractional wordlengths require more elaborate perturbation

theory to minimize hardware cost subject to MSE error due to
quantization

Design-specific information can be used
– Wordlength grouping (e.g. in multiplexers)
– Hierarchical optimization (with fixed input/output WLs)
– WL optimizer for recursive systems takes longer due to the

time require for algorithm convergence
FPGA/ASIC hardware resource estimation results are used to
minimize WLs for FPGA/ASIC implementations

10.27

198 Chapter 10

(ACPR) requirement of 46 dB must be met, which leads to a minimum MSE of 6×10−3. The ACPR

Wordlength Optimization 199

from “floating-point-like” (the number of bits is sufficiently large that the model can be treated as
floating point) and fixed-point designs. The difference due to quantization is subject to user-defined
MSE specification. The perturbation-based approach makes use of wordlength groupings and design
hierarchy to simplify optimization process. Cost functions for FPGA and ASIC hardware targets are
evaluated to support both hardware flows. After determining wordlengths, the next step is
architectural optimization.

We encourage readers to download the tool from the book website and try it on their designs.
Due to constant updates in Xilinx and Synopsys blockset, some version-compatibility issues may
occur, though we aim to provide updates with every major blockset release (support for Synopsys
Synphony blockset is recently added). It is open-source, so feel free to modify it and make
suggestions, but please do not use it for commercial purposes without our permission.

References

 C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California,
Berkeley, 2004.

 H. Keding et al., "FRIDGE: A Fixed-point Design and Simulation Environment," in Proc.
Design, Automation and Test in Europe, Feb. 1998, pp. 429–435.

 W. Sung and K.-I. Kum, "Simulation-based Word-length Optimization Method for Fixed-
point Digital Signal Processing Systems," IEEE Trans. Sig. Proc., vol. 43, no. 12, pp. 3087-
3090, Dec. 1995.

 S. Kim, K.-I. Kum, and W. Sung, "Fixed-Point Optimization Utility for C and C++ Based on
Digital Signal Processing Programs," IEEE Trans. Circuits and Systems-II, vol. 45, no. 11, pp.
1455-1464, Nov. 1998.

 M. Cantin, Y. Savaria, and P. Lavoie, "A Comparison of Automatic Word Length
Optimization Procedures," in Proc. Int. Symp. Circuits and Systems, vol. 2, May 2002, pp. 612-
615.

 C. Shi and R.W. Brodersen, "A Perturbation Theory on Statistical Quantization Effects in
Fixed-point DSP with Non-stationary Input," in Proc. IEEE Int. Symp. Circuits and Systems, vol.
3, May 2004, pp. 373-376.

 See the book supplement website for tool download.
Also see:
http://bwrc.eecs.berkeley.edu/people/grad_students/ccshi/research/FFC/documentation.htm

 C.C. Wang, Design and Optimization of Low-power Logic, M.S. Thesis, UCLA, 2009.
(Appendix A)

 Z. Towfic, S.-K. Ting, A.H. Sayed, "Sampling Clock Jitter Estimation and Compensation in
ADC Circuits," in Proc. IEEE Int. Symp. Circuits and Systems, June 2010, pp. 829-832.

Slide 11.1

Automation of the architectural
transformations introduced in
Chap. 3 is discussed here. The
reader will gain insight into how
data-flow graphs are mathematically
modeled as matrices and how
transformations such as retiming,
pipelining, parallelism and time-
multiplexing are implemented at
this level of abstraction. Reasonable
understanding of algorithms used
for automation can prove to be
very useful, especially for designers
working with large designs where
manual optimization can become

tedious. Although a detailed discussion on algorithm complexity is beyond the scope of this book,
some of the main metrics are optimality (in a sense of algorithmic accuracy) and time-complexity of
the algorithms. In general, a tradeoff exists between the two and this will be discussed in the
following slides.

Slide 11.2

We will use DFG model to
implement architectural techniques.
Architecture transformations are
used when the original DFG fails to
meet the system specifications or
optimization target. For example, a
recursive DFG may not be able to
meet the target timing constraints
of the design. In such a scenario,
the objective is to structurally alter
the DFG to bring it closer to the
desired specifications without
altering the functionality. The
techniques discussed in this chapter
will include retiming, pipelining,

parallelism and time multiplexing. Benefits of these transformations in the energy-area-delay space
have been discussed in Chap. 3. Certain transformations like pipelining and parallelism may alter
the datapath by inserting additional latency, in which case designer should set upper bounds on the
additional latency.

DFG Realizations

Data-flow graphs can be realized with several architectures
– Flow-graph transformations
– Change structure of graph without changing functionality
– Observe transformations in energy-area-delay space

DFG Transformations
– Retiming
– Pipelining
– Time-multiplexing/folding
– Parallelism

Choice of the architecture
– Dictated by system specifications

11.2

with Rashmi Nanda
University of California, Los Angeles

Architectural Optimization

Chapter 11

 DOI 10.1007/978-1-4419-9660-2_11, © Springer Science+Business Media New York 2012
201D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

202 Chapter 11

Slide 11.3

Retiming, introduced by Leiserson
and Saxe in [1], has become one of
the most powerful techniques to
obtain higher speed or lower power
architectures without trading off
significant area. They showed that it
was possible to move registers
across a circuit without changing
the input-output relationship of a
DFG. They developed algorithms,
which could guide the movement
of registers in a manner as to
shorten the critical path of the
graph. One key benefit of the
technique is in its ability to obtain

an optimal solution with algorithms that have polynomial-time complexity. As a result, most logic
synthesis tools and a few high-level synthesis tools have adopted this technique [2].

Slide 11.4

If output y(n) of a node is
delayed by k units to obtain
y(n−k), then y(n−k) can also be
obtained by delaying the inputs by
k units.
y(n − k) = x1(n) + x2(n) = z(n) =
x1(n k) + x2(n k) (11.1)

If all inputs to a node are delayed
by at least k units, then the node
output y(n) can be obtained by
removing k delays from all the

inputs and delaying the output by k units.

 y(n) = x1(n k) + x2(n – k 2) = g(n k) where g(n) = x1(n) + x2(n 2) (11.2)

This concept is illustrated in the figures where the green arrows represent the retiming moves.
Instead of delaying w(n) to obtain w(n−1), the retimed flow-graph delays the inputs a·y(n 1) and
b·y(n 3) by one unit to compute v(n)=w(n 1).

Retiming

Register movement in the flow graph without functional change

w(n) = a·y(n 1) + b·y(n 3)
y(n) = x(n) + w(n 1)
y(n) = x(n) + a·y(n 2) + b·y(n 4)

x(n)

y(n)

D

3D

D

w(n 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D*Retiming
moves

RetimedOriginal

×

+

×

+

×

+

×

+

v(n) = a·y(n 2) + b·y(n 4)
y(n) = x(n) + v(n)
y(n) = x(n) + a·y(n 2) + b·y(n 4)

11.4

Retiming

Registers in a flow graph can be moved across edges

Movement should not alter DFG functionality

Benefits
– Higher speed
– Lower power through VDD scaling
– Not very significant area increase
– Efficient automation using polynomial-time CAD algorithms [2]

11.3

[1] C. Leiserson and J. Saxe, "Optimizing synchronous circuitry using retiming,“ Algorithmica, vol. 2,
no. 3, pp. 211–216, 1991.

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

[1]

Retiming moves come from two
basic results for iterative DSP
algorithms:

Architectural Optimization 203

Slide 11.5

The biggest benefit of register
movement in a flow graph is the
possible reduction in the critical
path. The maximum operating
frequency is constrained by the
worst-case delay between two
registers. However, the original
flow graph may have an
asymmetrical distribution of logic
between registers. By optimally
placing registers in the DFG, it is
possible to balance the logic depth
between the registers to shorten the
critical path, thus maximizing the
throughput of the design. Of

course, a balanced logic depth may not be possible to obtain in all cases due to the structure of the
DFG itself and the restriction on the valid retiming moves. An example of a reduction in the critical-
path delay is shown on the slide, where the critical path is highlighted in red. The numbers in
brackets next to the nodes are the logic delays of the operations. In the original graph the critical
path spans two operations (an add and a multiply). After retiming, shown in the retimed graph, the
critical path is restricted to only one multiply operation.

Slide 11.6

A natural extension to maximizing
throughput lies in minimizing
power by exploiting the additional
combinational slack in the design.
This slack can be leveraged for
power reduction through voltage
scaling. The reduction in power is
quadratic with a decrease in voltage;
even a small combinational slack
can result in significant power
reduction. Retiming at a higher level
of abstraction (DFG level) can also
lead to less aggressive gate sizing at
the logic synthesis level. In other
words, the slack achieved through

retiming makes it easier to achieve the timing constraints using smaller gates. Having smaller gates
results in less switching capacitance, which is beneficial from both a power and area perspective.

Retiming for Higher Throughput

Register movement can shorten the critical path of the circuit

x(n)

y(n)

D

3D

D

w(n 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D

×

+

×

+

×

+

×

+

RetimedOriginal

(1)(1)

(2)* (2)

(1)(1)

(2)* (2)

*Numbers in
brackets are
combinational
delay of the nodes

Critical path reduced from 3 time units to 2 time units

Critical path

11.5

Retiming for Lower Power

x(n)

y(n)

D

3D

D

w(n 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D

×

+

×

+

×

+

×

+

RetimedOriginal

(1)(1)

(2) (2)

(1)(1)

(2) (2)

Exploit additional combinational slack for voltage scaling

Timing slack = 0 Timing slack = 1
Desired throughput: 1/3

11.6

204 Chapter 11

Slide 11.7

Cut-sets can be used to retime a
graph manually. The graph must be
divided into two completely
disconnected halves through a cut.
To check whether a cut is valid,
remove all of the edges lying on the
cut from the graph, and check if the
resulting two graphs G1 and G2 are
disjointed. A valid retiming step is
to remove K (K>0) delays from
each edge that connects G1 to G2,
then add K delays to each edge that
connects from G2 to G1 or vice
versa. The retiming move is valid
only if none of the edges have

negative delays after the move is complete. Hence, there is an upper limit on the value of K which is
set by the minimum weight of the edges connecting the two sets.

In this example, a cut through the graph splits the DFG into disjointed halves G1 and G2. Since
the two edges e3 and e4 from G1 to G2 have 0 delays on them, retiming can only remove delays from
edges going from G2 to G1 and add delays on the edges in the opposite direction. The maximum
value of K is restricted to 1 because the edge e1 has only 1 delay on it. The retimed DFG is shown in
figure (b).

Slide 11.8

Now that we have looked at how to
manually retime a graph, we discuss
how retiming is automated using
the model proposed in [2]. The
model assigns a retiming weight r(vi)
to every node vi in the DFG. After
any retiming move, an edge e: v1
v2 may either gain or lose delays.
This gain or loss is computed by
taking the difference between the
retiming weights of its destination
and source nodes, in this case r(v2)
−r(v1). If this difference is positive,
then retiming adds delays to the
edge and if negative then delays are

removed from the edge. The number of delays added or subtracted is equal to abs(r(v2)−r(v1)). The
new edge-weight wr (e) is given by w(e) +r(v2)−r(v1), where w(e) is the edge-weight in the original
graph.

Retiming Cut-sets

Manual retiming approach
– Make cut-sets which divide the DFG in two disconnected halves
– Add K delays to each edge from G1 to G2

– Remove K delays from each edge from G2 to G1

x(n)

y(n)

D

3D

D

a b x(n)

y(n)

2D

D

a b

D

××

+

×

+

×

+

G1

G2

Cut-set

G1

G2

Cut-set

e1

e2

e3 e4

e1

e2

e3 e4

K = 1
(a) (b)

D

+

11.7

Mathematical Modeling

Assign retiming weight r(v) to every node in the DFG
Define edge-weight w(e) = number of registers on the edge
Retiming changes w(e) into wr(e), the retimed weight

x(n)

y(n)

D

3D

D

a b4

1

3

2

e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3) w(e1) = 1
w(e2) = 1
w(e3) = 3
w(e4) = 0
w(e5) = 0

wr (e) = w(e) + r (v) – r (u)

Retiming equation

11.8

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

[2]

Architectural Optimization 205

Slide 11.9

It can be shown that the properties
of the retiming equation hold for
paths in the same way as for the
edges. For example, let p: v1 v4 be
a path through edges e1(v1 v2),
e2(v2 v3) and e3(v3 v4). The total
number of delays on the path p
after retiming will be given by the
sum of the retimed edge weights e1,
e2 and e3.
wr(p) = wr(e1) + wr(e2) + wr(e3)
wr(p) = w(e1) + r(v2) − r(v1) + w(e2) +
r(v3) − r(v2) + w(e3) + r(v4) − r(v3)
wr(p) = w(p) + r(v4) – r(v1)

Effectively, the number of delays on the path after retiming is given by the original path weight plus
the difference between the retiming weights of the destination and source nodes of the path. Hence,
we see that the retiming equation holds for path weights as well.

Slide 11.10

The retiming equation relates the
retiming weights of the nodes to
the number of delays lost or gained
by a path or edge. Therefore, the
retiming weights can capture
register movements across the
flow-graph. A more important
question is ascertaining whether the
register movement is valid. In other
words, given a set of values for the
retiming weights, how do we know
that the retiming moves they
represent are valid and do not
violate the DFG functionality? The
main constraint is imposed by the

non-negativity requirement of the retimed edge-weights. This would imply a feasibility constraint of
the form w(e)+ r(v2)−r(v1)≥0 for every edge. Also, the retimed edge weights would have to be
integers, which impose integer constraints on the edge weights.

Path Retiming

Number of registers inserted in a path p: v1 v2 after retiming
– Given by r(v1) r(v2)
– If r(v1) r(v2) > 0, registers inserted in the path
– If r(v1) r(v2) < 0, registers removed from the path

x(n)

y(n)

D

3D

D

a b x(n)

y(n)

2D

D

a b

D

4

1

3

2

4

1

3

2

D

wr(p) = w(p) + r(4) r(1) = 4 1 (one register removed from path p)

r(1) = 1r(2) = 1

r(4) = 0

r(3) = 0

Path p:1 4 Path p:1 4

11.9

Mathematical Modeling

Feasible retiming solution for r(vi) must ensure
– Non-negative edge weights wr(e)
– Integer values of r(v) and wr(e)

x(n)

y(n)

D

3D

D

a b4

1

3

2

e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3) wr(e1) = w(e1) + r(2) – r(1) 0
wr(e2) = w(e2) + r(3) – r(2) 0
wr(e3) = w(e3) + r(4) – r(2) 0
wr(e4) = w(e4) + r(1) – r(3) 0
wr(e5) = w(e5) + r(1) – r(4) 0

Feasibility constraints

Integer solutions to feasibility
constraints constitute a

retiming solution

11.10

206 Chapter 11

Slide 11.11

We now describe the problem
formulation for retiming a design so
that the critical path is less than or
equal to a user-specified period T.
The formulation should be such
that it is possible to identify all
paths with logic delay >T. These
paths are critical and must have at
least one register added to them.
The maximum logic delay between
all pairs of nodes (u, v) is called
Ld(u, v). If no path exists between
two nodes, then the value of
Ld(u, v) is set to −1. In the same
way, W(u, v) captures the minimum

number of registers over all paths between the nodes (u, v), W(u, v) is set to zero, if no path exists
between two nodes. Since we are dealing with directed DFGs, the value of Ld(u, v) is not necessarily
equal to the value of Ld(v, u), so both these values must be computed separately. The same holds for
W(u, v) and W(v, u).

Slide 11.12

This slide shows the algorithm
proposed by Leiserson and Saxe in
[1]. The algorithm scans the value
of Ld(u, v) between all pairs of
nodes in the graph. For nodes with
Ld(u, v)>T, an inequality of the
form in (11.3) is defined,
W(u, v) + r(v) – r(u) ≥ 1. (11.3)

W(u, v) + r(v) – r(u) ≥ 0. (11.4)

A solution to the two sets of
inequality constraints will generate a retiming solution for r(vi) which ensures the non-negativity of
the edge weights and that the critical paths in the DFG have at least one register. The inequalities
can be solved using polynomial-time algorithms like Bellman-Ford and Floyd-Warshall described in
[2]. The overall time-complexity of this approach is bounded by O(|V|3) in the worst case.
Iteratively repeating this algorithm and setting smaller values of T each time can solve the critical-
path minimization problem. The algorithm fails to find a solution if T is set to a value smaller than
the minimum possible critical path for the graph.

Retiming with Timing Constraints

Find retiming solution which guarantees critical path in DFG T
– Paths with logic delay > T must have at least one register

Define
– W(u,v): minimum number of registers over all paths b/w

nodes u and v, min {w(p) | p : u v}
– If no path exists between the vertices, then W(u,v) = 0
– Ld(u,v): maximum logic delay over all paths b/w nodes u and v
– If no path exists between vertices u and v then Ld(u,v) = 1

Constraints
– Non-negative weights for all edges, Wr(vi , vj) 0, i,j
– Look for nodes (u,v) with Ld(u,v) > T
– Define in-equality constraint Wr(u,v) 1 for such nodes

11.11

Leiserson-Saxe Algorithm

Algorithm for feasible retiming solution with timing constraints

Use Bellman-Ford algorithm to solve the inequalities Ik [2]

A lg orithm {r(vi), flag} Re time(G,d,T)
k 1
for u 1 to |V |

for v 1 to |V | do
if Ld(u,v) T then
DefineinequalityIk :W (u,v)  r(v)  r(u) 1

else if Ld(u,v) 1 then
DefineinequalityIk :W (u,v)  r(v)  r(u) 0

endif
k k 1

endfor
endfor

11.12

[1] C. Leiserson and J.
Saxe, "Optimizing
synchronous circuitry
using retiming,"
Algorithmica,
vol. 2, no. 3,
pp. 211-216, 1991.

[2] R. Nanda, DSP
Architecture
Optimization in
MATLAB/Simulink
Environment, M.S.
Thesis, University of
California, Los
Angeles, 2008.

[1]

For nodes with −1 < Ld(u, v) ≤ T,
an equality of the form shown
below is defined,

Architectural Optimization 207

Slide 11.13

This slide shows an example run of
the retiming algorithm. The timing
constraint dictates that the
maximum logic depth between
registers should be less than or
equal to 2 time units. The logic
delay of nodes 1 and 2 are 1, while
that of nodes 3 and 4 are 2. The
first step is to compute the values
of Ld(u, v) and W(u, v) for all pairs
of nodes in the graph. From the
graph, it is clear that the only non-
critical path is the one with edge e1.
All other paths and edges have logic
delay greater than 2. Hence the

value of Ld(u, v) is greater than 2 for all pairs of nodes except node-pair (1, 2). Accordingly, the
inequalities are formulated to ensure the feasibility and timing constraints.

Slide 11.14

We now take a look at pipelining
which can be treated as a special
case of retiming. Retiming re-
positions the registers in a flow-
graph in order to reduce the critical
path. However, to strictly maintain
functional equivalence with the
original graph, no additional latency
can be inserted in the paths from
the input to the output. Our
previous discussion did not look at
such a constraint. Additional
inequalities will need to be
generated to constrain the retiming
weights so that no additional

latency is inserted. In certain situations the system can tolerate additional latency. For such cases, we
can add extra registers in paths from the input to the output and use them to further reduce the
critical path. This extension to retiming is called pipelining.

Pipelining

Special case of retiming
– Small functional change with additional I/O latency
– Insert K delays at cut-sets, all cut-set edges uni-directional
– Exploits additional latency to minimize critical path

y(n)

x(n)

× × × ×

++ +

DDDD

a b c d

DDD

Pipelining cut-set

K = 1
I/O latency = 1 inserted

tcritical,new = tmult tcritical,old = tadd + tmult

11.14

G1

G2

Retiming with Timing Constraints

Algorithm for feasible retiming solution with timing constraints

x(n)

y(n)

D

3D

D

a b4

1

3

2 (1)(1)

(2) (2)
e2

e3

e4 e5

e1

W(1,2) + r(2) – r(1) 0, W(1,2) = 1
W(2,1) + r(1) – r(2) 1, W(2,1) = 1
W(4,2) + r(2) – r(4) 1, W(4,2) = 1
W(2,4) + r(4) – r(2) 1, W(2,4) = 3
W(4,1) + r(1) – r(4) 1, W(4,1) = 0
W(1,4) + r(4) – r(1) 1, W(1,4) = 4
W(3,1) + r(1) – r(3) 1, W(3,1) = 0
W(1,3) + r(3) – r(1) 1, W(1,3) = 2
W(4,3) + r(3) – r(4) 1, W(4,3) = 2
W(3,4) + r(4) – r(3) 1, W(3,4) = 4
W(2,3) + r(3) – r(2) 1, W(2,3) = 1
W(3,2) + r(2) – r(3) 1, W(3,2) = 1

Feasibility + Timing constraints
T = 2 time units

Integer solutions to these constraints constitute a retiming solution
11.13

A simple example of a pipelining cut-set is shown for a transposed FIR filter. The cut divides the
graph into two groups G1 and G2. If K additional delays are added on the edges from G1 to G2, then
K delays will have to be removed from edges going from G2 to G1. The interesting thing to note here
is that no edges exist in the direction from G2 to G1. This graph is completely feed-forward in the
direction from G1 to G2. Hence, there is no upper bound on the value of K. This special
unconstrained cut-set is called a pipelining cut-set. With each added delay on the edges from G1 to
G2 we add extra latency to output y(n). The upper bound on the value of K comes from the

208 Chapter 11

Slide 11.15

To model the pipelining algorithm,
we first take a look at how the
additional I/O latency insertion can
be captured. We showed earlier that
the retiming equation holds for
paths in the DFG. That is, any
additional registers inserted in a
path p can be computed by the
difference between r(v) and r(u),
where v and u are the destination
and source nodes of the path. So
the additional I/O latency inserted
in a DFG can be computed by
identifying all the paths from the
input to the output, then

computing the difference in the retiming weights of the corresponding output and input nodes. For
example, the DFG in the slide has 4 input nodes 1, 2, 3 and 4. All four nodes have a path to the
single output node 7. The I/O latency inserted in each of these I/O paths can be restricted to 0 if a
new set of retiming constraints is formulated:

r(7) − r(1) ≤ 0 (11.5)

r(7) − r(2) ≤ 0 (11.6)

r(7) − r(3) ≤ 0 (11.7)

r(7) − r(4) ≤ 0 (11.8)

On the other hand, if the system allows up to K units of additional latency, then the RHS of
(11.5), (11.6), (11.7), and (11.8) can be replaced with K. The feasibility and timing constraints for

K > 0 for the latency
=1 in the slide).

Modeling Pipelining

Same model as retiming with timing constraints
Additional constraints to limit the added I/O latency
– Latency inserted b/w input node v1 and output node v2 is

given by difference between retiming weights, r(v2) r(v1)

y(n)

x(n)

× × × ×

++ +
DDD

a b c d

e1 e2 e3 e4

e5 e6

(2) (2) (2) (2)

(1) (1) (1)

Wr(1,5) = W(1,5) + r(5) – r(1) 1
Wr(1,6) = W(1,6) + r(6) – r(1) 1

Wr(4,7) = W(4,7) + r(7) – r(4) 1

Feasibility + Timing constraints

r(7) – r(4) 1
r(7) – r(3) 1
r(7) – r(2) 1
r(7) – r(1) 1

tcritical,desired = 2 time units
Max additional I/0 latency = 1

. . .

*Numbers in brackets are
combinational delay of the nodes

11.15

pipelining remain the same as that of retiming. The only difference is that
constraints (K

maximum input-to-output (I/O) latency that can be tolerated by the FIR filter. The value of K is set
to 1 in the slide. The additional registers inserted reduce the critical path from tadd + tmult to tmult.

Architectural Optimization 209

Slide 11.16

In the previous discussion it was
shown that purely feed-forward
sections of the flow graph make
pipelining cut-sets possible. This
raises an interesting question about
recursive flow graphs when such
cuts are not possible. Recursive
flow graphs contain loops, which
limit the maximum achievable
critical path in the graph. It can be
shown that no additional registers
can be inserted in loops in a graph.

path starting and ending at the same
node. For example, a path p going

through nodes v1 v2 v3 v1 constitutes a loop. The number of registers inserted on this path
after retiming is given by r(v1)− r(v1)=0. This concept is further illustrated in the slide, where it is
shown that if extra registers are inserted in a loop, the functionality would be altered. Therefore, in a
recursive loop, the best retiming can do is position the existing registers to balance the logic depth
between the registers. Fundamentally, the loops represent throughput bottlenecks in the design.

Slide 11.17

Now that we have seen how loops
affect the minimum critical path
achievable in a design, it is useful to
know in advance what this
minimum value can be. This aids in
setting of the parameter T in the
retiming algorithm. The term
iteration bound was defined to
compute the maximum throughput
achievable in a DFG. This is a
theoretical value achieved only if all
of the registers in a loop can be
positioned to balance the logic
depth between them. The iteration
bound will be determined by the

slowest loop in the DFG, given by (11.9).
Iteration bound = maxall loops{combinational delay of loop/number of register in loop} (11.9)

The example in the slide shows a DFG with two loops, L1 and L2. L1 has 4 units of logic delay (logic
delay of nodes 1, 2 and 4) and 4 registers in it. This makes the maximum speed of the loop equal to
1 unit time if all logic can be balanced between the available registers. However, L2 is slower owing
to the smaller number of registers in it. This sets the iteration bound to 2 time units.

Recursive-Loop Bottlenecks

Pipelining loops not possible
– Number of registers in the loops must remain fixed

x(n)

y1(n)

D
w1(n)

b

a×+

×

x(n)

y2(n)

D
w (n)

b

a×+

×

D

y1(n) = b·w1(n)
w(n) = a·(y1(n 1) + x(n))
y1(n) = b·a·y1(n 1) + b·a·x(n)

Changing the number of delays in a loop alters functionality

y1(n) y2(n)

y2(n) = b·w (n)
w(n) = a·(y2(n 2) + x(n 1))
y2(n) = b·a·y2(n 2) + b·a·x(n 1)

11.16

Iteration Bound = Max{Loop Bound}

Loops limit the maximum achievable throughput
– Achieved when registers in a loop balance the logic delay

Loop L1: 1 2 4
Loop L2: 2 3 1

Iteration bound = 2 time units

x(n)

y(n)

D

3D

D

a b4

1

3

2
(1)

(1)

(2) (2)

L1
L2

Loop bound L1 = = 14
4

Loop bound L2 = = 24
2

11.17

all loops

1 Combinational delay of loop
max

Number of registers in loopmaxf





 
 

Loop bound

Consider a loop L of a DFG to be a

210 Chapter 11

Slide 11.18

The maximum throughput set by
the iteration bound is difficult to
obtain unless the granularity of the
DFG is very fine. At a granularity
level of operations (like adders and
multipliers), registers can be placed
only on edges between the
operations. Hence, a second
limitation on the critical path will be
imposed by the maximum logic-
block delay among all operations. A
more optimized approach is to
allow registers to cut through the
logic within the operations. In
effect, we are reducing the

granularity level of the graph from logic blocks to logic gates such as AND, OR, NOT, etc. In this
scenario the registers have much more freedom to balance the logic between them. This approach is
known as fine-graine pipelining, and is commonly used in logic synthesis tools where retiming is
done after the gate-level netlist has been synthesized. The slide shows an example to illustrate the
advantage of fine-grain pipelining. This fine level of granularity comes at the expense of tool
complexity, since the number of logic cells in a design far outnumbers the number of logic blocks.

Slide 11.19

We now take a look at the next
architectural technique, which
targets either higher throughput or
lower power architectures. Like
retiming, parallelism is aimed at
speeding up a design to gain
combinational slack and then using
this slack to either increase the
throughput or lower the supply
voltage. Parallelism, however, is
much more effective than retiming.
It creates several instances of the
original graph to take multiple
inputs and deliver multiple outputs
in parallel. The tradeoff is an

increase in area in order to accommodate multiple instances of the design. For iterative DSP
algorithms, parallelism can be implemented through the unfolding transformation. Given a DFG
with input x(n) and output y(n), the parallel DFG computes the values of y(Pm), y(Pm +1), y(Pm +2),
…, y(Pm +P −1) given the inputs x(Pm), x(Pm +1), x(Pm +2), …, x(Pm +P 1), where P is the
required degree of parallelism. The parallel outputs are recombined using a selection multiplexer.

Fine-Grain Pipelining

Achieving the iteration bound
– Requires finer level of granularity of operations

Gate-level granularity can be achieved during logic synthesis

tcritical = tmult

tcritical = tmult /2 + tadd

x(n)
D

a

y(n)

D

D

c

×+

+

x(n)
D

a

y(n)

D

D

c

+

+

11.18

Parallelism

Unfolding of the operations in a flow-graph
– Parallelizes the flow-graph
– Higher speed, lower power via VDD scaling
– Larger area

Describes multiple iterations of the DFG signal flow
– Symbolize the multiple number of iterations by P
– Unfolded DFG constructed from the following P equations

– DFG takes the inputs x(Pm), x(Pm + 1), …, x(Pm + P 1)
– Outputs are y(Pm), y(Pm + 1), …, y(Pm + P 1)

yi = y(Pm + i), i {0, 1, …, P – 1}

11.19

[2] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons
Inc., 1999.

[2]

Architectural Optimization 211

Slide 11.20

The unfolded DFG has P copies of
the nodes and edges in the original
DFG. Every node u in the DFG
will have P copies u0, u1,…, uP−1 in
the unfolded DFG. If input x(n) is
utilized by node u in the original
DFG, then the node uj takes in the
input x(Pm + j) in the unfolded
graph. Similarly, if the output y(n) is
tapped from the node u in the
original DFG, then outputs
y(Pm + j) are tapped from nodes uj,
where j takes values from

{0, 1, 2, …, P − 1}.
Interconnecting edges without

Slide 11.21

Now that we have looked at the
mechanics of unfolding, a
discussion on its limitations is also
of significance. As discussed earlier,
the maximum throughput attained
by a flow graph is limited by its
iteration bound. It is interesting to
note that the exact same limit holds
true for unfolded graphs as well. In
fact, it can be shown that unfolding
cannot change the iteration bound
of a DFG at all. This stems from
the fact that even after unfolding
the graph, the logic depth in the
loops increases by P times while the

number of registers in them remains constant. Therefore, the throughput per iteration is still limited
by the value of the iteration bound. This concept is illustrated in the slide for the second-order IIR
filter example discussed previously.

Unfolding

To construct P unfolded DFG
– Draw P copies of all the nodes in the original DFG
– The P input nodes take in values x(Pm), …, x(Pm + P 1)
– Connect the nodes based on precedence constraints of DFG
– Each delay in unfolded DFG is P-slow
– Tap outputs x(Pm), …, x(Pm + P 1) from the P output nodes

x(n)

y(n)

D
a

y(2m)
y(2m + 1)

D* = 2D

Original Unfolded with P = 2

u u1v

u2

v1

v2 a

ax(2m)

x(2m + 1)y(2m) = a·y(2m 1) + x(2m)
y(2m + 1) = a·y(2m) + x(2m + 1)

11.20

Unfolding for Constant Throughput

Unfolding recursive flow-graphs
– Maximum attainable throughput limited by iteration bound
– Unfolding does not help if iteration bound already achieved

x(n) a

y(n)

D
×+

y(2m)
y(2m + 1)

D* = 2D

a

ax(2m)

x(2m + 1)

+

+

×

×

y(n) = x(n) + a·y(n 1)

y(2m) = x(2m) + a·y(2m 1)

y(2m + 1) = x(2m + 1) + a·y(2m)

tcritical = tadd + tmult

tcritical = 2·tadd + 2·tmult
tcritical/iter = tcritical /2

Throughput remains the same

11.21

the unfolded graph. For interconnecting edges between u and v with D registers on it, there will be P
corresponding edges between uj and vk where k = (i + D) modulo P. Each of these edges has (i + D)
modulo-P registers on them. An example of a 2-unfolded DFG is shown in the figure for a second-
order IIR filter.

registers (intra-iteration edges) between nodes u and j will map to P edges between uj and vj in

212 Chapter 11

Slide 11.22

For feed-forward structures where
pipeline registers can be inserted,
there is no iteration bound as a
throughput bottleneck. In this case,
unfolding combined with pipelining
can be used to increase the
throughput significantly (P times in
some cases). This is illustrated for
the 2-unfolded FIR filters in the
slide. The additional pipeline
registers in the unfolded DFG are
retimed (dashed green lines indicate
retiming moves) to reduce the
critical path. The tradeoff for this
transformation lies in the additional

area and I/O latency. The throughput increase by P can be used to improve the energy efficiency by
an order of magnitude, as will be shown later in the chapter.

Slide 11.23

The final transformation discussed
in this chapter will be scheduling.
The data-flow graph can be treated
as a sequence of operations, which
have to be executed in a specified
order to maintain correct
functionality. In previous
transformations, a single iteration
of the DFG was executed per clock
cycle. In the case of unfolding, P
iterations are executed every clock
cycle; the clock period can be
slowed by a factor of P to maintain
original throughput. We have seen
how area can be traded-off for

higher speed with unfolding. The opposite approach is to exploit the slack available in designs,
which can operate faster than required. In this case, the iteration period Titer of the DFG
(1/throughput) is divided into several smaller clock cycles. The operations of the DFG are spread
across these clock cycles while adhering to their original sequence of execution. The benefit is that
the same level of operations executing in mutually exclusive clock cycles can share a single hardware
resource. This leads to an area reduction since a single unit can now support multiple operations.

Unfolding FIR Systems for Higher Throughput

Throughput can be increased with effective pipelining

y(n)

x(n)

d c b a

++ +
DDD

y(2m 1)

x(2m + 1)

d c b a

++ +
D

y(2m 2)

d c b a

++ +
DD

x(2m)

y(n) = a·x(n) + b·x(n 1)
+ c·x(n 2) + d·x(n 3)

y(2m 2) = a·x(2m 2) + b·x(2m 3)
+ c·x(2m 4) + d·x(2m 5)

y(2m 1) = a·x(2m 1) + b·x(2m 1)
+ c·x(2m 3) + d·x(2m 4)

tcritical = tadd + tmult

tcritical = tadd + tmult

tcritical/iter = tcritical /2

Throughput
doubles!!

D

D

*

* Register
retiming moves

11.22

Introduction to Scheduling

Dictionary definition
– The coordination of multiple related tasks into a time sequence
– To solve the problem of satisfying time and resource

constraints between a number of tasks

Data-flow-graph scheduling
– Data-flow-graph iteration

Execute all operations in a sequence
Sequence defined by the signal flow in the graph

– One iteration has a finite time of execution Titer

– Constraints on Titer given by throughput requirement
– If required Titer is long

Titer can be split into several smaller clock cycles
Operations can be executed in these cycles
Operations executing in different cycles can share hardware

11.23

Architectural Optimization 213

Slide 11.24

An example of scheduling is
illustrated in this slide. The same
DFG is implemented in two ways.
On the left, each operation has a
dedicated hardware unit for
execution, and all operations
execute simultaneously in a single
cycle. A total of 3 multipliers and 1
adder will be required for this
implementation. On the right, the
iteration period Titer is split into
three clock cycles, with v1 and v2
executing in the first cycle, while v3
and v4 execute in the second and
third cycle, respectively. Note that

both cases maintain the same sequence of operations. Due to the mutually exclusive time of
execution, v2 and v4 can share a multiplier unit. This brings the hardware count to 2 multipliers and 1
adder, which is one multiplier less compared to the DFG on the left. The number of clock cycles
per iteration period will be referred to as N throughout the chapter. It is easy to see that larger value
of N allows more operations to execute in different cycles, which leads to more area reduction. The
logic depth of the hardware resources will determine minimum clock period and consequently the
limit on the value of N.

Slide 11.25

We can formally define the
scheduling problem as follows:

 For a given iteration period,
set the value of clock period and N
= Titer/clock period.

 Assign a cycle for execution
p(vi), to each operation in the flow
graph. The sequence of execution
should maintain the DFG
functionality.

 Assign a hardware unit Hi
for executing the operation in its
respective clock cycle. One
hardware unit cannot execute more

than one operation in the same cycle.
 The assignment should ensure that the operations are executed in N cycles, and the objective

must be to reduce the area of the hardware units required.

The entire process can be visualized as a table with N rows representing N clock cycles. Each
column of the table represents a hardware unit. If operation v executes in cycle j using hardware Hi,

Area-Throughput Tradeoff

Scheduling provides a means to tradeoff throughput for area
– If Titer = Tclk all operations required dedicated hardware units
– If Titer = N·Tclk , N > 1, operations can share hardware units

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer = Tclk

Tclk

No hw
sharing

3 multipliers and 1 adder 2 multipliers and 1 adder

×

+

×

×

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

11.24

Schedule Assignment

Available: hardware units H and N clock cycles for execution
– For each operation, schedule table records

Assignment of hardware unit for execution, H(vi)
Assignment of time of execution, p(vi)

Tclk

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

Schedule Add 1 Mult 1 Mult 2
Cycle 1 x v1 v2

Cycle 2 v3 x x
Cycle 3 x x v4

Schedule Table

H(v1) = Multiplier 1
H(v2) = Multiplier 2
H(v3) = Adder 1
H(v4) = Multiplier 1

p(v1) = 1
p(v2) = 1
p(v3) = 2
p(v4) = 3

11.25

214 Chapter 11

then the jth element of the ith v. An example of such an assignment is shown in the
slide for N =3. An “x” entry in a column represents that the resource is free in that cycle.

Slide 11.26

This slide re-iterates the problem
statement and defines an objective
function of the scheduling phase.
The area function is a weighted sum
of the number of available
hardware units. The weights depend
on the relative area of the resource
units. This scheduling problem is
NP-hard in general. This means
that finding the optimum schedule
assignment, which minimizes area
while satisfying the timing and
precedence constraints, could take
an infinitely long time in the worst
case. Procedures like integer linear

programming (ILP) have demonstrated that such an optimum can be reached regardless, with no
bounds on CPU runtime. We will take a brief look at ILP modeling later. For now, we focus on
simple heuristics for generating schedules, which although not fully optimal, are commonly used.

Slide 11.27

One such heuristic is known as “As
Soon As Possible scheduling”, also
referred to as ASAP scheduling [4].
As its name suggests, this algorithm
executes the operations of the DFG
as soon as its operands are available
and a free execution resource can
be found. The user must initially
specify the available hardware units.
The practice is to start with a very
small number of resources in the
first pass of the algorithm and then
increase this number if a schedule
cannot be found. The algorithm
looks for a “ready” node u in the

list of unscheduled nodes. A “ready” operation is defined as a node whose operands are immediately
available for use. Input nodes are always “ready” since incoming data is assumed to be available at all
times. All other operations are ready only when their preceding operations have been completed.
Next, the scheduler looks for the first possible clock cycle Smin where the node u can execute. If a
hardware unit H i is available in any cycle S ≥Smin, then the operation is scheduled in unit Hi at cycle

Problem Statement

Given a data-flow graph G, Titer and Tclk

– Find a schedule assignment H(vi), p(vi) which:
Executes all DFG operations in N clock cycles
Sequence of execution should not alter DFG functionality
Minimizes the area A of the hardware resources required for execution

Number of adders: Na
Number of multipliers: Nm

A = 1·Areaadder + 2·Areamultiplier

v1 , v2 , v3 executed
in N = 3 cycles

Schedule Add 1 Mult 1 Mult 2
Cycle 1 x v1 v2

Cycle 2 v3 x x
Cycle 3 x x v4

min A = Na·Areaadder + Nm·Areamultiplier

11.26

ASAP: As Soon As Possible Scheduling

Schedules the operations top-down from input to output nodes
Available hardware resource units specified by the user
Operation scheduled in the first available cycle

A lgorithm {H(vi), p(vi)} ASAP (G)

u vi // vi is any "ready" operation, operation is "ready"
// if all its preceding operations have been scheduled

qi V operations immediately preceding u
ei execution of qi ends in this cycle
Smin first available cycle for execution of u max{ei 1}
S first available cycle Smin with

available hardware resource Hi

H(u) Hi

p(u) S

11.27

[4] C. Tseng and D.P. Siewiorek, "Automated synthesis of datapaths in digital systems," IEEE Trans.
Computer-Aided Design, vol. CAD-5, no. 3, pp. 379-395, July 1986.

[4]

 column equals

Architectural Optimization 215

S. If no such cycle can be found, then scheduling is infeasible and the hardware resource count
should be increased for the next pass of ASAP execution. This continues until all operations have
been assigned an execution cycle S and a hardware unit H.

Slide 11.28

An example of ASAP scheduling is
shown for the graph G in the slide.
The first “ready” operation is the
input node v1, which is followed by
the node v2. The node v1 uses
multiplier M1 in cycle 1, which
forces v2 to execute in cycle 2. Once
v1 and v2 are executed, node v3 is
“ready” and is assigned to cycle 3
and adder unit A1 for execution.
Following this, the operation v4
becomes ready and is scheduled in
cycle 4 and assigned to unit M1. If
N<4, scheduling would become
infeasible with a single multiplier.

The scheduler would have to increase the hardware count for a second pass to ensure feasibility.

Slide 11.29

This slide shows the scheduling
table and the resultant sequence of
operation execution for the ASAP
scheduling steps shown in Slide
11.28.

ASAP Example

Assumptions:
– Titer = 4·Tclk , N = 4
– Multiplier pipeline: 1
– Adder pipeline: 1
– Available hardware

1 multiplier M1

1 adder A1

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G

Sched. u q e Smin S p(u) H(u)
Step 1 v1 null 0 1 1 1 M1

Step 2 v2 null 0 1 2 2 M1

Step 3 v3 v1 , v2 1 3 3 3 A1

Step 4 v4 v3 2 4 4 4 M1

ASAP scheduling steps

11.28

ASAP Example

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G x1(n) x2(n)

y(n)

v1

v2

v3

v4

Tclk

Titer

Final ASAP schedule

Schedule M1 A1

Cycle 1 v1 x
Cycle 2 v x
Cycle 3 x v
Cycle 4 v x

Schedule Table
M1

M1

A1

M1

Schedules “ready” operations in the first cycle with available
resource

11.29

2

3

4

216 Chapter 11

Slide 11.30

“As Late As Possible” or ALAP
scheduling is another popular
heuristic similar to ASAP, the only
difference is its definition of a
“ready” operation. ALAP starts
scheduling from the output nodes
and moves along the graph towards
the input nodes. Operations are
considered “ready” if all its
succeeding operations have been
executed. Although heuristics like
ASAP and ALAP are simple to
implement, the quality of the
generated schedules are very poor
compared to optimal solutions

from other formal methods like Integer Linear Programming (ILP). The main reason is that the
selection of “ready” operations does not take the DFG’s critical path into account. Timing-critical
operations, if scheduled later, tend to delay the execution of a number of other operations. When
the execution delays become infeasible, then the scheduler has to add extra resources to be able to
meet the timing constraints. To overcome this drawback, an algorithm called “list scheduling” was
proposed in [5]. This scheduler selects the next operation to be scheduled from a list, in which
operations are ranked in descending order of timing criticality.

Slide 11.31

The LIST scheduling process is
illustrated in this slide. The first
step is to sort the operations based
on descending their precedence
height PH. The precedence height of
a node v is defined as the longest
combinational path, which starts at
v. In the figure, the longest path
from node v3 goes through v3 → v5
→ v6. The length of the path is
defined by the sum of the logic
delays, which is 2tmult +tadd =3 in
this case, making PH (v3)=3. Once
all operations have been sorted, the
procedure is similar to ASAP

scheduling. The second step is to schedule operations in descending order of PH. The scheduling is
done in the listed order in the first available cycle with a free hardware resource. The table in the
slide shows different scheduling orders for ASAP and LIST. Note how LIST scheduling prefers to
schedule node v3 first, since it is the most timing critical (PH(v3)=3). We will see the effect of this
ordering on the final result in the next two slides.

Scheduling Algorithms

More heuristics
– Heuristics vary in their selection of next operation to scheduled
– This selection strongly determines the quality of the schedule

– ALAP: As Late As Possible scheduling
Similar to ASAP except operations scheduled from output to input
Operation “ready” if all its succeeding operations scheduled

– ASAP, ALAP do not give preference to timing-critical operations
Can result in timing violations for fixed set of resources
More resource/area required to meet the Titer timing constraint

– List scheduling
Selects the next operation to be scheduled from a list
The list orders the operations according to timing criticality

11.30

List Scheduling

Assign precedence height PH(vi) to each operation
– PH(vi) = length of longest combinational path rooted by vi

– Schedule operations in descending order of precedence height
x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6× Possible scheduling sequence
ASAP v1 v2 v3 v4 v5 v6

LIST v3 v2 v5 v1 v4 v6

PH(v1) = T(v4) = 1
PH(v2) = T(v5) + T(v6) = 3
PH(v3) = T(v5) + T(v6) = 3
PH(v5) = T(v6) = 2
PH(v4) = 0, PH(v6) = 0

tadd = 1, tmult = 2

11.31

[5] S. Davidson et. al., "Some experiments in local microcode compaction for horizontal machines,"
IEEE Trans. Computers, vol. C-30, no. 7, pp. 460-477, July 1981.

[5]

Architectural Optimization 217

Slide 11.32

adder and multiplier units have
pipeline depth of 1 and 2,
respectively. The clock period is set
to the delay of a single adder unit.
Hardware resources initially
available are 2 multipliers and 1
adder. It is clear that scheduling v3
later forces it to execute in cycle 2,
which delays the execution of v5 and
v6. Consequently, we face timing
violations at the end when trying to
schedule v6. In such a scenario the

scheduler will add an extra multiplier to the available resource set and re-start the process.

Slide 11.33

For the same example, the LIST
scheduler performs better. Node v3
is scheduled at the start of the
scheduling process and assigned to
cycle 1 for execution. Node v1 is
delayed to execute in cycle 3, but
this does not cause any timing
violations. On the other hand,
scheduling v3 first allows v5 and v6 to
execute in the third and fourth
cycle, respectively, making the
schedule feasible. Notice that M1 is
active for both operations v1 and v6
in cycle 4. While v6 uses the first
pipeline stage of M1, v1 uses the

second. Other scheduling heuristics include force-directed scheduling, details of which are not
discussed here.

Comparing Scheduling Heuristics: ASAP

x1(n) x2(n)

y1(n)

v1 v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1 Timing

violation

Titer

ASAP schedule infeasible,
more resources required to
satisfy timing

Titer = 5·Tclk , N = 5

Pipeline depth
Multiplier: 2
Adder: 1

Available hardware
2 mult: M1, M2
1 add: A1

11.32

Comparing Scheduling Heuristics: LIST

LIST scheduling feasible,
with 1 adder and 2 multipliers
in 5 time steps

Titer = 5·Tclk , N = 5

Pipeline depth
Multiplier: 2
Adder: 1

Available hardware
2 mult: M1, M2
1 add: A1

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5
M1

A1

M2

v3
M1

A1

v6
M1

Titer

11.33

This slide shows ASAP scheduling
example considering pipeline depth
of the operators for N = 5. The

218 Chapter 11

Slide 11.34

In the previous examples we looked
at scheduling graphs without any
memory elements on the edges.
Edge e: v1 v2 with R delays
requires an appropriate number of
registers in the scheduled graph to
satisfy inter-iteration constraints.

iteration when there are R registers
on the edge e. This relaxes the
timing constraints on the execution
of v2 once operation v1 is completed.
An example of this scenario is
shown in the next slide. The

number of registers to be inserted on the edge in the scheduled graph is given by the folding
equations to be discussed later in the chapter.

Slide 11.35

In a scheduled graph, a single
iteration is split into N time steps.
A registered edge, e: v1 v2, in the
original flow graph with R delays
implies a delay of R iterations
between the execution of v1 and v2.
In the scheduled graph, this delay
translates to N·R time steps. The
slide shows an example of
scheduling with inter-iteration edge
constraints. The original DFG on
the left has one edge (e: v5 v6)
with a single delay element D on it.
In the scheduled graph (for N = 4)
on the right, we see that operations

v5 and v6 start execution in the third time step. However, the output of v5 must go to the input of v6
only after N=4 time steps. This is ensured by inserting 4 register delays on this edge in the
scheduled graph. The exact number of delays to be inserted on the scheduled edges can change; this
occurs if the nodes were scheduled in different time steps or if the source node is pipelined and
takes more than one time step to complete execution. The exact equations for the number of delay
elements are derived in the next section.

Inter-Iteration Edges: Timing Constraints

Edge e : v1 v2 with zero delay forces precedence constraints
– Result of operation v1 is input to operation v2 in an iteration
– Execution of v1 must precede the execution of v2

Edge e : v1 v2 with delays represent relaxed timing constraints
– If R delays present on edge e
– Output of v1 in I th iteration is input to v2 in (I + R)th iteration
– v1 not constrained to execute before v2 in the I th iteration

Delay insertion after scheduling
– Use folding equations to compute the number of

delays/registers to be inserted on the edges after scheduling

11.34

Inter-Iteration Edges

x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6×
D

Inter-iteration edge
e : v4 v5

v5 is not constrained to
execute after v4 in an iteration

Insert registers on edge e
for correct operation

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1

Titer

11.35

The output of v1 in the I th iteration
is the input to v2 in the (I + R)th

Architectural Optimization 219

Slide 11.36

Folding equations ensure that
precedence constraints and
functionality of the original DSP
algorithm are maintained in the
scheduled architecture. The
objective is to ensure that
operations get executed on the
hardware units at the correct time
instance. This mainly requires that
operands are routed to their
respective resource units and that a
correct number of registers are
inserted on the edges of the
scheduled graph. An example of a
folded edge is shown in the slide.

The original DFG edge shown on the left is mapped to the edge shown on the right in a scheduled
implementation. Operation v1 is executed on H1, which has two pipeline stages. Operation v2 is
executed on hardware H2. To ensure correct timing behavior, the register delay f on the scheduled
graph must be computed correctly so the inter-iteration constraint on the original edge is satisfied.
The number of registers f is computed using folding equations that are discussed next.

Slide 11.37

The number of registers f on a
folded edge depends on three
parameters: the delay w on the edge
in the original DFG, the pipeline
depth d(v) of the source node and
the relative difference between the
times of execution of the source
and destination nodes in the
scheduled graph. We saw earlier
that a delayed edge in the original
flow-graph is equivalent to a delay
of one iteration which translates to
N time steps in the scheduled
graph. Therefore a factor of N·w
appears in the folding equation for f

shown at the bottom of the slide. If the source node v1 is scheduled to execute in time step p(v1),
while v2 executes in time step p(v2), then the difference between the two also contributes to
additional delay, as shown in the scheduled edge on the right. Hence, we see the term p(v2)−p(v1) in
the equation. Finally, pipeline registers d(v1) in the hardware unit that executes the source node
introduce extra registers on the scheduled edge. Hence d(v1) is subtracted from N·w +p(v2)−p(v1) to
give the final folding equation. In the scheduled edge on the right, we see that the source node v1
takes two time steps to complete execution and has two pipeline registers (d(v1)= 2). Also, the

Folding

Maintain precedence constraints and functionality of DFG
– Route signals to hardware units at the correct time instances
– Insert the correct number of registers on edges after scheduling

v1 mapped to unit H1
v2 mapped to unit H2

2 pipeline stages in H1
1 pipeline stage in H2

v1 v2
w

Original Edge Scheduled Edge

H1 H2

f
v11 v12 v2

d(v1) = 2
2 pipeline stages

d(v2) = 1
1 pipeline stage

Compute value of f which maintains precedence

11.36

Folding Equation

Number of registers on edges after folding depends on
– Original number of delays w, pipeline depth of source node
– Relative time difference between execution of v1 and v2

v1 v2
w

H1 H2

f
v11 v12 v2

M1

A1

p(v1) = 1

p(v2) = 3

d(v1) = 2

N clock cycles per iteration
w delays N·w delay in schedule

f = N·w – d(v1) + p(v2) – p(v1)

Legend d: delay, p: schedule

11.37

220 Chapter 11

difference between p(v1) and p(v2) is 2 for this edge, bringing the overall number of registers to N·w
+2−2 =N·w. Each scheduled edge in the DFG must use this equation to compute the correct
number of delays on it to ensure that precedence constraints are not violated.

Slide 11.38

This slide shows an example of the
architecture after an edge in a DFG
has been scheduled. Nodes v1 and v2
represent operations of the same
type which have to be scheduled
onto the single available resource v
in N=2 time steps. The edge is
first retimed to insert a register on it
(Figure (b)). The retimed edge is
scheduled such that operation v1 is
scheduled in the first time step
(p(v1)=1) while v2 is scheduled in
the second time step (p(v2)=2).
The processing element v is
pipelined by two stages (d(v1)=d(v2)

= 2) to satisfy throughput constraints. We get the following folding equation for the delays on edge
e1.

f = N·w + p(v2) − p(v1) − d(v1) = 2·1 + 2 – 1 − 2 = 1

The scheduled edge in Figure (c) shows the routing of the incoming signal x(n) to resource v. The
multiplexer chooses x(n) as the output in the first cycle when operation v1 is executed. The output of
v1 is fed back to v after a single register delay on the feedback path to account for the computed
delay f. The multiplexer chooses the feedback signal as the output in the second cycle when the
operation v2 is executed. Scheduled architectures have a datapath, consisting of the resource units
used to execute operations, and a control path, consisting of multiplexers and registers that maintain
edge constraints. Sometimes the overhead of muxes and delay elements strongly negates the gains
obtained from resource sharing in time-multiplexed architectures.

Scheduling Example

v1 v2e1
y(n)x(n)

2D

v1 v2e1
y(n)x(n)

DD

z 1

z 2v y(n)
x(n)

(a) Original edge

(b) Retimed edge

(c) Retimed edge after scheduling

Edge scheduled using
folding equations

Folding factor (N) = 2

Pipeline depth
d(v1) = 2
d(v2) = 2

Schedule
p(v1) = 1
p(v2) = 2

11.38

Architectural Optimization 221

Slide 11.39

The use of retiming during the
scheduling process can improve the
area, throughput, or energy
efficiency of the resultant
schedules. As we have seen earlier,
retiming solutions are generated
through the Leiserson-Saxe [1]
algorithm, which in itself is an
Integer Linear Programming (ILP)
framework. To incorporate
retiming within the scheduler, the
brute-force approach would be to
resort to an ILP framework for
scheduling as well, and then
introduce retiming variables in the

folding equations. However, the ILP approach to scheduling is known to be NP-complete and can
take exponential time to converge.

If retiming is done simultaneously with scheduling, the time complexity worsens further due to
an increased number of variables in the ILP. To mitigate this issue, we can separate scheduling and
retiming tasks. The idea is to first use the Bellman-Ford algorithm to solve the folding equations and
generate the retiming solution. Following this, scheduling can be done using the ILP framework.
This approach, called “Scheduling with BF retiming” in the next slide, has better convergence
compared to an integrated ILP model, where scheduling and retiming are done simultaneously.
Another approach is to pre-process the DFG prior to scheduling to ensure a near-optimal and time-
efficient solution. Following this, scheduling can be performed using heuristics like ASAP, ALAP or
list scheduling. The latter approach has polynomial complexity and is automated with the
architecture optimization tool flow discussed in Chap. 12.

Slide 11.40

The slide presents results of several
scheduling and retiming
approaches. We compare traditional
scheduling, scheduling with
Bellman-Ford retiming and
scheduling with pre-processed
retiming. ILP scheduling with BF
retiming results in the most area-
efficient schedules. This method,
however, suffers from poor worst-
case time complexity. The last
method (scheduling with pre-
processed retiming) is the most
time-efficient and yields a very-
close-to-optimal solution in all

Efficient Retiming & Scheduling

Retiming with scheduling
– Additional degree of freedom associated with register

movement results in less area or higher throughput schedules
Challenge: Retiming with scheduling
– Time complexity increases if retiming done with scheduling

Approach: Low-complexity retiming solution
– Pre-process data flow graph (DFG) prior to scheduling
– Retiming algorithm converges quickly (polynomial time)
– Time-multiplexed DSP designs can achieve faster throughput
– Min-period retiming can result in reduced area as well

Result: Performance improvement
– An order of magnitude reduction in the worst-case time-

complexity
– Near-optimal solutions in most cases

11.39

DSP
Design N

Scheduling
(current)

Scheduling (ILP)
with

BF retiming

Scheduling with
pre-processed retiming

Area CPU(s) Area CPU(s) Area CPU(s)

Wave
filter

16 NA NA 8 264 14 0.39

17 13 0.20 7 777 8 0.73

Lattice
filter

2 NA NA 41 0.26 41 0.20
4 NA NA 23 0.30 23 0.28

8-point
DCT

3 NA NA 41 0.26 41 0.21
4 NA NA 28 0.40 28 0.39

NA – scheduling infeasible without retiming
Near-optimal solutions at significantly reduced worst-case runtime

Results: Area and Runtime

11.40

222 Chapter 11

cases, as shown in the table. Up to a 100-times improvement in worst-case runtime is achieved over
the Bellman-Ford method for an N =17 wave filter. The pre-processing method is completely
decoupled from the scheduler, which means that we are no longer restricted to using the ILP models
that have high time complexity. In the pre-processing phase the DFG is first retimed with the
objective of reducing the hardware requirement in the scheduling phase.

Slide 11.41

Exploring new methods to model
architectural transformations, we
show that a pre-processing phase
with retiming can assist the
scheduling process to improve
throughput, area, and power. The
proposed pre-processing is
decoupled from the scheduler,
which implies that we are no longer
restricted to using the ILP models
that have high time complexity. For
standard benchmark examples (IIR
and FIR filters), this pre-processing
scheme can yield area
improvements of more than 30 %,

over 2x throughput improvement, and power reduction beyond 50 % using VDD scaling. (Note: the
scheduler attempts to minimize area, so power may increase for very low throughput designs,
because the controller overhead becomes significant for small structures such as these filters.)

Slide 11.42

In summary, this chapter covered
algorithms used to automate
transformations such as pipelining,
retiming, parallelism, and time
multiplexing. The Leiserson-Saxe
algorithm for retiming, unfolding
for parallelism and various
scheduling algorithms are
described. In Chap. 12, we will
discuss a MATLAB/Simulink based
design flow for architecture
optimization. This flow allows
flexibility in the choice of
architectural parameters and also
outputs the optimized architectures

as Simulink models.

Scheduling Comparison

Scheduling with pre-retiming outperforms scheduling
– Retiming before scheduling enables higher throughput
– Lower power consumption with VDD scaling for same speed

(1.0)
(1.0)

(0.9)
(0.84)

LIST + VDD scaling

(0.78)

(0.75)
(0.71)

(1.0)
(1.0)

(1.0)
(1.0)

(0.81)
(0.78)

(0.71)

Second-order IIR 16-tap FIR (transposed)

LIST + pre-retiming + VDD scaling

Throughput (MS/s)
80 114 148 182 216 250

0.1

1

0.1

1

100 150 200 250 300 350

Po
w

er

Throughput (MS/s)

(n
or

m
al

iz
ed

)

(VDD) (VDD)

(0.81)
(0.88)

11.41

Summary

DFG automation algorithms
– Retiming, pipelining
– Parallelism
– Scheduling

Simulink-based design optimization flow
– Parameterized architectural transformations
– Resultant optimized architecture available in Simulink

Energy, area, performance tradeoffs with
– Architectural optimizations
– Carry-save arithmetic
– Voltage scaling

11.42

Architectural Optimization 223

References

 C. Leiserson and J. Saxe, "Optimizing Synchronous Circuitry using Retiming," Algorithmica,
vol. 2, no. 3, pp. 211–216, 1991.

 R. Nanda, DSP Architecture Optimization in Matlab/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

 K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John
Wiley & Sons Inc., 1999.

 C. Tseng and D.P. Siewiorek, "Automated Synthesis of Datapaths in Digital Systems," IEEE
Trans. Computer-Aided Design, vol. CAD-5, no. 3, pp. 379–395, July 1986.

 S. Davidson et al., "Some Experiments in Local Microcode Compaction for Horizontal
Machines," IEEE Trans. Computers, vol. C-30, no. 7, pp. 460–477, July 1981.

Slide 12.1

Having looked at algorithms for
scheduling and retiming, we will
now discuss an integrated design
flow, which leverages these
automation algorithms to create a
user-friendly optimization
framework. The flow is intended to
address key challenges of ASIC
design in scaled technologies:
design complexity and design
flexibility. Additionally, the design
challenges are further underscored
by complex and cumbersome
verification and debugging
processes. This chapter will present

an FPGA-based methodology to manage the complexity of ASIC architecture design and
verification.

Slide 12.2

Traditional ASIC development is
partitioned among multiple
engineering teams, which specialize
in various aspects from algorithm
development to circuit
implementation. Propagating
design changes across the
abstraction layers is very
challenging because the design has
to be re-entered multiple times.
For example, algorithm designers
typically work with MATLAB or C.
This description is then refined for
fixed-point accuracy, mapped to an
architecture in the RTL format for

ASIC synthesis, and finally test vectors are adapted to the logic analysis hardware for final
verification. The problem is that each translation requires an equivalence check between the
descriptions, which is the key reason for the increasing cost of ASIC designs. One small logic error
could cost months of production delay and a significant financial cost.

The MATLAB/Simulink environment can conveniently represent all design abstraction layers,
which allows for algorithm, architecture, and circuit development within a unified description.
System architects greatly benefit from improved visibility into the basic implementation tradeoffs
early in the algorithm development. This way we can not only explore the different limitations of
mapping algorithms to silicon, but also greatly reduce the cost of verification.

Simulink-Hardware Flow

Chapter 12

with Rashmi Nanda and Henry Chen
University of California, Los Angeles

ASIC Development

 Multiple design descriptions
– Algorithm (MATLAB or C)
– Fixed point description
– RTL (behavioral, structural)
– Test vectors for logic analysis

 Multiple engineering teams involved

 Unified MATLAB/Simulink description
– Path to hardware emulation / FPGA
– Path to ASIC optimized
– Closed-loop I/O verification

12.2

 DOI 10.1007/978-1-4419-9660-2_12, © Springer Science+Business Media New York 2012
225D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

226 Chapter 12

Slide 12.3

In Simulink, we can evaluate the
impact of technology and
architecture changes by observing
simple implementation tradeoffs.
The Simulink design editor is used
for the entire design flow: (1) to
define the system and determine
the required level of flexibility, (2) to
verify the system in a single
environment that has a direct
implementation path, (3) to obtain
estimates of the implementation
costs (area, delay, energy) and (4) to
optimize the system architecture.
This involves partitioning the

system and modeling the implementation imperfections (e.g. analog distortions, A/D accuracy, finite
wordlength). We can then perform real-time verification of the system description with prototyped
analog hardware and, finally, automatically generate digital hardware from the system description.

Here is an example design flow. We describe the algorithm using floating-point for the initial
description. At this point, we are not interested in the implementation; we are just exploring how
well the algorithm works relative to real environments. Determining the flexibility requirements is
another critical issue, because it will drive a large portion of the rest of the design effort. It could
make few orders of magnitude difference in energy efficiency, area efficiency, and cost. Next, we
take an algorithm and model it into an architecture, with constraints and fixed-point wordlengths.
We decide how complex different pieces of hardware are, how to control them properly, and how to
integrate different blocks. After the architectural model, we need an implementation path in order
to know how well everything works, how much area, how much power is consumed, etc. There are
two implementation paths we are going to discuss: one is through programming an FPGA; the other
through building an ASIC.

Simulink Design Framework

Common test vectors,
and hardware description of

netlist and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Algorithm/flexibility
evaluation

Initial System Description
(Floating point MATLAB/Simulink)

Determine Flexibility Requirements

Description with Hardware Constraints
(Fixed point Simulink,

FSM Control in Stateflow)

Real-time Emulation
(FPGA Array)

Automated ASIC Generation
(Chip-in-a-day Flow)

12.3

Simulink-Hardware Flow 227

Slide 12.4

The Simulink chip-design approach
was introduced in the early 2000s in
the work by Rhett Davis et al. [1].
They proposed a 1-to-1 mapping
between Simulink fixed-point
blocks and hardware macros.
Custom tools were developed to
elaborate Simulink MDL model

interchange format) description.
The ASIC backend was fully
automated within the Simulink-to-
silicon hierarchical tool flow. A key
challenge in this work is to verify
that the Simulink library blocks are

hardware-equivalent: bit-true and cycle accurate.

Slide 12.5

To address the issue of hardware
accuracy, Kimmo Kuusilinna and
others at the Berkeley Wireless
Research Center (BWRC) extended
the Simulink-to-silicon framework
to include hardware emulation of a
Simulink design on an FGPA [2].
The emulation is simply done by
using the Xilinx hardware library
and toolflow for FPGA mapping.
A key component of this work was
another custom tool that translates
the RTL produced by Simulink into
a language suitable for commercial
ASIC backend tools. The tool also

invokes post-synthesis logic-level simulation to confirm I/O equivalence between ASIC and FPGA
descriptions. Architecture feedback about speed, power, and area is propagated to Simulink to
further refine the architecture.

Using this methodology, we can close the loop by performing input/output verification of a
fabricated ASIC, using an FPGA. Given functional equivalence between the two hardware
platforms, we use FPGAs to perform real-time at-speed ASIC verification. Blocks from a custom
I/O library are incorporated into an automated FPGA flow to enable a user-friendly test interface
controlled entirely from MATLAB and Simulink. Effectively, we are building ASIC logic analysis
functionality on an FPGA. This framework greatly simplifies the verification and debugging
processes.

Simulink Based Chip Design: Direct Mapping

 Result: An architecture that can be implemented rapidly

Mult2

Mac2Mult1 Mac1

S reg X reg Add,
Sub,
Shift

Directly map diagram into hardware since there is a
one-for-one relationship for each of the blocks

12.4

[1] W. R. Davis, et al., "A Design Environment for High Throughput, Low Power Dedicated Signal
Processing Systems," IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 420-431, Mar. 2002.

[1]

Simulink Based Optimization and Verification Flow

Simulink

Hw lib

Speed
Power
Area

Custom
tool 1

ASIC
backend

I/O lib

FPGA
backend

Custom
tool 2

RTL

FPGA implements
ASIC logic analysis

 Custom tool 1: design optimization (WL, architecture)
 Custom tool 2: I/O components for logic verification

12.5

[2] K. Kuusilinna, et al., "Real
Time System-on-a-Chip
Emulation," in Winning
the SoC Revolution, by H.
Chang, G. Martin, Kluwer
Academic Publishers,
2003.

[2]

into an EDIF (electronic design

228 Chapter 12

Custom tools can be developed for various optimization routines. These include automated
wordlength optimization to minimize hardware utilization (custom tool 1), and a library of
components to program electrical interfaces between the FPGA and custom chips (custom tool 2).
Taken together, the out-of-box and custom tools provide a unified environment for design entry,
optimized implementation, and functional verification.

Slide 12.6

As discussed in Part II, the energy-
delay of a datapath is used for
architectural comparisons in the
energy-area space [3]. The goal is
to reach an optimal design point.
For example, parallelism and
pipelining relax the delay constraint
to reduce energy at the expense of
increased area. Time-multiplexing
requires faster logic to tradeoff
reduced area for an increased
energy. Interleaving and folding
introduce simultaneous pipelining
and up-sampling to stay
approximately at the same energy-

delay point while reducing the area. Moving along the voltage scaling curve has to be done in such
as way as to balance sensitivities to other variables, such as gate sizing. We can also incorporate
wordlength optimization and register retiming. These techniques will be used to guide automated
architecture optimization.

Slide 12.7

The idea behind architecture
optimization is to provide an
automated algorithm-to-hardware
flow. Taking a systematic
architecture evaluation approach
illustrated in the previous slide, an
algorithm block-based model can
be transformed to RTL in a highly
automated fashion. There could be
many feasible architectural
solutions that meet the
performance requirements. The
user can then determine the
solution that best fits the target
application. For example, estimates

for the DSP sub-system can help system designers properly (re)allocate hardware resources to analog

Energy

DelayArea 0

VDD scalingOptimal
design

intl,
fold

Optimal
design

DatapathBlock-level

Energy-Area-Delay Optimization

 Energy-Area-Delay space for architecture comparison
– Time-mux, parallelism, pipelining, VDD scaling, sizing…

12.6

[3] D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis, University
of California, Berkeley, 2006.

[3]

Automating the Design Process

Faster turn-
around time

Drag-drop,
push-button flow

 Improve design productivity
– Automate architecture generation

to obtain multiple architectures
for a given algorithm

– User determines solution for
target application

 Convenient-to-use optimization
framework
– Embedded in MATLAB/Simulink
– Result in synthesizable RTL form
– No extra tool to learn

12.7

Simulink-Hardware Flow 229

and mixed-signal components to minimize energy and area costs of the overall system. An
automated approach helps explore many possible architectural realizations of the DSP and also
provides faster turn-around time for the implementation.

Slide 12.8

An optimization flow for
automating architectural
transformations is detailed in this
slide [4]. The flow starts from the
direct-mapped block diagram
representation of the algorithm in
Simulink. This corresponds to the
Simulink reference architecture in
the flow chart. RTL for the
Simulink model (MDL) is generated
using Synplify DSP or XSG and
synthesized to obtain energy, area
and performance estimates. If these
estimates satisfy the desired
specifications, no further

optimization is needed. If the estimates fall short of the desired specs, then the architecture
optimization parameters are set. These parameters are defined by the degree of time multiplexing
(N), the degree of parallelism (P) and pipelining (R). The parameter values are set based on
optimized targets of the design. For example, to trade-off throughput and minimize area, the time
multiplexing parameter N must be increased. Alternately, if the speed of the design has to be
increased or the power reduced through voltage scaling then pipelining or parallelism must be
employed. Trends for scaling power and delay with reduced supply voltage and architectural
parameters (N, P, R) are obtained from the pre-characterized energy-delay sensitivity curves in the
technology library (Tech. Lib in the flow chart).

The optimization parameters, along with the Simulink reference model, are now input to the
architecture optimization phase. This phase uses the DFG automation algorithms discussed earlier
to optimize the reference models. This optimizer first extracts the DFG matrices from the reference
model in MATLAB. The matrices are then transformed depending on the optimization parameters.
The transformed matrices are converted into a new Simulink model which corresponds to the
optimized architecture in the flow chart. The optimized model can be further synthesized to check
whether it satisfies the desired specifications. The architectural parameters can be iterated until the
specifications are met. Switching activities extracted from MATLAB test vectors serve as inputs to
the synthesis tool for accurate power estimation. Optimization results using this flow for an FIR
filter are presented in the next slide.

Design Optimization Flow

 Based on reference E-D curve and system specs, fix degree of
Pipelining (R), Time-multiplexing (N) or Parallelism (P)

– Generate synthesizable architectures/RTL in Simulink [4]

R
TL

System
specsMATLAB

Test vectors

Simulink
Arch.Opt

activity

(α)

Simulink
lib

Energy-Tclk (VDD)
Opt.arch

Final.GDS

Tech
lib

Algorithm

Datapath
simulation

Arch.Opt
ParametersN, P, R

Simulink
Ref.Arch

Synthesis

Energy,
Area, Tclk

RTL

Synthesis

αMDL

12.8

[4] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

230 Chapter 12

Slide 12.9

The architecture optimization
approach is illustrated here. We first
generate hardware estimates for a
direct-mapped design to establish a
reference point. The reference
design is modeled by a data-flow
graph (DFG) as described in
Chap. 9. The DFG can be
transformed to many possible
realizations by using architectural
transformations described in
Chap. 11. We can estimate energy
and area of the transformed design
using analytical models for sub-
blocks, or we can synthesize the

design using backend tools to obtain more refined estimates. The resulting designs can also serve as
hierarchical blocks for rapid design exploration of more complex systems. The transformation
routines described in Chap. 11 can be presented within a graphical user interface (GUI) as will be
shown later in this chapter.

Slide 12.10

Architecture transformations will
be demonstrated using the software
that is publicly available on the
book website. The software is
based on LIST scheduling and has a
GUI for ease of demonstration. It
supports only data-flow graph
structures with adders and

write further extensions for control-
flow graphs. The tool has been
tested on Matlab 2007b and
SynDSP 3.6. The authors welcome
comments, suggestions, and further
tool extensions.

From Simulink to Optimized Hardware

Resulting Simulink/SynDSP
Architectures

Ar
ch

ite
ct

ur
e

2
Fo

ld
in

g
N

=
4

Ar
ch

ite
ct

ur
e

1
Fo

ld
in

g
N

=
2

Initial DFG
+

+

+

+

c d

a b

D

2D
2D

DD
++

++

++

++

c d

a b

D

2D
2D

DD

Re
fe

re
nc

e
D

ire
ct

-m
ap

pi
ng

ILP Scheduling & Bellman-Ford Retiming: optimal + reduced CPU time

Direct mapped DFG  Scheduler  Architecture Solutions  Hardware
(Simulink) (C++ / MOSEK) (Simulink/SynDSP) (FPGA/ASIC)

12.10

Simulink

Integer Linear
Programming

Architectural
Transforms

Data-Flow
Graph

Reference
Design

Transformed
Design

Fu
nc

tio
na

l

Eq
ui

va
le

nc
e

GUI
Interface

Algorithm

Synthesis

H
ar

dw
ar

e
Co

st

RTL Data-Flow
Graph

Verification

Simulink & Data-Flow Graphs

12.9

multipliers. Users are encouraged to

Simulink-Hardware Flow 231

Slide 12.11

We can formalize the process of
architecture selection by
automatically generating all feasible
solutions within the given area,
power and performance constraints.
A system designer only needs to
create a simple direct-mapped
architecture using the Simulink
fixed-point library. This
information is used to extract a
data-flow graph, which is used in
scheduling and retiming routines.
The output is a set of synthesis-
ready architecture solutions. These
architectures can be mapped onto

any Simulink hardware library. This example shows mapping of a second-order digital filter onto
the Synplify DSP library from Synplicity and resulting architectures with different levels of folding.
Control logic that facilitates dataflow is also automatically generated. This way, we can quickly
explore many architectures and choose the one that best meets our area, power, and performance
constraints.

Slide 12.12

The entire process of architectural
transformations using the CAD
algorithms described in Chap. 11
has been embedded in a graphical
user interface (GUI) within the
MATLAB environment. This was
done to facilitate architectural
optimization from direct-mapped
Simulink models. A snapshot of the
GUI framework is shown. A drop-
down menu allows the user to
select the desired Simulink model to

order IIR filter has been selected,
and on the right is the

corresponding Simulink model for it.

Using GUI for Transformation

12.12

2nd order IIR

 Direct mapped DFG (Simulink/SynDSP model)
 Use GUI to open Simulink model from drop down menu

Tool Demo (Source Code Available)

 GUI based demo of filter structures
– Software tested using MATLAB 2007b and SynDSP 3.6

 The tool works only for the following Simulink models
– SynDSP models
– Single input, single output models
– Models that use adders and multipliers, no control structures

 Usage instructions
– Unzip the the .rar files all into a single directory (e.g. E:\Tool)
– Start MATLAB
– Make E:\Tool your home directory
– The folder E:\Tool\models has all the relevant SynDSP models
– On the command line type: ArchTran_GUI

 Check the readme file in E:\Tool\docs for instructions
 Examples shown in the next few slides

12.11

[5] See the book website for tool download.

[5]

be transformed. In the figure a 2nd-

232 Chapter 12

Slide 12.13

Following model selection, the user
must choose the components and
macros present in the model. These
components can be simple datapath
units like adders and multipliers or
more complex units like radix-2
butterfly or CORDIC. The selected
component names appear on the
right side of the GUI (indicated by
the arrows in the slide). If the
macros or datapath units are to be
pipelined implementations, then the
user can set the pipeline depth of
these components in the dialog box
adjacent to their names. Once this

information is entered, the tool is ready to extract the data-flow-graph netlist from the Simulink
model. Clicking the “extract model” button accomplishes this task. The GUI displays the number
of design components of each type (adders and multipliers in this example) present in the reference
model (“No.(Ref)” field shown in the red box).

Slide 12.14

The slide shows the netlist
information generated after model
extraction. The tool generates the
netlist in the form of the incidence
matrix A, the weight matrix w, the
pipeline matrix du and the loop
bound given by the slowest loop in
the DFG. The rows of the A matrix
correspond to the connectivity of
the nodes in the flow-graph of the
Simulink model. The nodes vi

shown in the figure represent the
computational elements in the

4 add and 4 multiply operations,
each corresponding to a node in the A matrix. The columns of the A matrix represent the dataflow
edges in the model, as explained in Chap. 10. The weight vector w captures the registers on the
dataflow edges and has the same number of columns as the matrix A. The pipeline vector du stores
the number of pipeline stages in each node while loop bound computes the minimum possible delay
of the slowest loop in the model.

Model Extraction Output

12.14

A =

w = [2 2 0 1 1 0 0 0 0 0 1]T

du = [1 1 1 1 1 1 2 2 2 2 1]T

Loop bound = 2

v1
v2
v3
v4
v5
v6
v7
v8

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1

v2

v3

v4

v5 v7

v6 v8

0
1
0
0
0
0
0
-1

0
1
0
0
0
-1
0
0

0
1
0
-1
0
0
0
0

0
1
0
0
0
0
-1
0

0
1
0
0
-1
0
0
0

0
0
1
-1
0
0
0
0

0
0
-1
0
0
0
0
1

0
0
-1
0
0
0
1
0

-1
0
0
0
0
1
0
0

-1
0
0
0
1
0
0
0

1
-1
0
0
0
0
0
0

Data-Flow Graph Extraction

12.13

Extract Model

 Select design components (adds, mults etc.), set pipeline depth
 Extract model, outputs hardware and connectivity info

model. The 2nd-order IIR filter has

Simulink-Hardware Flow 233

Slide 12.15

After the netlist extraction phase,
the data-flow-graph model can be
transformed to various other
functionally equivalent architectures
using the algorithms described in
Chap. 11. The GUI environment
supports these transformations via
a push-button flow. Examples of

shown next. In this slide we see the
time-multiplexing option turned on
with a folding factor of N=2.
Once the Mux factor (N) is entered
in the dialog box, the “Generate

Time-mux arch.” option is enabled. Pushing this button will schedule the DFG in N=2 clock
cycles in this example. The GUI displays the number of design components in the transformed
architecture after time-multiplexing (“No.(Trans)” field shown in the red box).

Slide 12.16

This slide shows a snapshot of the
architecture generated after time-

factor N=2. The Simulink model
including all control units and
pipeline registers for the
transformed architecture is
generated automatically. The
control unit consists of the muxes
which route the input signals to the
datapath resources and a finite state
machine based controller, which
generates the select signals for the
input multiplexors. The datapath
units are pipelined by the user-

defined pipeline stages for each component. The tool also extracts the multiplier coefficients from
the reference DFG and routes them as predefined constants to the multiply units. Since the original
DFG is folded by a factor of N, the transformed model produces an output every N cycles,
requiring a down-sample-by-N block at the output.

Time Multiplexing from GUI

12.15

Generate
Time-mux arch.

N = 2

 Set architecture optimization parameter (e.g. N = 2)
 Schedule design  Time-multiplex option (N = 2)

Transformed Simulink Architecture

12.16

Pipelined
Multiplier

Pipelined
Adder

Control
Muxes

Controller
generates

select
signals for

muxes

Multiplier
Coefficients

Down-sample
by N (=2)
Output

latched every
N cycles

 Automatically generated scheduled architecture pops up

these with the 2nd-order IIR filter as

multiplexing the 2nd-order IIR by a

the baseline architecture will be

234 Chapter 12

Slide 12.17

The schedule table, which is the
result of the list-scheduling
algorithm employed by the tool, is
output along with the transformed
architecture. The schedule table
follows the same format as was
described in Chap. 11. The
columns in the table represent
resource units, while the rows refer
to the operational clock cycle (N=
2 cycles in this example). Each row
lists out the operations scheduled in
a particular clock cycle, while also
stating the resource unit executing
the operation. The extent to which

the resource units are utilized every cycle gives a rough measure of the quality of the schedule. It is
desirable that maximum resource units are operational every cycle, since this leads to lower number
of resource units and consequently less area. The tool uses area estimates from a generic 90nm
CMOS library to compute the area of the datapath elements, registers and control units in the
transformed architecture.

Slide 12.18

A flow similar to time-multiplexing
can be adopted to create parallel
architectures for the reference
Simulink model. The snapshot in
the slide shows the use of the
“Generate Parallel arch.” button
after setting of the unfolding factor
P=2 in the dialog box. The GUI
displays the number of datapath
elements in the unfolded
architecture (“No.(Trans)” field),
which is double the number in this
case (P = 2) of those in the
reference one (“No.(Ref)” field).

Scheduled Model Output

12.17

Schedule Table

Cycle1 v1 v3 v5 v6 v7 v8
Cycle2 v2 v4 x x x x

 Scheduling generated results
– Transformed architecture in Simulink
– Schedule table with information on operation execution time
– Normalized area report

Scheduled Model

Adders (Ai) : 900
Multipliers (Mi) : 8000

Pipeline registers : 3830
Registers : 383

Control muxes : 1950

Area Report

A1 A2 M1 M2 M3 M4

Parallel Designs from GUI

12.18

Generate
Parallel arch.

P = 2

 Set architecture optimization parameter (e.g. P = 2)
 Parallel design  Parallel option (P = 2)

Simulink-Hardware Flow 235

Slide 12.19

The parallelized Simulink model is
automatically generated by the tool,
an example of it being shown in

The parallel model has P input
streams of data arriving at a certain
clock rate and P output data
streams going out at the same rate.
In order to double the data rate, the
output streams of data can be time-
multiplexed to create a single
output channel.

Slide 12.20

Architecture optimization is
performed through a custom
graphical interface as shown on this
slide [6]. In this example, a 16-tap
FIR filter is selected from a library
of Simulink models. Parameters,
such as pipeline depth for adders
and multipliers, can be specified as
well as the number of adders and
multipliers (15 and 16, respectively,
in this example). Based on the
extracted DFG model of the
reference design, and architectural
parameters N, P, R, a user can
choose to generate various

architectural realizations. The parameters N, P, and R are calculated based on system specs and
hardware estimates for the reference design.

Transformed Simulink Architecture

12.19

P = 2 parallel
Input streams

P = 2 parallel
Output streams

Parallel
Adder core

Parallel
Multiplier core

 Automatically generated scheduled architecture pops up

Range of Architecture Tuning Parameters

Energy

Tclk
0

VDD*

P, R
P, R

N

VDD
max

VDD
min

N Throughput maxLatency max

VDD
scaling

fixed
VDD

12.20

Pipeline: R
Parallel: P

Time mux: N

[6] R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in MATLAB/Simulink
Environment," in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193.

[6]

this slide for the 2nd-order IIR filter.

236 Chapter 12

Slide 12.21

The result of the flow from Slide
12.8 is a design mapped into the
energy-area-performance space.
The slide shows energy, area, and
performance normalized to the
reference design. There are many
possible architectural realizations
due to the varying degrees of
parallelism, time-multiplexing,
retiming, and voltage scaling. Each
point represents a unique
architecture. Solid vertical planes
represent energy and performance
constraints. For example, if energy
lower than 0.6 and performance

better than 0.65 are required, there are two valid architectures that meet these constraints. The flow
does not just give a set of all possibilities; it also provides a quantitative comparison of alternative
solutions. The designer can then select the one that best meets system specifications.

Slide 12.22

High-level architectural techniques
such as parallelism, pipelining, time-
multiplexing, and retiming can be
combined with low-level circuit
tuning; which includes gate sizing,
fine-grain pipelining, and dedicated
IP cores or special arithmetic (such
as carry save). The combined
effects of architecture and circuit
parameters gives the most optimal
solution since additional degrees of
freedom can be explored to further
improve energy, area, and
performance metrics. High-level
techniques are explored first,

followed by circuit-level refinements.

Energy-Area-Performance Map
 Each point on the surface is an optimal architecture automatically generated

in Simulink after modified ILP scheduling and retiming

A
re

a
Valid

architectures

Constraints

Direct-mapping
(reference)

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1
0.2

0.4

0.6

0.8

1

 System designer can choose from many feasible (optimal) solutions
 It is not just about functionality, but how good a solution is, and how many

alternatives exist
12.21

E-A-P Space

RTL, switching activity

Energy-area-performance estimate

Simulink Synthesis

An Optimization Result

A
re

a

Valid
architectures

Constraints

Direct-mapping
(reference)

0.2
0.4

0.6
0.8

1

0.2
0.4

0.6
0.8

1
0.2

0.4

0.6

0.8

1Time-mux

Retiming

Pipelining

Parallelism

Gate sizing

Carry save

Fine pipe

IP cores

12.22

Simulink-Hardware Flow 237

Slide 12.23

A typical output of the optimizer in
the Simulink MDL format is shown
on this slide. Starting from a direct-
mapped filter (4 taps shown for
brevity), we can vary level of time-
multiplexing and parallelism to
explore various architectures. Logic
for input and output conditioning is
automatically created. Each of these
designs is bit- and cycle-equivalent
to the reference design. The
architectures can be synthesized
through the backend flow and
mapped to the energy-area-
performance space previously

described.

Slide 12.24

This slide shows basic information
needed for high-level estimates:
energy-delay tradeoff for pipeline
logic and latency vs. cycle-time
tradeoff for a logic block (such as
adder or multiplier) [7]. The shape
of the energy-delay line is estimated
by transistor-level simulations of
simple digital logic. Circuit
parameters need to be balanced at
target operating voltage, but we
translate timing constraints to the
reference voltage dictated by
standard-cell libraries. Initial logic
depth for design blocks is estimated

from latency - cycle time tradeoff to provide balanced pipelines and ease retiming. This information
is used in the architecture selection.

D D D

Parallel

Time-multiplex

Reference

Lower Area

Higher Throughput
or Lower Energy

N = 2 multiplier core

N = 2 adder core

input mux

controller
out

4-way multiplier core

4-way adder core

input de-mux

output mux

In

Out

N = 2

P = 4

Architecture Tuning Result: MDL

×

+ + +

× × ×

12.23

Pipelining Strategy

Latency

Cycle Time

0

mult

add

Energy

VDD scaling

VDD
ref

TClk @ VDD
opt

Library blocks / macros
synthesized @ VDD

ref
Pipeline logic scaling

FO4 inv simulation

Speed
Power
Area

TClk @
VDD

ref

gate sizing

12.24

[7] D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Efficient VLSI Architectures for
Communication Signal Processing," in Proc. Int. Conf. on Communications, June 2006, vol. 7,
pp. 3223-3228.

[7]

238 Chapter 12

 Slide 12.25

The optimization flow described in
Slide 12.8 was verified on a 16-tap
FIR filter. Transformations like
scheduling, retiming and parallelism
were applied to the filter; integrated
with supply voltage scaling and
micro-architectural techniques, like
the usage of carry-save arithmetic.
The result was an array of
optimized architectures, each
unique in the energy-area-
performance space. Comparison of
these architectures has been made
in the graph with contour lines
connecting architectures, which

have the same max throughput. Vertical lines in the slide indicate the variation of delay and power
of the architectures with supply voltage scaling.

We first look at the effect of carry-save optimization on the reference architecture. The reference
architecture without carry-save arithmetic (CSA) consumes larger area and is slower compared to the
design that employs CSA optimization (rightmost green line). To achieve the same reference
throughput (set at 100MS/s for all architectures during logic synthesis), the architecture without
CSA must upsize its gates or use complex adder structures like carry-look-ahead; which increases the
area and switched capacitance leading to an increase in energy consumption as well. The CSA-
optimized architecture (leftmost green line) still performs better in terms of achievable throughput;
highlighting the effectiveness of CSA. All synthesis estimates are based on a general-purpose 90-nm
CMOS technology library.

Following CSA optimization the design is retimed to further improve the throughput (central
green line). From the graph we can see that retiming improves the achievable throughput from 350
MS/s to 395MS/s (a 13% increase). This is accompanied by a small area increase (3.5%), which can
be attributed to extra register insertion during retiming. Pipelining in feed-forward systems also
results in considerable throughput enhancement. This is illustrated in the leftmost red line of the
graph. Pipelining is accompanied by an increased area and I/O latency. The results from logic
synthesis show a 30% throughput improvement from 395MS/s to 516MS/s. The area increases by
22% due to extra register insertion as shown in the figure. Retiming with pipelining during logic
synthesis does fine-grain pipelining inside the multipliers to balance logic depth across the design
(rightmost red line). This step significantly improves the throughput to 623MS/s (20% increase).

Scheduling the filter results in area reduction by about 20% (N=2) compared to the retimed
reference architecture and throughput degradation by 40% (leftmost blue line). The area reduction is
small for the filter, since the number of taps in the design is small and the increased area of registers
and multiplexers in the control units offsets the decrease in adder and multiplier area. Retiming the
scheduled architecture results in a 12% improvement in throughput (rightmost blue line) but also a
5% increase in area due to increased register count.

Optimization Results: 16-tap FIR Filter

 Design variables: CSA, fine R (f-R), VDD (0.32 V to 1 V), pipelining

VDD

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
x 104

10

Area (m2)

En
er

gy
 (p

J)
 [l

og
 sc

al
e]

623 M

300 M350 M

395 M 516 M

166 M

395 M

Pip + R

Ref. no CSA

M = MS/s

(90 nm CMOS)

Ref. CSA
Ref. CSA f-R

Pip + R + f-R

12.25

Simulink-Hardware Flow 239

Slide 12.26

The unfolding algorithm was
applied to the 16-tap FIR to
generate the architectures shown in
the graph. Parallelism P was varied
from 2 to 12 to generate an array of
architectures that exhibit a broad
range of throughput and energy
efficiencies. The throughput varies
from 40MS/s to 3.4GS/s while
the energy efficiency ranges from
0.5 GOPS to 5 GOPS. It is possible
to improve the energy efficiency
significantly with continued voltage
scaling if sufficient delay slack is
available. Scaling of the supply

voltage has been done in 90-nm technology in the range of 1V to 0.32V. The graph shows a clear
tradeoff between energy/throughput and area. The final choice of architecture will ultimately
depend on the throughput constraints, available area and power budget.

Slide 12.27

Another example is an ultra-
wideband (UWB) digital baseband
filter. The filter takes inputs
sampled at 1GHz and represents
80% of power of the direct-mapped
design. The focus is therefore on
power minimization in the filter.
The 1GHz stream is divided into
five 200MHz input streams to
meet the speed requirements of the
digital I/O pads.

16-tap FIR: Architecture Parallelism (Unfolding)

 Parallelism improves throughput or energy efficiency
– About 10x range in efficiency from VDD scaling (0.32 V – 1 V)

1V

0.39V

0.36V

0.73V

0 0.5 x 105
0

1 1.5 2

1

2

3

4

5

6

En
er

gy
 E

ff
ic

ie
nc

y
(G

O
PS

/m
W

)

Ref.
P = 2
P = 4
P = 5
P = 8
P = 12

0.7V

0.47V

0.9V

0.57V
0.5V

0.5V

Area (m2)

(90 nm CMOS)

12.26

Example #2: UWB Digital Baseband

 Starting point: direct-mapped architecture
 Optimization focused on the 64-tap 1GS/s filter

12.27

80% of power

240 Chapter 12

Slide 12.28

Transformation of the 64-tap filter
architecture is equally simple as the
16-tap example that was previously
shown. Matrix-based DFG design
description is used to construct
block-level model for the design
using the “add_line” function in
MATLAB. The function specifies
connectivity between the input and
output ports as described in this
slide. Construction of a functional
block is shown on the left-middle
plot. This block can then be
abstracted to construct
architectures with varying level of

parallelism. Four and sixteen levels of parallelism are shown. Signal interleaving at the output is also
automatically constructed.

Slide 12.29

The results show the supply voltage
and estimated total power as a
function of throughput for varying
degrees of parallelism (P1 to P16)
in the filter design. Thick line
represents supply voltage that
minimizes total power. For a

to 200MHz parallel data, P8 has
5% lower power than P4, but it also
has 38% larger area than P4.
Considering the power-area
tradeoff, architecture P4 is chosen
as the solution. The design
operating at 0.43V achieved overall

68% power reduction compared to direct-mapped P1 design operating at 0.68V. Die photo of the
UWB design is shown. The next step is to verify chip functionality.

P16
P8

P4
P2

P1

0.32-0.450.2-0.28 VDD > 0.4 V

0.3-0.39

0.23-0.32

1.8mm

2.4mm

Minimizing Overall Power and Area

0.43 V

10 110 210 3 100 101 102

Throughput (GS/s)
1 = 333 MHz (0.6 = 200 MHz)

Po
w

er
 (m

W
)

10-3

10-2

10-1

100

0.2

0.4

0.6

0.8

1.0

Vo
lta

ge
 (V

)

64-tap filter design:
 Effective 1 GS/s
 200 MHz @ 0. 43 V
 Parallel-4 filter

P1 P2 P4 P8 P16

P8 versus P4
P8 has 5% lower power

but also 38% larger area

Solution: parallel-4 architecture (VDD
opt = 0.43 V)

12.29

Architecture Exploration: MDL Description

16 levels of
Parallelism

levels of
i

>> add_line(‘connecting’, ‘Counter/1’, ‘Register/1’)
basic block connectivity

functional block

4 levels of parallelism

16 levels of parallelism

12.28

 Use MATLAB “add_line” command for block connectivity

1GS/s input rate, which is equivalent

Simulink-Hardware Flow 241

Slide 12.30

Functional verification of ASICs is
also done within
MATLAB/Simulink framework
that is used for functional
simulations and architecture design.
Since the Simulink model can be
mapped to both FPGA and ASIC,
an FPGA board can be used to
facilitate real-time I/O verification.
The FPGA can emulate the
functionality in real-time and
compare results online with the
ASIC. It can also host test vectors
and capture ASIC output for offline
analysis.

Slide 12.31

In order to verify chip functionality,
the idea is to utilize Simulink test
bench that’s implicitly available
from algorithm development [8].
We therefore need emulation
interface between the test bench
and emulation ASIC, so Simulink
can fully control the electrical
interface between the FPGA and
ASIC boards. Simulink library is
therefore extended with the
required I/O functionality.

FPGA Based Chip Verification

MATLAB™

ASIC
board

FPGA
board

Simulink
model

emulation

Real-time
hardware
verification

12.30

Hardware Test Bench Support

 Approach: use Simulink test bench (TB) for ASIC verification
– Develop custom interface blocks (I/O)
– Place I/O and ASIC RTL into TB model

12.31

+ + =
TB TB

I/O

ASIC

I/O

ASIC

Simulink implicitly
provides the test bench

 Additional requirements from the FPGA test platform
– As general purpose as possible (large memories, fast I/O)
– Use embedded CPU to provide high-level interface to FPGA

[8] D. Markovi et al., "ASIC Design and Verification in an FPGA Environment," in Proc. Custom
Integrated Circuits Conf., Sep. 2007, pp. 737-740.

[8]

242 Chapter 12

 Slide 12.32

The yellow-block library is used for
chip verification. It is good for
dataflow designs such as DSP. The
library is called the BEE2 system
blockset [9], designed at the
Berkeley Wireless Research Center,
and now maintained by
international collaboration
([www.casper.berkeley.edu]). The
I/O debugging functionality is
provided by several types of blocks.
These include software / hardware
interfaces such as registers, FIFOs,
block memories; external general
purpose I/O port interfaces (these

two types are primarily used for ASIC verification); there are also A/D and D/A interfaces for
external analog components; and software-controlled debugging resources. This library is
accompanied with custom scripts that automate FPGA backend flow to abstract away FPGA
specific interface and debugging details. From a user standpoint, it is push-of-a-button flow that
generates configuration file for the FPGA.

Slide 12.33

This slide shows a typical I/O
library usage in a Simulink test
bench model. The block in the
middle is the Simulink hardware
model and the ASIC functionality is
described with Simulink blocks.
Block in the dashed lines indicates
actual ASIC board, which is driven
by the FGPA. The yellow blocks
are the interface between two
hardware platforms; they reside on
the FGPA. The GPIO blocks
define mapping between ASIC I/O
and the GPIO headers on the
FPGA board. The software register

block allows single 32-bit word transfer between MATLAB and FPGA board. This block is used to
configure control bits that manage ASIC verification. The ASIC clock is provided by the FPGA,
which can generate the clock internally or synchronize to an external source. Input test vectors are
stored in block RAM memory. Block RAMs are also used to store results of FPGA emulation
(BRAM_FPGA) and sampled outputs from the ASIC board (BRAM_ASIC). So, the yellow block
interface is programmed on the FPGA board and controlled from MATLAB environment.

Simulink Test Model

software_reg

sim_rst
reset

reg0

BRAM_IN

IN OUT
ADDR

WE

BRAM_ASIC

logic

Simulink
hardware

model

ASIC
board gpio

-c-

in

rst

clk

-c-
-c- in

logic

gpio

gpio

gpio

out

-c-

BRAM_FPGA

out
IN OUT
ADDR

WE

IN OUT
ADDR

WE

rst

12.33

Design Environment: Xilinx System Generator

12.32

 Custom interface blocks
– Regs, FIFOs, BRAMs
– GPIO ports
– Analog subsystems
– Debugging

1-click
compile

[9] C. Chang, Design and Applications of a Reconfigurable Computing System for High Performance
Digital Signal Processing, Ph.D. Thesis, University of California, Berkeley, 2005.

[9]

Simulink-Hardware Flow 243

Slide 12.34

Here is an example of Simulink test
bench model used for I/O
verification of the singular value
decomposition (SVD) chip. ASIC is
modeled with the blue SVD block,
with many layers of hierarchy
underneath. The yellow blocks are
the interface between the FPGA
and the ASIC. The white blocks are
simple controllers, built from
counters and logic gates, to manage
memory access. Inputs are taken
from the input block RAM and fed
into both the ASIC board and its
equivalent description on the

FGPA. Outputs of the FPGA and ASIC are stored in output block RAMs. Finally we can use
another block RAM for debugging purposes to locate the samples where eventual mismatch has
occurred.

Slide 12.35

This slide illustrates the hardware
test setup. The client PC has
MATLAB/Simulink and custom
BEE Platform Studio flow
featuring I/O library and custom
routines for data access. Test
vectors are managed using custom
“read_xps” and “write_xps”
software routines that exchange
data between FPGA block RAMs
(BRAMs) and MATLAB. The PC-
FPGA interface can be realized
using serial port or Ethernet. The
FPGA-ASIC interface can use
general-purpose I/O (GPIO)

connectors or high-speed differential-line ZDOK+ connectors.

Example: SVD Test Model

Emulation-based ASIC I/O test
12.34

FPGA Based ASIC Test Setup

 Test bench model on the FPGA board
 Block read / write operation
– Custom read_xps, write_xps commands

FPGA
board

Client
PC

ASIC
board

12.35

 PC to FPGA interface
– UART RS232 (slow, limited applicability)
– Ethernet (with an FPGA operating system support)

 FPGA-ASIC interface
– GPIO (electrically limited to ~130 Mbps)
– High-speed ZDOK+ differential-line link (~500 Gbps, fclk limited)

244 Chapter 12

Slide 12.36

A low-data-rate test setup is shown
here. Virtex-II FPGA board is
accessed from the PC using serial
RS232 link and connects to the
ASIC board using GPIO. This
model is programmed onto the
FPGA board, which stimulates the
ASIC over general purpose I/Os
and samples outputs from both
hardware boards. Block RAMs and
software registers are controlled
through the serial port. This setup
is convenient for at-speed
verification of the ASIC that
operate below 130 MHz and do not

require large amounts of data. Key limitations of this setup are low speed of the serial port (~kb/s)
and relatively slow GPIO interface that is electrically limited to ~130Mb/s.

Slide 12.37

Shown is an example of a medium-
data-rate test setup. The I/O speed
between the FPGA and ASIC
boards can be improved with
differential pair connectors such as
those used in the Xilinx personality
module. With ZDOK+ links
projected to work in the multi-
GS/s range, the FPGA-ASIC
bandwidth is now limited by the
FPGA clock and/or speed of ASIC
I/O ports. This setup is based on
advanced Virtex-II board from the
UC Berkeley Radio Astronomy
Group (CASPER). The board is

called IBOB (Interface Break-out Board). Limitations of this setup are serial PC-FPGA interface and
limited capacity of BRAM that is used to store test vectors.

Low Data-Rate Test Setup

IBOB FPGA board

ASIC board

Limitations: Speed of RS232 (~kb/s) & GPIO interface (~130 MHz)

GPIO

12.36

FPGA
board

Client
PC

ASIC
board

RS232

~kb/s ~130 Mb/s

GPIO

 FPGA board features
– Virtex-II Pro (FPGA, PowerPC405)
– 2x 18Mb (36b) SRAMs (~250MHz)
– 2x CX4 10Gb high-speed serial
– 2x Z-DOK+ high-speed differential

GPIO (80 diff pairs)
– 80x LCMOS/LVTTL GPIO

 PC interface
– RS232 UART to PPC
– Custom scripts

read_xps/write_xpsIBOB: Interconnect Break-Out Board

Medium Data-Rate Test Setup

Limitations: Speed of RS232 interface (~kb/s) & FPGA BRAM capacity
12.37

FPGA
board

Client
PC

ASIC
board

RS232

~Kb/s ~500 Mb/s

ZDOK+

 Virtex-II based FPGA board
– IBOB v1.3

[www.casper.berkeley.edu]
 FPGA-ASIC interface

– ZDOK+ high-speed differential
interface

– Allows testing up to ~250MHz
(limited by the FPGA clock)

 PC interface
– RS232 UART

IBOB v1.3

FPGA board

Simulink-Hardware Flow 245

 Slide 12.38

To address the speed bottleneck of
the serial port, Ethernet link
between the user PC and the FPGA
board is used. The Ethernet link
between the PC and FPGA is
already a standard feature on most
commercial parts. Shown here is
another board developed by the
CASPER team, called ROACH
(Reconfigurable Open Architecture
Computing Hardware). The board
is based on a Virtex-5 FPGA chip.
Furthermore, the client PC
functionality can be pushed into the
FPGA board with operating system

support.

 Slide 12.39

Custom operating system, BORPH
(Berkeley Operating system for
ReProgrammable Hardware)
extends a standard Linux system
with integrated kernel support for
FPGA resources [9]. The BEE2
flow produces BORPH object files
instead of usual FPGA
configuration “bit” files. This
allows users to execute hardware
processes on FPGA resources the
same way they run software on
conventional machines. BORPH
also allows access to the general
Unix file system, which enables test

bench to access the same test-vector files as the top-level Simulink. The OS is supported by
BEE2/3 and ROACH boards, and has limited support on IBOB boards.

High Data-Rate Test Setup

12.38

BORPH
FPGA
board

Client
PC

ASIC
board

Ethernet

~500 Mb/s

ZDOK+

 FPGA board features
– Virtex 5 FPGA, External PPC440
– 1x DDR2 DIMM
– 2x 72Mbit (18b) QDR SRAMs

(~350MHz)
– 4x CX4, 2x ZDOK+ (80 diff pairs)

 External PPC provides much faster
interface to FPGA resources (1GbE)

 PC to FPGA interface
– OS (BORPH) hosted on the FPGA

BORPH: Berkeley Operating system
for ReProgrammable Hardware

ZD
O

K+

ROACH

FPGA board

ROACH: Reconfigurable Open
Architecture Compute Hardware

BORPH Operating System

 About BORPH
– Linux kernel modification for hardware abstraction
– It runs on embedded CPU connected to FPGA

 “Hardware process”
– Programming an FPGA running Linux executable
– Some FPGA resources are accessible in Linux process memory

space

 BORPH makes FPGA board look like a Linux workstation
– It is used on BEE2, ROACH
– Limited version on IBOB w/ expansion board

12.39

[10]H. So, A. Tkachenko, and R.W. Brodersen, "A Unified Hardware/Software Runtime Environment
for FPGA-Based Reconfigurable Computers using BORPH," in Proc. Int. Conf. Hardware/Software
Codesign and System Synthesis, 2008, pp. 259-264.

[10]

246 Chapter 12

Slide 12.40

As an example, we illustrate test
setup for high-speed digital filter.
This system requires clock of 400
MHz, which is beyond the
capability of Virtex-II based boards.
The chip also requires long test
vectors, over 4Mb, and the use of
asynchronous clock domains.
ROACH-based setup is highlighted
in the diagram. High-speed
ZDOK+ connectors are used
between the ASIC and FPGA
boards. Quad-data-rate (QDR)
SRAM on the FPGA board is used
to support longer test vectors. The

ROACH board is controlled by the PC using 1GbE Ethernet port. Optionally, a PowerPC based
control using BORPH could be used.

Slide 12.41

This setup was used for real-time
FPGA verification up to 330MHz
(limited by the FPGA clock). The
ASIC board shown here is a high-
speed digital front-end DSP
designed to operate with I/O rates
of up to 450MHz (limited by the
speed of the chip I/O pads).

Support for expressing
asynchronous clock domains is
limited compared to what is
physically possible in the FPGA.
Asynchronous clock domains are
required when the ASIC does not
have equal data rates at the input

and output, for example in decimation. Earlier versions of XSG handled this by running in the
fastest clock domain while toggling clock enable (CE) for slower domains. While newer versions of
XSG can infer clock generation, the end-to-end toolflow was built on a single-clock assumption.
Therefore, this test setup was composed of two independent modules representing the two different
clock speeds, which were merged into a single end-design.

Example: Multi-Rate Digital Filter

 Testing Requirements
– High Tx clock rate (450 MHz target)

● Beyond practical limits of IBOB’s V2P
– Long test vectors (~4 Mb)
– Asynchronous clock domains for Tx and Rx

12.40

BORPH FPGA
Test Board

PowerPC

QDR
SRAM

ASIC Test Board

ASIC

Client
PC

FPGA

BRAM

LV
DS

 I/
O

1GbE

ROACH based
test setup

Asynchronous Clock Domains

 Merged separate designs for test vector and readback datapaths
 XSG has very limited capability for expressing multiple clocks
– CE toggling to express multiple clocks

 Further restricted by
bee_xps tool automation
– Assumes single clock

design (though many
different clocks available)

12.41

Fixed 60 MHz Rx

255-315 MHz Tx

Simulink-Hardware Flow 247

Slide 12.42

The full shared-memory testing
infrastructure allowed testing the
chip up to 315MHz. This included
mapping one of the 36Mb QDR
SRAMs onto the PowerPC bus to
enable software access for loading
arbitrary test vectors at runtime. At
315MHz, the critical paths in the
control logic of the bus attachment
presented a speed bottleneck.

This speed barrier was overcome
by pre-loading test vectors into the
FPGA bitstream using ROMs.
Trading off the flexibility of
runtime-loadable test vectors

pushed the maximum speed of chip test up to 340MHz. At this point, there existed a physical
critical path in the FPGA for generating a 340MHz clock for the test chip.

Slide 12.43

Various verification strategies are
summarized in this slide. We look
at ASIC emulation, I/O interface,
and test bench.

Simulation of design built from
Simulink blocks is straightforward,
but can be quite slow. The
alternative is Simulink ModelSim
co-simulation, with HDL
description of the ASIC.

Mapping this HDL onto FPGA
and using hardware-in-the-loop
tools greatly improves the
verification speed, but is limited by

the speed of PC-to-FPGA interface. Pure hardware emulation is the best solution, because it can
fully utilize processing capability of the FPGA.

After mapping the final design onto ASIC, we close the loop by using FPGA for the I/O test.
The idea is to move towards test setup fully embedded on the FPGA that includes local operating
system and remote access support.

Results and Limitations

 Results
– Test up to 315 MHz w/ loadable vectors in QDR;

up to 340 MHz with pre-compiled vectors in ROMs
– 55 dB SNR @ 20 MHz bandwidth

 Limitations
– DDR output FF critical path @ 340 MHz (clock out)
– QDR SRAM bus interface critical path @ 315 MHz
– Output clock jitter?
– LVDS receivers usually only 400-500 Mbps

● OK for data, not good for faster clocks
● Get LVDS I/O cells?

12.42

FPGA Based ASIC Verification: Summary

Simulation
Simulink Simulink Simulink Pure SW Simulation

HDL Simulink Simulink Simulink ModelSim
co-simulation

Emulation
FPGA HIL tools Simulink Hardware-in-the-loop

simulation
FPGA FPGA FPGA Pure FPGA emulation

ASIC
I/O Test

FPGA &
ASIC FPGA Custom SW Testvectors outside

FPGA
FPGA &

ASIC FPGA FPGA Testvectors inside
FPGA

ASIC I/O TB TB
I/O

ASIC

12.43

 The trend is towards fully embedding logic
analysis on FPGA, including OS support for
remote access

248 Chapter 12

Slide 12.44

Currently, data rates in and out of
the FPGA are limited due to the
use of what is essentially a monitor
and control interface. Without
having to resort to custom electrical
interfaces or pushing up to
10GbEthernet standards, several
steps can be taken in order to push
up to the bandwidths needed for
testing.

A support for long test vectors
(~10Mb) at moderate data rates
(~Mb/s) is required by some
applications. The current
infrastructure on an IBOB would

only allow for loading of a single test vector at a time, with each load occurring at ~10 Kb/s over an
RS232 link.

A UDP (Uniform Datagram Protocol)-based link to the same software interface is also available.
Test vectors would still be loaded and used one at a time, but the time required for each would be
decreased by about three orders of magnitude as the link bandwidth increases to about ~10Mb/s.
This would enable moderate-bandwidth streaming with a software-managed handshaking protocol.

Fully-streaming test vectors beyond these data rates would require hardware support that is not
available in the current generations of boards. Newer boards that have an Ethernet interface
connected directly to the FPGA, not just the PowerPC, would allow TCP/IP-based streaming into
the FPGA, bypassing the PowerPC software stack

Slide 12.45

MATLAB/Simulink environment
for algorithm modeling and
hardware implementation was
discussed. The environment
captures bit-true cycle-accurate
behavior and can be used for
FPGA and ASIC implementations.
Hardware description allows for
rapid prototyping using FPGAs.
The unified design environment
can be used for wordlength
optimization, architecture
transformations and logic
verificaiton. Leveraging hardware
equivalency between FPGA and

ASIC, an FPGA can host logic analysis for I/O verification of fabricated ASICs. Further

Further Extensions

 Design recommendations
– Send source-synchronous clock with returned data
– Send synchronization information with returned data

● “Vector warning” or frame start, data valid
 KATCP: communication protocol interfacing to BORPH
– Can be implemented over TCP telnet connection
– Libraries and clients for C, Python
– KATCP MATLAB client (replaces read_xps, write_xps)

● Can program FPGA from directly from MATLAB – no more JTAG cable!
● Provides byte-level read/write granularity
● Increases speed from ~Kb/s to ~Mb/s

(Room for improvement; currently high protocol overhead)
 Towards streaming
– Transition to TCP/IP-based protocols facilitates streaming
– Ethernet streaming w/o going through shared memory

12.44

Summary

 MATLAB/Simulink is an environment for algorithm modeling and
optimized hardware implementation
– Bit-true cycle-accurate model can be used for functional

verification and mapping to FPGA/ASIC hardware
– The environment is suited for automated architecture

exploration using high-level scheduling and retiming
– Test vectors used in algorithm development can also be used

for functional verification of fabricated ASIC
 Enhancements to traditional FPGA-based verification
– Operating system can be hosted on an FPGA for remote access

and software-like execution of hardware processes
– Test vectors can be hosted on FPGA for real-time data

streaming (for data-limited or high-performance applications)

12.45

Simulink-Hardware Flow 249

refinements include operating system support for remote access and real-time data streaming. The
use of the design environment presented in Chaps. 9, 10, 11, and 12 will be exemplified on several

Slide 12.46

Next several slides briefly show ILP
formulation of scheduling and
retiming. Retiming step is the
bottleneck in CPU runtime for
complex algorithms. Several
approaches for retiming are
compared in terms of runtime and
optimality of results.

Slide 12.47

Scheduling and retiming routines
are the essence of architectural
transformations, as described in
Chap. 11. By employing
scheduling and retiming, we can do
parallelism, time-multiplexing
(folding), and pipelining. This slide
shows a traditional model for
scheduling and retiming based on
ILP formulation.

The objective is to minimize
cost function cp·Mp, where Mp is
the number of processing elements
of type p and cp is the normalized
cost of the processing element Mp.

For example, processing element of type 1 can be an adder; processing element of type 2 can be a
multiplier; in which case M1 is the number of adders, M2 is the number of multipliers, etc. If the
normalization is done with respect to the adders, c1 is 1, c2 can be 10 to account for the higher area
cost of the multipliers. Constraints in the optimization are that the number of processes of type p
executed in any cycle cannot exceed available resources (Mp) for that process, and that each node xuj
of the algorithm is scheduled once during N cycles. To ensure correct functionality, precedence

Integer Linear Programming Models
for Scheduling and Retiming

Appendix

Basic ILP Model for Scheduling and Retiming

 Case 1: r = 0 (scheduling only, no retiming): sub optimal
 Case 2: r 0 (scheduling with retiming): exponential run time

12.47

wf = N · w d + A · p + N · A · r 0 Precedence constraints

Scheduling Retiming

Minimize

Subject to

Mp : # of PEs of type p

Resource constraint

Each node is scheduled once

·p p
p

c M

| |

1
p

V

u
ijx M

1

1
N

j
ijx

examples in Chaps. 13, 14, 15, and 16.

250 Chapter 12

constraints have to be maintained as described by the last equation. By setting the retiming vector to
0, the optimization reduces to scheduling and does not yield optimal solution. If the retiming vector
is non-zero, the ILP formulation works with a number of unbounded integers and results in
exponential run-time, which is impractical for large designs. Therefore, an alternate problem
formulation has to be specified to ensure feasible run-time and optimal result.

Slide 12.48

Improved scheduling formulation is
shown here. The algorithm
separates scheduling and retiming
routines in order to avoid
simultaneously solving a large
number of integer variables (for
both scheduling and retiming).
Additional constraint is placed in
scheduling to enable optimal
retiming after the scheduling step.
The additional constraint specifies
that all loops should have non-zero
latency, which allows proper
movement of registers after
scheduling. The retiming

inequalities are then solved using polynomial-complexity Bellman-Ford algorithm. By decoupling
scheduling and retiming tasks, we can achieve optimal results with feasible run-time.

Slide 12.49

Scheduling and retiming solutions
are compared on this slide for the
case of a wave digital filter.
Normalized area, power and CPU
runtime are shown for varying
folding factors. It can be seen that
scheduling and retiming (methods 2
and 3) always improve the results in
comparison to a scheduling-only
approach (method 1). In some
cases, scheduling does not even
find a solution (folding factors 2, 3,
6, and 7). Methods 2 and 3 achieve
optimal solutions, but they vary in
run-time. Method 2 is a traditional

ILP approach that simultaneously solves scheduling and retiming problems. To make a best-case
comparison, we bound the retiming variables in the close proximity (within ±1) of the solution. Due
to the increased number of variables, method 2 still takes very long time. In method 3, we use

B · (w + (A · p d) / N) 0 Loop constraints to ensure
feasibility of retiming

Each node is scheduled once

wf = N · w d + A · p + N · A · r 0

In
te

ge
r L

in
ea

r P
ro

gr
am

m
in

g
Be

llm
an

-F
or

d

A · r (w + (A · p d) / N) Retiming inequalities solved by
Bellman-Ford (B-F) Algorithm

Time-Efficient ILP Model for Scheduling & Retiming

Precedence constraints

Simulink
Arch.Opt

12.48

 Feasible CPU runtime (polynomial complexity of B-F algorithm)

Minimize

Subject to

Mp : # of PEs of type p

Resource constraint

Each node is scheduled once

·p p
p

c M

| |

1
p

V

u
ijx M

1

1
N

j
ijx

Example: Wave Digital Filter

Method 3 (Sch. + B-F retiming):
 Power & Area optimal
 Reduced CPU runtime

Method 3 yields optimal solution with feasible CPU runtime

3 4 5 6 7 8
10

-2

10
0

10
2

10
4

10
6

Folding Factor

C
PU

 R
un

tim
e

(s
ec

)

1 2 3 4 5 6 7 8 9
0

0.2
0.4
0.6
0.8
1.0

Folding Factor

A
re

a
(N

or
m

.)

1 2 3 4 5 6 7 8 9
0

0.2
0.4
0.6
0.8
1.0

Folding Factor

Po
w

er
 (N

or
m

.)

Optimal
Suboptimal
No solution

scheduling

scheduling + retiming

scheduling

scheduling + retiming

Method 1

Method 2 (*)

Method 3

Architecture ILP scheduling:
 Method 1: Scheduling
 Method 2: Scheduling + retiming
 Method 3: Sched. + Bellman Ford

(*) reported CPU runtime for Method 2 is
very optimistic (bounded retiming variables)

Goal: architecture optimization in area-power-performance space

12.49

Simulink-Hardware Flow 251

unbounded retiming variables, but due to separation of scheduling and retiming, a significantly
reduced CPU runtime is achieved. The retiming variables are decoupled from the ILP and appear in
the Bellman-Ford algorithm (polynomial time complexity) once ILP completes scheduling.

References

 W.R. Davis et al., "A Design Environment for High Throughput, Low Power Dedicated
Signal Processing Systems," IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 420-431, Mar.
2002.

 K. Kuusilinna, et al., "Real Time System-on-a-Chip Emulation," in Winning the SoC Revolution,
by H. Chang, G. Martin, Kluwer Academic Publishers, 2003.

 D. Markovi , A Power/Area Optimal Approach to VLSI Signal Processing, Ph.D. Thesis,
University of California, Berkeley, 2006.

 R. Nanda, DSP Architecture Optimization in Matlab/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

 R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in
Matlab/Simulink Environment," in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193.

 D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Efficient VLSI
Architectures for Communication Signal Processing," in Proc. Int. Conf. Communications, June
2006, vol. 7, pp. 3223-3228.

 D. Markovi , et al., "ASIC Design and Verification in an FPGA Environment," in Proc.
Custom Integrated Circuits Conf., Sept. 2007, pp. 737-740.

 C. Chang, Design and Applications of a Reconfigurable Computing System for High
Performance Digital Signal Processing, Ph.D. Thesis, University of California, Berkeley,
2005.

 H. So, A. Tkachenko, and R.W. Brodersen, "A Unified Hardware/Software Runtime
Environment for FPGA-Based Reconfigurable Computers using BORPH," in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, 2008, pp. 259-264.

Part IV

Design Examples: GHz to kHz

Slide 13.1

This chapter discusses DSP
techniques used to design digitally
intensive front ends for radio
systems. Conventional radio
architectures use analog
components and RF filters that do
not scale well with technology, and
have poor tunability required for
supporting multiple modes of
operation. Digital CMOS scales
well in power, area, and speed with
each new generation, and can be
easily programmed to support
multiple modes of operation. In
this chapter, we will discuss

techniques used to “digitize” radio front ends for standards like LTE and WiMAX. Signal
processing and architectural techniques combined will be demonstrated to enable operation across
all required channels.

Slide 13.2

Cellular and wireless LAN devices
are becoming more and more
complex every day. Users want
seamless Internet connectivity and
GPS services on the go. Data
channels in emerging standards like
LTE and WiMAX are spread across
widely varying frequency bands.
The earlier practice was to build a
separate front end for each of these
bands. But this leads to excess area
overhead and redundancy. In this
scenario, a single device capable of
transmitting and receiving data in a
wide range of frequency bands

becomes an attractive solution. The idea is to enable a radio system capable of capturing data at
different RF frequencies and signal bandwidths, and adapt to different standards through external
tuning parameters. Circuit designers will not have to re-design the front end for new RF carriers or
bandwidth. Compared to its dedicated counterpart, there will be overhead associated with designing
such flexible front ends. Hence, the main objective is to implement a tunable radio with minimal
cost by maximizing digital signal processing techniques. This chapter takes a look at this problem
and discusses solutions to enable reconfigurable radios.

PHY
physical layer

Flexible radio

Digital Signal Processing

WLAN Cellular
 Flexible radios
– Large # of frequency bands
– Integrate GPS and WLAN
– Demands high complexity,

low power

 New wide-band standards
– Long term evolution (LTE)

cellular – 2.0 GHz to 2.6 GHz
– WiMAX – 2.3 GHz to 2.7 GHz

 Digital front ends (DFE)
– DSP techniques for high

flexibility with low power

Motivation

13.2

Multi-GHz Radio DSP

Chapter 13

with Rashmi Nanda
University of California, Los Angeles

 DOI 10.1007/978-1-4419-9660-2_13, © Springer Science+Business Media New York 2012
255D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

256 Chapter 13

Slide 13.3

Flexibility in radio circuits will
enable the deployment of cognitive
radios in future wireless devices.
Cognitive radios allow secondary
users to utilize the unused spectrum
of the primary user. The spectrum-
sensing phase in cognitive radios
detects the available carrier
frequencies and signal bandwidths
not presently being utilized by the
primary user. The tunable radio
frontend then makes use of this
information to send and receive
data in this available bandwidth. A
low cost digital frontend will enable

easy reconfiguration of transmit and receive RF carriers as well as the signal bandwidths.

Slide 13.4

The traditional architecture of radio
receiver frontends has RF and
analog components to support the
signal conditioning circuits. The RF
signal received from the antenna is
filtered, amplified, and down-
converted before being digitized by
the ADC and sent to the baseband
blocks, as shown in the receiver
chain in the figure. The RF and
analog components in the system
work well when operating at a
single carrier frequency and known
signal bandwidth. The problem
arises when the same design has to

support multi-mode functionality. The front end needs programmable blocks if multiple modes are
to be supported in a single integrated system. Incorporating programmability in RF or analog blocks
is very challenging. Designers face several issues while ensuring acceptable performance across wide
range of frequency bands. The RF filter blocks are a big bottleneck due to their inflexibility and huge
design cost. Also, power consumption in analog blocks does not scale well with scaled technology,
making the design process considerably more difficult for new generations of CMOS.

Next Generation: Cognitive Radios

 Spectrum sensing extracts
– Available carrier frequency
– Data bandwidth

 Tunable receiver/transmitter uses the available spectrum
 Flexible radios are enablers of cognitive radios

Spectrum
Sensing

Tunable
Radios

13.3

Conventional Radio Rx Architecture

D
S
P

ADC

Antenna

LO0
90

Pre-selection
filter

LPF

LPF

LNA
ADC

Issues:
 Re-configurability for multi-standard support
– Variable carrier frequency, bandwidth, modulation schemes
– Difficult to incorporate tuning knobs in analog components
– RF filters tend to be inflexible, bulky and costly

 Power consumption in analog components does not scale well
with technology

13.4

Multi-GHz Radio DSP 257

Slide 13.5

The increasing speed of digital
CMOS with each new technology
generation, led to the idea of
moving more and more of the
signal conditioning circuits to the
digital domain. In the most ideal
scenario, the receiver digital front-
end (DFE) will enable direct
digitization of the RF signal after
low-noise amplification in the
receiver chain, as shown in the
bottom figure in the slide. The
digital signal is then down-
converted and filtered before being
sent to the baseband modem. In

this approach, almost all the signal conditioning has been moved to the mixed-signal/digital domain.

Slide 13.6

The main benefits of this idea are
easy programmability, small area
and low power of the DSP
components, which replace the RF
and analog blocks. But in doing so,
we have pushed a large part of the
computational complexity into the
ADC, which must now digitize the
incoming RF signal at GHz speeds
(fs1) [1], while also ensuring
sufficient dynamic range necessary
for wideband digitization. Also,
some of the DSP blocks in the
DFE chain must now process
signals at GHz sample rates. To

mitigate the difficulties of high-speed, high dynamic range ADC design, other intermediate
realizations for digital front ends have been proposed in literature. In [2], the ADC design
constraints were relaxed by first down-converting the received signal to an intermediate frequency,
followed by analog filtering and subsequent digitization at 104 Ms/s. In [3], the authors use discrete-
time signal processing approaches for signal conditioning. We take a look at the design challenges
and advantages associated with adopting a wholly digital approach in radio receiver design. This will
enable us to understand challenges associated with high-speed DSP applications.

DFE: Benefits and Challenges

[1] N. Beilleau et al., "A 1.3V 26mW 3.2GS/s Undersampled LC Bandpass ADC for a SDR ISM-band
Receiver in 130nm CMOS," in Proc. Radio Frequency Integrated Circuits Symp., June 2009,
pp. 383-386.

[2] G. Hueber et al., "An Adaptive Multi- Mode RF Front-End for Cellular Terminals, " in Proc. Radio
Frequency Integrated Circuits RFIC Symp., June 2008, pp. 25-28.

[3] R. Bagheri et al., "An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS," in Proc.
Int. Solid-State Circuits Conf., Feb. 2006, pp. 480-481.

 Benefits:
– Easy programmability
– Small area and low power of the DSP components

 Challenges:
– More complex ADC, which has to work at GHz speeds [1]

– Some DSP blocks have to process GHz-rate signals
 Some existing solutions:
– Intermediate-frequency ADC, analog filtering and digitization [2]

– Discrete-time signal processing for signal conditioning [3]

13.6

Digitizing the Rx Front End (DFE)

D
S
P

ADC

Antenna

LO0
90

Pre-selection
filter

LPF

LPF

LNA
ADC

Antenna

Pre-selection
filter

LNA

DSPRx DFE

Fs1 Fs2

ADC

MODEM

13.5

258 Chapter 13

Slide 13.7

The ADC in the receiver chain
takes the RF signal as input and
digitizes it at frequency fs1. The
digitized signal is first down-
converted using a mixer/digital
multiplier. This baseband signal has
bandwidth in the order of 0–20
MHz for the current cellular and
WLAN standards. The sampling
frequency fs1, however, is in the
GHz range, making the signal
heavily over-sampled. The
MODEM at the end of the receiver
chain accepts signals at frequency
fs2, typically in the MHz range, its

value being dictated by the standard. The Rx DFE blocks must down-sample the baseband signal
from sample rate fs1 to the MODEM sampling rate of fs2. This down-sampling operation must be
performed with negligible SNR degradation. Also, for full flexibility, the DFE must be able to
down-sample from arbitrary frequency fs1 to any baseband MODEM frequency fs2. This processing
must be achieved with power dissipation and area comparable to or less than the traditional RF
receivers built with analog components.

Slide 13.8

Up to now we have talked about
the digitization of the receiver
front-end chain. The same concept
applies to the transmitter chain as
well. The top figure in the slide
shows the conventional transmitter
architecture. The low-frequency
baseband signal from the MODEM
is converted to an analog signal
using a digital-to-analog converter.
This signal is then low-pass filtered,
amplified, and up-converted to the
RF carrier frequency using analog
and RF blocks. Incorporating
flexibility with minimum power and

area overhead in the analog and RF blocks, again, prove to be a bottleneck in this implementation.
The bottom figure in the slide shows the proposed Tx DFE implementation [4]. Here, the signal
conditioning circuits have been moved to the digital domain with the objective of incorporating
flexibility in the design components, and also to avoid problems of linearity, mismatch, and dynamic
range, commonly associated with analog circuits.

Rx DFE Functionality

Sample-rate
Conversion Channelization

fs1 fs1

fs2 fs2

fs2 fs2

fs2 fs2f f

I/Q down-
conversion

Convert from ADC
frequency fs1 to

modem frequency
fs2 with negligible
SNR degradation

Antenna

Pre-selection
filter

LNA

DSPRx DFE

fs1 fs2

ADC

MODEM

LO0
90

13.7

Digitizing the Tx Front End (DFE)

DSP

fs1fs2

DAC

MODEM

Antenna

LO

RF filter PA

fs2

fs2

DAC

DAC

Antenna

PA

LPF

LPF
0

90

Tx DFE
RF filter

D
S
P

[4] P. Eloranta et al., "A Multimode Transmitter in 0.13 um CMOS Using Direct-Digital RF Modulator,"
IEEE J. Sold-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007.

[4]

13.8

Multi-GHz Radio DSP 259

Slide 13.9

The Tx DFE up-samples the
incoming baseband signal from rate
fs2 (MODEM sampling rate) to the
higher sampling rate fs1 at the D/A
input. Over-sampling the signal is
necessary for more than one
reason. Firstly, the spectral images
at multiples of the baseband
sampling frequency can be
suppressed by digital low-pass
filtering after over-sampling.
Secondly, the quantization noise
spreads across a larger spectrum
after over-sampling, with the
amplitude reducing by 3dB for

every doubling of sampling frequency, provided the number of digital bits in the data stream is not
reduced. Noise amplitude reduction is necessary to satisfy the power emission mask requirement in
the out-of-band channels. The degree of over-sampling is determined by the extent to which
quantization noise power levels need to be suppressed.

Over-sampling, however, is not without its caveats. A large part of the complexity is now pushed
to the D/A converter, which must convert digital bits to analog signals at GHz rates. The Tx DFE
structure must provide up-sampling and low-pass filtering of spectral images at small power and area
overhead, to allow larger power headroom for the D/A converter. To ensure full flexibility, the
DFE chain must up-sample signals from any MODEM frequency fs2 to any D/A frequency fs1. Also,
this up-sampling should be done with an acceptable value of error vector magnitude (EVM) of the
transmitted signal.

Slide 13.10

The slide shows examples of
flexibility requirements for present-
day cellular and WLAN standards
like long-term evolution (LTE) and
the wireless MAN (WiMAX
802.16). The RF carrier frequencies

2.69GHz in the uplink (transmitter
chain) and 2.11–2.69GHz in the
downlink (receiver chain). The
signal bandwidth ranges between
1.25–20MHz. The RF carrier
frequencies determine the
bandwidth of the direct conversion
ADC, and consequently the value

of fs1, the ADC sampling frequency. The signal bandwidth determines the MODEM sampling

Channel
BW [MHz]

Sampling Frequency [MHz]
LTE WiMAX

1.25 1.92 -
2.5 3.84 -
5 7.68 5.6
7 - 8

8.75 - 10
10 15.36 11.2
15 23.04 -
20 30.72 22.4

 Wide range of RF carrier frequencies
 Support for multiple data bandwidths & MODEM frequencies

Example: LTE & WiMAX Requirements

Uplink (LTE) 1.92-2.4 GHz
Downlink (LTE) 2.1-2.4 GHz

WiMAX 2.3-2.69 GHz

MODEM Frequencies

13.10

Tx DFE Functionality

Sample-rate
Conversion

fs2 fs2

fs1 fs1

I/Q up-
conversion

Convert from MODEM
frequency fs1 to RF
frequency fs2 while
maintaining EVM

DSP

fs1fs2

DAC

MODEM

Antenna

PA
Tx DFE

RF filter

LO0
90

13.9

can be anywhere between 1.92–

260 Chapter 13

frequencies (fs2) for both DFEs. The table shows corresponding MODEM sampling frequency for
different signal bandwidths for the LTE and WiMAX standards. The MODEM sampling
frequencies are slightly greater than the channel bandwidth (Nyquist rate). This is due to the
presence of extra bits for guard bands and headers, which increase the actual signal bandwidth. In
the next slides we look at the design challenges associated with the design of digital front-end
receivers and transmitters.

Slide 13.11

The first challenge in the design of
direct-conversion receivers is the
implementation of the high speed
A/D converter. The sampling rate
must be high since the RF signal is
centered at a GHz carrier ranging
between 2 and 2.7GHz for
LTE/WiMAX. According to
Nyquist criterion, a sampling
frequency of 4 to 5.4GHz is
required for direct RF signal
digitization. For example, the slide
illustrates an ADC bandwidth of 4
GHz required to digitize a signal
centered at 2 GHz. A point to note

is that the signal bandwidth is much smaller than the RF carrier frequency (in the order of MHz).
Nevertheless, if Nyquist criterion is to be followed then the sampling frequency will be dictated by
the RF carrier frequency and not the signal bandwidth. The second challenge stems from the SNR
specifications of greater than 50dB for current standards. This imposes a linearity requirement in
the range of 8–14 effective number of bits on the ADC. The ADC design is therefore constrained by
two difficult specifications of high sampling rate as well as high linearity.

Rx DFE Challenge #1: Very High-Speed ADC

 Nyquist criterion demands fs > 2fRF

 For RF carrier beyond 1 GHz, fs very high
 Digitizing the RF signal needs large ADC bandwidth
 High linearity requirements (8-14 ENOB)
 High dynamic range for wide-band digitization

2.7 +2.73.0 +3.0Freq. (GHz)

Nyquist criterion
ADC fs > 5.4 GHz

Low noise floor
for high SNR

13.11

Multi-GHz Radio DSP 261

Slide 13.12

After the ADC digitizes the
incoming RF signal at frequency fs1,
the digital signal must be down-
converted from the RF carrier to
the baseband. This has to be done
by a mixer/digital multiplier. Digital
multiplication at GHz rate is
practically infeasible or extremely
power hungry even for short
wordlengths (4–5 bits). The down-
sampling/decimation filters in the
DFE must process the high-speed
incoming data at frequency fs1.
Another problem lies in enabling
the processing of such high-speed

data with minimal power and area overhead, which is mandatory if the DFE is to be migrated to
mobile handset type of applications. Since the choice of fs1 and fs2 is arbitrary in both the Tx and Rx
chain, it will often be the case that the sample rate change factor (fs1/fs2) will be fractional. Supporting
fractional rate change factors becomes an additional complexity in the DFE design.

Slide 13.13

Processing of digital samples at
frequency fs1 in the ADC and the
DSP blocks is a primary bottleneck
in the receiver chain. The timing
constraints on the entire DFE chain
can reduce significantly, if fs1 can be
lowered through optimization
techniques. This reduction in
sample rate, however, must not
adversely affect the signal-to-noise
ratio. One such technique is under-
sampling or sub-Nyquist sampling.
Under-sampling exploits the fact
that the signal bandwidth in cellular
and WLAN signals is orders of

magnitude lower than the RF carrier frequency. Hence, even if we sample the RF signal at
frequencies lesser than the Nyquist value of 2fRF, a replica of the original signal can be constructed
through aliasing. When a continuous-time signal is sampled at rate fs, then post sampling, analog-
domain multiples of frequency band fs overlap in the digital domain. In the example shown here, an
RF signal centered at 2.7GHz is sampled at 2 GHz. Segments of spectrum in the frequency band of
1 to 3 GHz and −1 to −3 GHz fold back into the −1 to +1GHz sampling band . We ge t a replica o f
the original signal at 0.7GHz and −0.7GHz. This phenomenon is referred to as aliasing. If there is
no interference in the −1 to +1GHz spectrum range, then the signal replica at 0.7GHz is

Challenge #2: Down-Conversion & Decimation

 Rx DFE Design
– Carrier multiplication (digital mixing) at GHz frequencies
– Anti-aliasing filters next to the ADC function at GHz rate
– Architecture must support fractional decimation factors
– Low power requirement for mobile handset applications

Sample-rate
Conversion

fs1 fs1

fs2 fs2

ADC
fs1 > 1 GHz

High-speed
digital mixing

I/Q down
conversion

Decimate
b/w arbitrary

fs1 to fs2

High-speed
filtering

LO0
90

13.12

Under-Sampling

 Nyquist criterion
– Sample the RF signals at fs > 2fRF

 Sample at rate lower than Nyquist frequency
– Signal bandwidth << fRF
– Exploit aliasing, every fs folds back to the baseband

2.7 +2.73.0 +3.0Freq. (GHz) 0.7 +0.71.0 +1.0Freq. (GHz)

Nyquist sampling, fs > 2fRF Under-sampling, fs < 2fRF

13.13

262 Chapter 13

uncorrupted. Band-pass filtering before the A/D conversion can ensure this. The number of bits in
the ADC determines the total noise power, and this noise (ideally white) spreads uniformly over the
entire sampling frequency band. Lowering the sampling frequency results in quantization noise
spread in a smaller frequency band, as shown in the figure on the right, which has higher noise floor
levels. Hence, the extent of under-sampling is restricted by the allowed in-band noise power level.

Slide 13.14

We have now looked at the critical
constraints of bandwidth and
linearity imposed on the ADC. We
also looked at ways to reduce the
ADC sample rate. But achieving
linearity specifications of 50–60dB
is still difficult over a uniform ADC
bandwidth spanning several
hundred MHz. For smaller
bandwidth signals, a popular
approach is to reduce the noise in
the band of interest through over-
sampling and sigma-delta
modulation. Over-sampling is a
technique used to push down the

quantization noise floor in the ADC bandwidth. The total quantization noise power of the ADC
remains unchanged if the number of bits in the ADC is fixed. With higher sampling frequency, the
same noise power is spread over a larger frequency band, pushing down the noise amplitude levels.
After filtering, only the noise content in the band of interest contributes to the SNR, everything
outside is attenuated. Sigma-delta modulation is a further step towards reducing the noise power in
the signal band of interest. With this modulation, the quantization noise is shaped in a manner that
pushes the noise out of the band of interest leading to a higher SNR. The figure on the right shows
an example of this noise shaping.

In-band noise

Sigma-delta shaped
quantization noise

In-band noise

Flat quantization
noise spectrum

 Design constraints relax if number of bits in signal reduce
– Leads to more quantization noise
– Sigma-delta modulation shapes the quantization noise
– Noise is small in the signal band of interest

13.14

Sigma-Delta Modulation

Multi-GHz Radio DSP 263

Slide 13.15

The slide shows an example of
first-order sigma-delta noise
shaping. The noise shaping is
implemented by high-pass filtering
the quantization noise E(z), while
the incoming signal U(z) is
unaltered. The equations in the
slide illustrate the process for first-
order filtering with transfer
function H(z)=(1−z −1). Changing
this filter transfer function can
increase the extent of noise
shaping. Common practice is to use

noise power in the band of interest.

Slide 13.16

If the value of fs1 is quite large even
after under-sampling, then further
optimization is needed to enable
high-throughput signal processing.
One such technique is parallelism,
which will be utilized several times
in the course of DFE design. Time-
interleaved ADC is the common
term used for parallel ADCs. In this
case, the incoming continuous-time
signal is processed by N ADCs
running in parallel and operating at
sampling frequency fs/N, fs being
the sampling frequency of the
complete ADC. Time interleaving

uses multiple ADCs functioning with time-shifted clocks, such that the N parallel ADCs generate a
chunk of N continuous samples of the incoming signal. Adjacent ADC blocks operate on clocks
that are time shifted by 1/fs. For example, in the figure, for a 2-way parallel ADC, the system clock at
rate fs is split into two clocks, fclk1 and fclk2, which are time-shifted by 1/fs, and with equal frequency of
fs/2. Both clocks independently sample the input signal for A/D conversion. The output of the
ADC are 2 parallel channels of data that generate 2 digital samples of the input at rate fs/2, making
the overall sampling frequency of the system equal to fs. Although this is a very attractive technique
to increase the sample rate of any ADC, the method has its shortcomings. One problem is the
timing jitter between multiple clocks that can cause sampling errors. To avoid this, the use of a small
number (2–4) of parallel channels is recommended. With fewer channels, the number of clock

Parallel ADC Implementation

 Use parallelism to support high speed sampling
– Time-interleaved ADC structures

Runs multiple ADCs in parallel, P parallel channels of data

S/H

S/H

ADC1

ADC2

Offset/Gain error
adjustment

Offset/Gain error
adjustment

Clock
Distributionfsystem,clk

Analog
Signal

fclk1

fclk2
Out1

Out2

fclk1

fclk2

P = 2

13.16

Noise Shaping in Sigma-Delta Modulation

 Quantization noise shaping for reduced number of bits

+ + z 1u(n) y(n)
x(n) v(n) v(n 1)

e(n)

Quantization noise
high-pass filtered

Noise shaping function 1st order,
H(z) = 1 z 1x(n) = u(n) – y(n)

v(n) = x(n) + v(n – 1)
y(n) = v(n – 1) + e(n)
v(n) = u(n) – e(n)
y(n) = u(n – 1) + e(n) – e(n – 1)

Y(z) = z 1U(z) + E(z)·(1 – z 1)

13.15
higher-order IIR filters (2nd to 4th) in
the feedback loop to reduce the

264 Chapter 13

domains is less, and the timing jitter is easier to compensate through calibration mechanisms after
A/D conversion.

Slide 13.17

Once the incoming RF signal is
digitized, the next task is to down-
convert it to the baseband. For this
purpose, we require a digital mixer.
The mixer has two components, a
multiplier and a frequency
synthesizer. If the ADC sampling
frequency fs1 is in the GHz range,
then the multiply operation
becomes infeasible. Digital
sine/cosine signal generation is
usually implemented through look-
up tables or CORDIC units. These
blocks also cannot support GHz
sampling rates. Use of parallel

channels of data through time-interleaved ADCs is one workaround for this problem. N parallel
channels make the throughput per channel equal to fs1/N. This, however, does not quite solve the
problem, since to ensure timing feasibility of carrier multiplication, the value of N will have to be
very large leading to ADC timing jitter issues, discussed previously.

Slide 13.18

A solution to the carrier
multiplication problem is to make
the ADC sampling frequency
programmable. If the value of fs1 is
a function of fRF, then we can
ensure that after under-sampling
the replica signal is judiciously
positioned, so that we avoid any
carrier multiplication after all. For
example, in the figure shown in the
slide, fs1 = (4/3)·fRF. After under-
sampling, the replica signal is
created at frequency fRF/3 that
corresponds to the π/2 position in
the digital domain (fs1/2 being the π

position) [1]. The mixing process reduces to multiplication with sin(π/(2n)) and cos(π/(2n)), both of
which are elements of the set {1, 0, −1, 0}, when n is an integer. Hence, implementing the mixer
becomes trivial, requiring no look up tables or CORDIC units. Similarly fs1 = fRF can also be used, in
which case the replica signal is created at the baseband. In this case the ADC sampling and carrier

Carrier Multiplication

I/Q down-conversion

I path

Q pathfs1

ADC
Programmable
Sin / Cos wave

 Multiplication with sine and cosine fRF

– fRF is arbitrary with respect to ADC sampling frequency fs1

– Mixer will be digital multiplier, infeasible at GHz frequency
– Sine and cosine signals come from a programmable block
– Carrier generation also not feasible at high fs1

Digital front-end mixer

0
90

13.17

Optimized Carrier Multiplication

fRF +fRFfs +fs2/3fRF +2/3fRF

2/3fRF +2/3fRFfRF/3 +fRF/3

Under-sampling, ADC fs = 4/3·fRF

 Choose fs1 = 4/3·fRF
– Under-sampling of signal positions it at fs1/4 = fRF/3
– Sine and Cosine signals for fs1/4 {1,0, 1,0}

Digital front-end mixer

I/Q down-conversion

I path

Q pathfs1 = 4/3·fRF

ADC
0

90

[1] N. Beilleau et al., "A 1.3V 26mW 3.2GS/s Undersampled LC Bandpass ADC for a SDR ISM-band
Receiver in 130nm CMOS, " in Proc. RFIC Symp., June 2009, pp. 383-386.

[1]

13.18

Multi-GHz Radio DSP 265

mixing will be done simultaneously; but two ADCs will be necessary in this case to generate separate
I and Q data streams. A programmable PLL will be required for both these implementations in order
to tune the sampling clock of the ADC depending on the received carrier frequency.

Slide 13.19

After incorporating all the
optimization techniques discussed,
a possible implementation of the
Rx DFE is shown in the figure. The
receiver takes in the RF signal and
under-samples it at frequency
4·fRF/3. The ADC is time-
interleaved with four channels of
data. Under-sampling positions the
replica signal at π/2 after
digitization, making the mixing
process with cosine and sine waves
trivial. This is followed by
decimation by 16 through a
cascade-integrated-comb (CIC)

filter, which brings the sampling frequency down to fRF/12. The decimation by R CIC block is the
first programmable block in the system. This block takes care of the down-conversion by integer
factor R (variable value set by user). Following this block is the fractional sample rate conversion
block, which is implemented using a polynomial interpolation filter. The fractional rate change
factor is user specified. The polynomial interpolation filter has to hand-off data between two
asynchronous clock domains. The final block is the decimation-by-2 filter, which is a low-pass FIR.
In the next few slides we will discuss the DSP blocks shown in this system.

Slide 13.20

We earlier saw the phenomenon of
aliasing, when a continuous time
signal is under-sampled. The same
concept is applicable when a
discrete signal sampled at frequency
fs1 is down-sampled to a lower
frequency fs2. Any
noise/interference outside the band
(−fs2/2, fs2/2) folds back into the
baseband with an increased noise
level, as shown in Fig. (b). This
aliased noise can degrade the SNR
significantly. The DFE must
attenuate the out-of-band noise
through low-pass filtering (shown

 Sources of noise during sample-rate conversion
– Out-of-band noise aliases into desired frequency band
– DFE must suppress noise
– SNR degradation limited to 2-3 dB

Down-
sampling

2/3fRF +2/3fRF1/3fRF +1/3fRF 1/3fRF +1/3fRF

Increased
noise level

Rx DFE Sample-Rate Conversion

Filtered
noise level

(a) (b)

13.20

Rx DFE Architecture

Sample-rate conversion factor = = I·(1+f)

AD
C

AD
C

f s1
=

4/
3·

f R
F

Dec. by
16 CIC
filter

Dec. by
R CIC
filter

Polynomial
Interp.
Filter

Dec. by
2 FIR
filter

Asynchronous
clock domains

fs = fRF/12 fRF/(12·R) 2·fs2

Dec. by
16 CIC
filter

Dec. by
R CIC
filter

Polynomial
Interp.
Filter

Dec. by
2 FIR
filter

Prog. R

Decimation by I Decimation by (1+f)

I path

Q path

In
pu

t A
na

lo
g

Si
gn

al
 @

f R
F

Fractional dec.

fs1

2·fs2

fs2
(12-bits)

fs2
(12-bits)

13.19

266 Chapter 13

with the red curve in Fig. (a)) before down-sampling. The low-pass filtering reduces the noise
level shown by the dashed curve in Fig. (b). The SNR degradation from the output of the ADC to
the input of the MODEM should be limited to within 2–3dB, to maximize the SNR at the input of
the MODEM. One way to suppress this noise is through CIC filtering, which is attractive due to its
simple structure and low-cost implementation.

Slide 13.21

The slide shows an implementation
of a CIC filter used for down-
sampling by a factor of D. The
structure has an integrator followed
by a down-sampler and
differentiator. Frequency response
of this filter is shown on the left.
The response ensures that the
attenuation is small in the band of
interest spanning from –fs/D to
fs/D. The out-of-band noise and
interference lies in the band fs/D to
fs/2 and –fs/D to –fs/2. The filter
attenuates the signal in the out-of-
band region. Increasing the number

of CIC filter sections increases the out-of-band attenuation. The integrated transfer function of the
CIC filter for a single section and decimation factor D is shown at the bottom of the slide.
Characteristics of higher-order CIC filtering are discussed next.

Slide 13.22

The previous slide shows a single
integrator and differentiator section
in the CIC. An increase in
attenuation can be obtained with
additional sections. Although the
implementation of the filter looks
quite simple, there still remain a few
design challenges. Firstly, the
integrator is a recursive structure
that often requires long
wordlengths. This creates a primary
bottleneck with respect to the
maximum throughput (fs) of the
filter. In our system (Slide 13.19), a
CIC filter is placed just after the

ADC, where data streams can have throughput up to several hundred MHz. A second drawback of
the feedback integrator structure is its lack of support for parallel streams of data input. Since we

Cascaded CIC Decimation Filters

 Generalized CIC filters
– K cascaded section of integrators and differentiators
– K > 1 required for higher out of band attenuation
– Adjacent sections can be pipelined to reduce critical path

Input
signal
@ fs

K cascaded sections K cascaded sections
Output
signal
@ fs/D

(1 z D)K

(1 z 1)K
fs/2 +fs/2fs/D +fs/D

K = 2
K = 3

Z 1

+ + D

Z 1 Z 1 Z 1

13.22

D

Direct-mapped structure

Input
signal
@ fs

Output
signal
@ fs/D

Z 1

D

Input @ Fs Output @ Fs/DCIC

H1(z)
1

(1 z 1) H2(z) (1 z 1)
(1 z D)
(1 z 1)

Out-of-band noise
suppressionD {1, 2, 3, …}

fs/2 +fs/2fs/D +fs/D

Z 1

D

+

D

 Cascade integrated comb filters for integer decimation
 Direct mapped structure
–Recursive, long wordlength, throughput-limited
–Bigger gate sizes needed to support higher throughput

13.21

CIC Decimation Filters

Multi-GHz Radio DSP 267

would like to use time-interleaved ADCs, the CIC should be able to take the parallel streams of data
as input. In the next slide we will see how the CIC transfer function can be transformed to solve
both of these problems.

Slide 13.23

The CIC filter transfer function,
when expanded, is an FIR or feed-
forward function as shown in the
first equation on this slide. When
the decimation factor D is of the
form ax, the transfer function can
be expressed as a cascade of x units
decimating by a factor of a. In the
example shown in the slide, the
transfer function for decimation by
2N is realized using a cascade of
decimation-by-2 structures. The
number of such structures is equal
to N or log2(D) where D=2 N. The
decimation-by-2 block is simple to

implement requiring multiply-by-2 (shift operation) and additions when the original CIC has 2
sections. Also, the feed-forward nature of the design results in smaller wordlengths, which makes
higher throughput possible. An additional advantage of the feed-forward structure is its support for
parallel streams of data coming from a time-interleaved ADC. So, we get the desired filter response
along with a design that is amenable to high-throughput specifications. It may look like this
implementation adds extra area and power overhead due to the multiple sections in cascade,
however it should be noted that the successive sections work at lowered frequencies (every section
decimates the sampling frequency by 2) and reduced wordlengths. The overall structure, in reality, is
power and area efficient.

(1 z D)K

(1 z 1)KN = log2(D)

N
sections

2

Multi-section FIR

(1 z 1)K (1 z 1)KInput
@ fs

Output
@ fs/D

K = 2
example

(1 z 1)K (1 z 2)K(1 z 2
N 1

)K

H(z) H(z
1
D)D D

2 2

+Z 2

+

Z 1

 No recursion
 Shorter wordlengths
 Supports high throughput
 Feed-forward
 Can be parallelized for

multiple data streams
13.23

CIC Decimator Optimization

268 Chapter 13

Slide 13.24

Although integer sample-rate
conversion can be done using CIC
or FIR filters as shown earlier, these
filters cannot support fractional
decimation. Owing to the flexibility
requirement in the DFE, the system
must support fractional sample-rate
conversion. There a couple of ways
to implement such rate
conversions. One way is to express
the fractional rate conversion factor
as a rational number p/q. The signal
is first up-sampled by a factor of q
and then down-sampled by a factor
of p to obtain the final rate

conversion factor. For example, to down-convert from 10.1 MHz to 10 MHz, the traditional scheme
is to first up-sample the signal by a factor of 101 and then down-sample by 100, as shown in the
figure on the left. But this would mean that some logic components would have to function at an
intermediate frequency of 10.1 GHz, which can be infeasible. To avoid this problem, digital
interpolation techniques are used to reconstruct samples of the signal at the output clock rate given
the samples at the input clock rate. The figure shows digital interpolation of the output samples (red
dots), given the input samples (red dots). Since both clocks have different frequencies, the phase
delay between their positive edges changes every cycle by a difference of alpha (α), which is given by
the difference in the time-period of both clocks. This value of alpha is used to re-construct the
output samples from the input ones, through use of interpolation polynomials. The accuracy of this
re-construction depends on the order of interpolation. Typically, third-order is sufficient for 2–3 dB
of noise figure specifications. To minimize area and power overhead, fractional sample-rate
conversion should be done, as far as possible, at slow input clock rates.

Slide 13.25

The interpolation process is
equivalent to re-sampling. Given a
discrete signal at a certain input
clock fin, analog interpolation would
involve a digital to analog
conversion and re-sampling at
output clock fout using an ADC. This
method uses costly mixed-signal
components, and ideally we would
like to pursue an all-digital
alternative. As mentioned in the
previous slide, it is possible to
construct the digital samples at
clock fout, given the input samples at

Interpolation

 Analog interpolation
– Equivalent to re-sampling
– Needs costly front end components like ADC, DAC

 Digital interpolation
– Taylor series approximation

f (t) f (t) f ' (t)
()2

2!
f '' (t)

()3

3!
f ''' (t) ...

DAC LPF ADC

In sample
clock

Out sample
clock

Analog Interpolator

In Out
In

Taylor
Series Out

In sample
clock

buffer

Out sample
clock

Digital Interpolator

13.25

Delay1 = 0

Clk1 (10.1 MHz)

Clk2 (10 MHz)

Delay2 = Delay3 = 2

fs1

fs2

 101 100

10.1 MHz to 10 MHz

Intermediate freq. 10100 MHz

High intermediate frequency
power inefficient

Digitally interpolate red dots from the blue ones

Input
@ 10 MHz

 Transfer digital sample between clocks with different frequencies
– Clocks have increasing difference in instantaneous phase
– Phase increase rate inversely prop. to frequency difference

 Challenge: Phase delay increases by every clock cycle

13.24

Fractional Sample-Rate Conversion

Multi-GHz Radio DSP 269

clock fin and the time difference alpha (α) between both clocks. The process is equivalent to an
implementation of Taylor’s series, where the value of the signal at time τ +α is obtained by knowing
the value of the signal at time τ, and the value of the signal derivatives at time τ. This slide shows the
Taylor’s series expansion of a function at f(τ+α). The value of f(τ) is already available in the
incoming input sample. The remaining unknowns are the derivatives of the signal at time τ.

Slide 13.26

Signal derivatives can be obtained
by constructing an FIR transfer
function, which emulates the
frequency response of the
derivative function. For example,
the transfer function for the first
derivative in the Laplace domain is
s·F(s). This corresponds to a ramp-
like frequency response D1(w). This
ideal response will require a large
number of taps, if implemented

function. An optimization can be
performed at this stage, if the signal
of interest is expected to be band-

limited. For example, if the signal is band-limited in the range of −2π/3 to +2π/3 (−fs/3 to +fs/3),
then the function can emulate the ideal derivative function in this region, and attenuate the signals

response can be obtained with surprisingly small number of taps using an FIR function, leading to a
low-cost power-efficient implementation of the interpolator.

Slide 13.27

The slide shows a third-order
Taylor’s series interpolator. The
computation uses the first three
derivative functions D1(w), D2(w)
and D3(w). Following the
approximation techniques described
in the previous slide, the three
functions were implemented using
8-tap FIRs. The functions emulate
the ideal derivative response up to
0.7π, which will be referred to as
the upper useful frequency. Signals
outside the band of −0.7π to 0.7π
will be attenuated due to the

 Third-order truncation of the series is typically sufficient
 Implementing differentiators
– Implement D1(w) using an FIR filter
– Ideal response needs infinite # of taps
– Truncate FIR poor response at high frequencies

Ideal

Upper useful frequency

Practical Realization

f ' (t)
df
dt

dF(s)
dt

sF(s) jwF (w) D1(w)F(w)

|D1(w)|

+
w w

2 /3 +2 /3

13.26

Implementing Taylor Series

The Farrow Structure

 8 taps in the FIR to approximate differentiator Di(w)
 The upper useful frequency is 0.7
 C0 is an all-pass filter in the band of interest
 Structure can be re-configured easily by controlling parameter

yi
f i(nT)
i!

Z
output

D2(z)

C3 C2 C1 C0

x

: tuning parameter

D3(z) D1(z)

y3 y2 y1 y0

× + × ×+ +

++++

13.27

using a time-domain FIR type

outside this band, as shown in the right figure. This will not corrupt the signal of interest, with the
added benefit of attenuating the interference/noise outside the signal band. The modified frequency

270 Chapter 13

attenuating characteristics of the approximate transfer functions. The most attractive property of
this structure is its ability to interpolate between arbitrary input and output clocks. For different sets
of input and output clocks, the only change is in the difference between their time-periods alpha (α).
Since α is an external input, it can be easily programmed, making the interpolator very flexible. The
user need only make sure that the signal of interest lies within the upper useful frequency band of
(−0.7π, 0.7π), to be able to use the interpolator.

Slide 13.28

The unknown initial phase
difference between the input and
output clock becomes a problem
for the interpolation process. If
both clocks are synchronized so
that their first positive edges are
aligned at t =0 , as shown in the top
timing diagram, then the
interpolation method works. But if
there is an initial phase difference
between the two clocks at time t =
0, then the subsequent phase
difference will be the sum of the
initial phase difference and α.
Additional phase detection circuit

will be required to detect the initial phase. The phase detector can be implemented by tracking the
positive-edge transitions of both clocks. At some instant the faster clock has two rising edges within
one cycle of the slower clock. The interpolator calibrates the initial phase by detecting this event.

Slide 13.29

Now that we have looked at all the
components of the block diagram
for the Rx DFE shown in Slide
13.19, we can take a look at the
expected functionality of this Rx
DFE. The slide shows the
frequency spectrum after various
stages of computations in the DFE.
The top-left figure is the spectrum
of the analog input sampled at 3.6
GHz with a 5-bit ADC. The ADC
input consists of two discrete tones
(the tones are only a few MHz apart
and cannot be distinguished in the
top-left figure). The ADC noise

spectrum is non-white, with several spurious tones scattered across the entire band. The top-right

Decimation by 16
fs = 225 MHz

Decimation by 3.6621
fs = 61.44 MHz

Decimation by 2
fs = 30.72 MHz

fs = 3.6 GHz

Rx DFE Functionality

 Input uniformly quantized with 5 bits

13.29

Need additional circuitry to synchronize phase of both clocks

Polynomial
Interpolation

Filter

Asynchronous
clock domains

fRF /(6R) 2·fOUT

fRF /(6R)

2fOUT

Initial phase difference = 0

System works

fRF /(6R)

2fOUT

Initial phase difference 0

Needs phase alignment

 System assumes that asynchronous clocks start with equal phase

13.28

Clock-Phase Synchronization

Multi-GHz Radio DSP 271

figure shows the signal after decimation by 16 and at a sample rate of 225 MHz. The two input
tones are discernable in the top-right figure, with the noise beyond 225 MHz filtered out by the CIC.
This is followed by two stages of decimation, integer decimation-by-3 using CIC filters and
fractional decimation by 1.2207. The overall decimation factor is the product 3.6621, which brings
the sample rate down to 61.44 MHz. The resulting spectrum is shown in the bottom-left figure. We
can still see the two tones in the picture. The bottom-right figure shows the output of the final

MHz. This completes our discussion on the Rx DFE design and we move to Tx DFE design
challenges in the next slide.

Slide 13.30

The Tx DFE has similar
implementation challenges as the
Rx. The figure shows an example of
a Tx DFE chain. The baseband
signal from the MODEM is up-
sampled and mixed with the RF
carrier in the digital domain, before
being sent to a D/A converter.
High-speed digital-to-analog
conversion is required at the end of
the DFE chain. The digital signal
has to be over-sampled heavily, to
lower noise floor levels, as
discussed earlier. This would mean
that anti-imaging filters and digital

mixers in the Tx DFE chain would have to work at enormously high speeds. Implementing such
high-throughput signal processing and data up-conversion becomes infeasible without opportunistic
use of architectural and signal-processing optimizations. DRFC techniques [4] allow RF carrier
multiplication to be integrated in the D/A converter architecture. The D/A converter power has to
be optimized to lower the power consumption associated with digitally intensive Tx architectures.

Tx DFE: Low-Power Design Challenges

High-speed
filtering

Interpolate
b/w arbitrary

fs1 to fs2 High-speed
D/A + mixing

 Challenge #1: DAC design
– High speed digital-to-analog conversion required

 Challenge #2: Tx DFE design
– Carrier multiplication (digital mixing) at GHz frequencies
– Anti-imaging filters before DAC function at GHz rates
– Architecture must support fractional interpolation factors

Up-sampling

fs2 fs2

fs1 fs1

I/Q
up-conversion

LO0
90 DAC

[4] P. Eloranta et al., "A Multimode Transmitter in 0.13 um CMOS Using Direct-Digital RF Modulator,"
IEEE J. Sold-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007.

[4]

13.30

decimation-by-2 unit that filters out the second tone and leaves behind the signal sampled at 30.72

272 Chapter 13

Slide 13.31

The power consumption of the
D/A conversion block is directly
proportional to the number of bits
in the incoming sample. Sigma-delta
modulation can be used at the end

conversion, to reduce the total
number of bits going into the D/A
converter. We saw earlier that
sigma-delta modulation reduces the
noise in the band of interest by
high-pass filtering the quantization
noise. This technique reduces the
number of output bits for a fixed
value of in-band noise power, since

the noise introduced due to quantization is shaped outside the region of interest.

Slide 13.32

The implementation proposed in
[5] uses a 1-bit sigma-delta
modulator with third-order IIR
filtering in the feedback loop. A
second approach [6] uses 6-bit
sigma-delta modulator with 3
order IIR noise shaping. The high-
speed sigma-delta noise shaping
filters are the main challenge in the
implementation of these
modulators.

Implementation Techniques

 Typically use 1st to 3rd order IIR integrators as loop filters
– 1-bit sigma delta modulator with 3rd-order IIR [5]

– 6-bit sigma-delta modulator with 3rd-order IIR [6]

[5] A. Frappé et al., "An All-Digital RF Signal Generator Using High-Speed Modulators," IEEE J. Solid-
State Circuits, vol. 44, no. 10, pp. 2722-2732, Oct. 2009.

[6] A. Pozsgay et al., "A fully digital 65 nm CMOS transmitter for the 2.4-to-2.7 GHz WiFi/WiMAX
bands using 5.4 GHz RF DACs, " in Proc. Int. Solid-State Circuits Conf., Feb 2008, pp. 360-619.

u(n)
8 bits y(n)

1 bit

x(n)

e(n)
H(z) – 1

Recursive Loop

+ +

13.32

Noise Shaping in Transmitter

Feedback loop is an obstacle in supporting high sample rate fs2,
Typically use 1st to 3rd order IIR integrators as loop filters

DSP

fs1fs2

DAC

MODEM

Antenna

PA

Tx
DFE

RF filter

u(n)
8 bits y(n)

1 bit

x(n)

e(n)
H(z) – 1

Recursive Loop

+ +

13.31

rd -

of the transmitter chain before up-

Multi-GHz Radio DSP 273

Slide 13.33

The up-sampling process results in
images of the original signals at
multiples of the original sampling
frequency. In the figure, up-
sampling by 3 leads to the 3 images
shown in the spectrum on the right.
While transmitting a signal, the Tx
must not transmit power above a
maximum level in the spectrum
adjacent to its own band, since the
adjacent bands belong to a different
user. The adjacent-channel power
ratio (ACPR) metric measures the
ratio of the signal power in the
channel of transmission and the

power leaked in the adjacent channel. This ratio should be higher than the specifications set by the
standard. Hence, images of the original spectrum must be attenuated through low-pass filtering
before signal transmission. The common way is to do this through FIR and CIC filtering. The
filtering process must not degrade the error vector magnitude (EVM) of the transmit constellation.
The EVM represents the aggregate of the difference between the ideal and received vectors of the
signal constellation. High quantization noise and finite wordlength effects during filtering can lower
the EVM of the transmitted signal.

Slide 13.34

CIC filters are used for suppressing
the images created after up-
sampling. The CIC transfer
function is shown on the right in
the slide. The nulls of the transfer
function lie at multiples of the
sampling frequency fs, which are the
center of the images formed after
up-sampling. The traditional
recursive implementation of these
filters suffers from long
wordlengths and low throughput
due to the feedback integrator.
Optimization of these structures
follows similar lines of feed-

forward implementation as in the Rx.

CIC Interpolation Filters

 Direct-mapped structure
–Recursive, long wordlength, throughput-limited
–Bigger gate sizes needed to support higher throughput

U

Direct-mapped structure

Input
signal
@ fs

Output
signal
@ U·fs

Z 1

U

Input @ fs Output @ U·fsCIC

Image
suppressionU {1, 2, 3, …}

U·fs/2 +U·fs/2fs +fs

Z 1

+

UH2(z)
1

(1 z 1)K
H1(z) (1 z 1)K (1 z U)K

(1 z 1)K

13.34

Tx DFE Sample-Rate Conversion

Up
Sampling

fBB/2 +fBB/2 3fBB/2 +3fBB/2fBB/2 +fBB/2

Original spectrum unfolds U timesOriginal spectrum

U = 3

 Sources of noise during sample-rate conversion
– Images of the original frequency spectrum after up-sampling
– Images corrupt the adjacent unavailable transmission bands
– DFE must suppress these images created after up-sampling
– Image suppression should ensure acceptable ACPR & EVM

13.33

274 Chapter 13

Slide 13.35

CIC filters used for up-sampling
can also be expressed as feed-
forward transfer functions, as
shown in the first equation in the
slide. A cascade of x up-sampling
filters can implement the modified
transfer function, when the up-
sample factor U equals ax. The
example architecture shows up-
sampling by 2N. For a cascade of
two sections (K=2), the filter
architecture can be implemented
using shifts and adds. This
architecture avoids long
wordlengths and is able to support

parallel streams of output data as well as higher throughput per output stream.

Slide 13.36

The transmit DFE structure shown
in this slide can be regarded as the
twin of the Rx DFE (from Slide
13.19) with the signal flow reversed.
The techniques used for Tx
optimization are similar to those
used in the Rx architecture. The
only difference is that the sampling
frequency is higher at the output
end as opposed to the input end in
the Rx and all the DSP units up-
sampling/interpolation instead of
decimation. The polynomial
interpolation filter described for the
Rx DFE design can be used in the

Tx architecture as well for data handoff between asynchronous clock domains.

(1 z U)K

(1 z 1)K (1 z 1)K (1 z 2)K(1 z 2
N 1

)K

H(z) H(z
1
U)

(1 z 1)2 (1 z 1)2

2

U

N = log2(U)

U

2 2 N
sections

K = 2
example

 No recursion
 Shorter wordlengths
 Supports high throughput
 Feed-forward
 Can be parallelized for

multiple data streams

Z 1

+

13.35

CIC Interpolator Optimization

Final Tx DFE Architecture

In
pu

t B
as

eb
an

d
Si

gn
al

 f B
B Interpolate

by 2 FIR
filter

Polynomial
Interp.
Filter

Interp. by
R

Interp. by
16 CIC
Filter 2fRF

Asynchronous
clock domains

fs = 2fBB fs = fRF /(8R) fs = fRF /8

Programmable
CIC

Fractional sample-
rate conversion

Interpolate
by 2 FIR

filter

Polynomial
Interp.
Filter

Interp.
by R

Interp. by
16 CIC
Filter

I path

Q path

fs = 2fBB

2fRF

DAC
DAC

fs = fRF /8 fs = fRF /(8R)

13.36

Multi-GHz Radio DSP 275

Slide 13.37

Simulation results for Tx DFE are
shown in this slide. The input
signal was at the baseband
frequency of 30.72MHz and up-
converted to 5.4GHz. The
received signal PSD shows that the
output signal is well within the
spectrum mask and ACPR
requirement. The measure EVM
(error vector magnitude) was about
−47dB for the received spectrum.

Slide 13.38

In summary, this chapter talked
about implementation of receiver
and transmitter signal conditioning
circuits in a mostly digital manner.
The main advantages associated
with this approach lie in avoiding
non-linear analog components and
utilizing benefits of technology
scaling with new generations of
digital CMOS. Digitizing the
receiver radio chain is an ongoing
topic of research, mainly due to the
requirement of high-speed, high
dynamic-range mixed-signal
components. Sigma-delta

modulation and time interleaving are some techniques that could make such designs feasible. DSP
challenges and optimization techniques like use of feed-forward CIC filters, and polynomial
interpolators were also discussed in detail to handle the filtering, down/up-sampling and fractional
interpolation in the transceiver chain.

Tx DFE Functionality

 Input from baseband modem quantized with 12 bits

-20 -15 -10 -5 0 5 10 15 20
-120

-110

-100

-90

-80

-70

-60

-50

-20 -15 -10 -5 0 5 10 15 20
-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

PSD Tx

Tx Constellation

Rx Constellation

EVM ~ 47 dB

LTE Spectrum Mask

PS
D

(d
B/

H
z)

Freq (MHz)

PS
D

(d
B/

H
z)

Freq (MHz)

Q
-P

ha
se

Q
-P

ha
se

I-Phase

I-Phase

PSD Rx

13.37

Summary

 Digital front-end implementation
– Avoids analog non-linearity
– Power and area scales with technology

 Challenges
– High dynamic range ADC in receiver
– High throughput at Rx input and Tx output
– Minimum SNR degradation of received signal
– Quantization noise and image suppression at Tx output
– Fractional sample-rate conversion

 Optimization
– Sigma-delta modulation
– Feed-forward CIC filtering
– Farrow structure for fractional rate conversion

13.38

276 Chapter 13

References

 N. Beilleau et al., "A 1.3V 26mW 3.2GS/s Undersampled LC Bandpass Σ∆ ADC for a SDR
ISM-band Receiver in 130nm CMOS," in Proc. Radio Frequency Integrated Circuits Symp., June
2009, pp. 383-386.

 G. Hueber et al., "An Adaptive Multi-Mode RF Front-End for Cellular Terminals," in Proc.
Radio Frequency Integrated Circuits Symp., June 2008, pp. 25-28.

 R. Bagheri et al., "An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS,"
in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2006, pp. 480-481.

 P. Eloranta et al., "A Multimode Transmitter in 0.13 um CMOS Using Direct-Digital RF
Modulator," IEEE J. Sold-State Circuits, vol. 42, no. 12, pp. 2774-2784, Dec. 2007.

 A. Frappé et al., "An All-Digital RF Signal Generator Using High-Speed Modulators," IEEE
J. Solid-State Circuits, vol. 44, no. 10, pp. 2722-2732, Oct. 2009.

 A. Pozsgay et al., "A Fully Digital 65 nm CMOS Transmitter for the 2.4-to-2.7 GHz
WiFi/WiMAX Bands using 5.4 GHz RF DACs," in Proc. Int. Solid-State Circuits Conf., Feb
2008, pp. 360–619.

Slide 14.1

This chapter will demonstrate
hardware realization of
multidimensional signal processing.
The emphasis is on managing
design complexity and minimizing
power and area for complex signal
processing algorithms. As an
example, adaptive algorithm for
singular value decomposition will
be used. Power and area efficiency
derived from this example will also
be used as a reference for flexibility
considerations in Chap. 15.

Slide 14.2

The goal of the next two chapters is
to present design techniques that
can be used to build a universal
MIMO (abbreviation of multi-input
multi-output) radio architecture for
multiple signal bands or multiple
users. This flexible radio
architecture can be used to support
various standards ranging from
wireless LAN to cellular devices.
The design challenges are how to
integrate complex MIMO signal
processing, how to provide
flexibility to various operating
conditions, and how to extend the

flexibility to multiple signal bands.

Introduction to Chapters 14 & 15

 Goal: develop universal MIMO
radio that works with multiple
signal bands / users

 Challenges
– Integration of complex multi-

antenna (MIMO) algorithms
– Flexibility to varying operating

conditions (single-band)
– Flexibility to support

processing of multiple signal
bands

 Implication: DSP for distributed /
cooperative MIMO systems

PHY

Flexible radio

Digital Signal Processing

WLAN Cellular

14.2

MHz-rate Multi-Antenna Decoders:
Dedicated SVD Chip Example

Chapter 14

with Borivoje Nikoli
University of California, Berkeley

and Chia-Hsiang Yang
National Chiao Tung University, Taiwan

 DOI 10.1007/978-1-4419-9660-2_14, © Springer Science+Business Media New York 2012
277D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

278

Slide 14.3

In the following two chapters, we
will demonstrate design techniques
for dealing with complexity and
flexibility [1]. This chapter will
describe chip realization of a
MIMO singular value
decomposition (SVD) for fixed

design complexity. In the next
chapter, two MIMO sphere
decoder chips will demonstrate
varying levels of flexibility. The
first sphere decoder chip will
demonstrate the flexibility in
antenna array size, modulation

scheme, search method, and number of sub-carriers (single-band). The second sphere decoder chip
will extend the flexibility to support multiple signal bands and support both hard/soft outputs. As
shown in the table, the flexibility includes antenna array size (array sizes) from 2 2 to 8 8, number
of sub-carriers from 128 to 2048, modulation scheme 2-64QAM, and multiple bands from 1.25 to
20MHz.

Slide 14.4

We will start with background on
MIMO communication. Diversity-
multiplexing tradeoff in MIMO
channels will be introduced and
illustrated on several common
algorithms. After covering the
algorithm basics, architecture
design techniques for implementing
algorithm kernels will be described,
with emphasis on energy and area
minimization. The use of design
techniques will be illustrated on
dedicated MIMO SVD chip.

The Following Two Chapters will Demonstrate

 A 4x4 singular value decomposition in 2 GOPS/mW – 90 nm
 A 16-core 16x16 single-band multi-mode MIMIO sphere decoder

that achieves up to 17 GOPS/mW – 90 nm
 A multi-mode multi-band (3GPP-LTE compliant) MIMO sphere

decoder in < 15 mW (LTE specs < 6mW) – 65 nm

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

PE
8

PE
9

PE
10

PE
11

PE
12

PE
13

PE
14

PE
15

PE
16

register bank / scheduler

100 MHz

10 mW/mm2

256 MHz

60 mW/mm2

Array 4x4 2x2 - 16x16 2x2 - 8x8
Carriers 16 8-128 128-2048
Mod 2-16 PSK 2-64 QAM 2-64 QAM
Band 16 MHz 16 MHz 1.5-20 MHz

Reg. File Bank

128-2048 pt
FFT

Hard-output
Sphere

Decoder So
ft

-o
ut

pu
t B

an
k

k

Pr
e-

pr
oc

.

160 MHz

3 mW/mm2

Increasing level of
design flexibility

14.3

[1] C.-H. Yang, Energy-Efficient VLSI Signal Processing for Multi-Band MIMO Systems, Ph.D. Thesis,
University of California, Los Angeles, 2010.

[1]

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip

14.4

× ×

antenna array size, to demonstrate

Chapter 14

Dedicated MHz-rate MIMO Decoders 279

Slide 14.5

Multi-input multi-output (or
MIMO) communication systems
use multiple transmit and receive
antennas for data transmission and
reception. The function of the
MIMO decoder is to constructively
combine the received signals to
improve the system performance.
MIMO communication is inspired
by the limited availability of
spectrum resources. The spectral
efficiency has to be improved to
satisfy the increased demand for
high-speed wireless links by using
MIMO technology. MIMO

systems can increase data rate and/or communication range. In principle, multiple transmit antennas

extending the communication range. The DSP challenge is the MIMO decoder, hence it is the focus
of this chapter.

Slide 14.6

Given a MIMO system, there is a
fundamental tradeoff between
diversity and spatial multiplexing
algorithms [2], as shown in this
slide. MIMO technology is used to
improve the reliability of a wireless
link through increased diversity or
to increase the channel capacity
through spatial multiplexing. The
diversity gain d is characterized by
decreasing error probability as
1/SNRd. Lower BER or higher
diversity gain improves the path
loss and thereby increases the
range. The spatial multiplexing gain

r is characterized by increasing channel capacity proportional to r log(SNR). Higher spatial
multiplexing gain, for a fixed SNR, supports higher transmission rate per unit bandwidth. Both
gains can be improved using a larger antenna array, but for a given antenna array size, there is a
fundamental tradeoff between these two gains.

MIMO Communication System

 Why MIMO?
– Limited availability of unlicensed spectrum bands
– Increased demand for high-speed wireless connectivity

 MIMO increases data rate and/or range
– Multiple Tx antennas increase the transmission rate
– Multiple Rx antennas improve the signal reliability, equivalently

extending the communication range

Rx
array

...
Tx

array

channel
estimator

MIMO
decoders ... ŝ

MIMO
channel

M antennas N antennas

... ...

14.5

MIMO Diversity-Multiplexing Tradeoff

 Sphere decoding can extract both diversity and spatial
multiplexing gains
– Diversity gain d : error probability decays as 1/SNRd

– Multiplexing gain r : channel capacity increases ~ r·log (SNR)

Optimal tradeoff curve

14.6

[2] L. Zheng and D. Tse, "Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna
Channels," IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.

[2]

increase the transmission rate, and multiple receive antennas improve signal robustness, thereby

280 Chapter 14

Slide 14.7

Diversity algorithms, including
repetition and Alamouti schemes
[3], can only achieve the optimal
diversity gain (which is relevant to
the transmission range). In
contrast, Spatial-multiplexing
algorithms such as V-BLAST
algorithm [4], can only achieve the
optimal spatial multiplexing gain
(which is related to the transmission
rate). Then the question is how to
span the entire tradeoff curve to
unify these point-wise solutions,
and how can we do it in hardware?

Slide 14.8

This slide illustrates multi-path
wireless channel with multiple
transmit and multiple receive
antennas. MIMO technology can
be used to improve robustness or
increase capacity of a wireless link.
Link robustness is improved by
multi-path averaging as shown in
this illustration. The number of
averaging paths can be artificially
increased by sending the same
signal over multiple antennas.
MIMO systems can also improve
capacity, which is done by spatially
localizing transmission beams, so

that independent data streams can be sent over transmit antennas.

In a MIMO system, channel is a complex matrix H formed of transfer functions between
individual antenna pairs. Vectors x and y are Tx and Rx symbols, respectively. Given x and y, the
question is how to estimate gains of these spatial sub-channels.

Most Practical Schemes are Suboptimal

 Diversity maximization: repetition, Alamouti
 Spatial multiplexing maximization: V-BLAST, SVD

Tradeoff curve of
Repetition and
Alamouti schemes

V-BLAST

 Optimal tradeoff: maximum likelihood detection (very complex)

14.7

[3] S. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," IEEE J.
Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.

[4] G.J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading
Environment when Using Multi-Element Antennas," Bell Labs Tech. J., pp. 41-59, 1996.

[4]
[3]

Multi-Path MIMO Channel

1st path,
1 = 1

2nd path,
2 = 0.6x y

Tx
array

Rx
array

MIMO channel: Matrix H

 Multi-path averaging can be used to improve robustness or
increase capacity of a wireless link

14.8

Dedicated MHz-rate MIMO Decoders 281

Slide 14.9

Singular value decomposition is an
optimal way to extract spatial
multiplexing gains [5]. Channel

and V, where U and V are unitary,
and is a diagonal matrix. With
partial channel knowledge at the
transmitter, we can project
modulated symbols onto V matrix,
essentially sending signals along
eigen-modes of the fading channel.
If we post-process received data by
rotating y along U matrix, we can
fully orthogonalize the channel
between x and y . Then, we can

send independent data streams through spatial sub-channels, which gains are described with
matrix.

This algorithm involves hundreds of adders and multipliers, and also dividers and square roots.
This is well beyond the complexity of an FFT or Viterbi unit. Later in this chapter, we will illustrate
design strategy for implementing the SVD algorithm.

Slide 14.10

SVD is just one of the points on
the optimal diversity-multiplexing
tradeoff curve; the point which
maximizes spatial multiplexing as
shown on the left plot.
Theoretically, optimal diversity-
multiplexing can be achieved with
maximum likelihood (ML)
detection. Practically, ML is very
complex and infeasible for large
antenna-array size. A promising
alternative to ML is the sphere
decoding algorithm. It can closely
achieve the maximum likelihood
(ML) detection performance with

several orders of magnitude lower computational complexity (polynomial vs. exponential). This
way, sphere decoder can be used to extract both diversity and spatial multiplexing gains in a
computationally efficient way.

Example 1: SVD Channel Decoupling

V†V

1

U
4

... U†

z'1

z'4

H = U · · V†
y' = ·x' + z'

Channel RxTx

y'x'
x y

Complexity: 100’s of add, mult; also div, sqrt

Architecture that minimizes power and area?

14.9

[5] A. Poon, D. Tse, and R.W. Brodersen, "An Adaptive Multiple-Antenna Transceiver for Slowly Flat-
Fading Channels," IEEE Trans. Communications, vol. 51, no. 13, pp. 1820-1827, Nov. 2003.

[5]

Example 2: Sphere Decoding

 The diversity-multiplexing tradeoff can be realized using
maximum-likelihood (ML) detection
 Sphere decoder can approximate ML solution with acceptable

hardware complexity

Spatial multiplexing (rate)

Di
ve

rs
ity

 (r
an

ge
)

Repetition
Alamouti

BLAST
SVD

Spatial multiplexing (rate)

Di
ve

rs
ity

 (r
an

ge
)

larger
array

smaller
array

Basic idea Adding flexibility

14.10

matrix H is a product of U, Σ, and

282 Chapter 14

Slide 14.11

Mathematically, we can formulate
the received signal y as Hs+n,
where H is the channel matrix
describing the fading gains between
any two transmit and receive
antennas. s is the transmit signal,
and n is AWGN. Theoretically,
the maximum-likelihood estimate is
optimal in terms of bit error rate
performance. It is achieved by
minimizing the Euclidean distance
of y Hs, where s is drawn from a
constellation set . Straightforward
approach is to use an exhaustive
search. As shown here, each node

represents one constellation point. The trellis records the decoded symbols. For M Tx antennas, we
have to enumerate all possible solutions, which have the complexity kM, and find the best one. Since
the complexity is exponential, it’s not feasible for practical implementation.

Slide 14.12

Another approach is the sphere
decoding algorithm. We decompose
the channel matrix H into Q R,
where Q is unitary and R is upper-
triangular. After the matrix
transformation, the ML estimate
can be written in another form,
which minimizes the Euclidean

ML Detection: Exponential Complexity

 Received signal:

 ML estimate:

 Approach 1: Exhaustive search, O(kM)

Pre-
proc.

channel matrix

y MIMO
Decoder

n

s ŝ

H

... ...

Tx antennas

constellation
size

. . .

. . .

..
.

..
.

Q

…

…

…

…
I

k

M constellation set

14.11

y Hs n

2ˆ argminML s
s y Hs

Sphere Decoding: Polynomial Complexity

 Approach 2: Sphere decoding, O(M3)
– Idea: decompose H as H = QR
– Q is unitary, i.e. QHQ = I, R is an upper-triangular matrix

2

~

~
~

~

)s(R

)sRs(R
)sRsRs(R

y

y
y

MMM

M2M222

M1M212111

M

2

1

2Rsy

2

MMM

222

111

M

2

1

sR

sR
sR

b

b
b

ant-M

ant-2
ant-1

. . .

decoding
sequence

..
.

. . .

. . .

...

...
...

... ...
...

k

ant-M

ant-2
ant-1

search radius

..
.

. . .

. . .

...

...
...

... ...
...

k

ant-M

ant-2
ant-1

1

k

14.12

2ˆ arg min ,ML s

Hy QRs y ys 2 ,2y y HQy yHQy

By using the unique structure of R,
we decode s from antenna M first,
and use the decoded symbol to
decode the next one, and so on.
The decoding process can be
modeled as tree search. Each node

represents one constellation point and search path records the decoded sequence. Since the
Euclidean distance is non-decreasing as the increase of the search depth, we can discard the
branches if the partial Euclidean distance is already larger than the search radius.

distance 𝑦̃ −𝑅𝑠, where 𝑦̃ = 𝑄 𝑦. ∙

Dedicated MHz-rate MIMO Decoders 283

Slide 14.13

On average, the complexity of the
sphere decoding algorithm is
around cubic in the number of
antennas, O(M3). We can see a
significant complexity reduction for
16 16 64-QAM system in high
SNR regime. This reduced
complexity means one could
consider higher-order MIMO
systems and use extra degrees of
freedom that are made possible by a
more efficient hardware.

Slide 14.14

The sphere decoding algorithm is
mapped onto FPGA to compute
BER vs. SNR plots. The x-axis is
the Eb/N0, and the y-axis is the bit-
error rate. For the left plot, we see
that the performance of 4 4, 8 8,
and 16 16 is comparable, but the
throughput is different given a fixed
bandwidth. For example, the
throughput of 8 8 is twice faster
than 4 4. For the second plot, the
throughput of 4 4, 8 8 with
repetition coding by 2, and 16 16
with repetition coding by 4 is the
same, but the BER performance is

improved significantly. One interesting observation is that the performance of the 8 8 system with
repetition coding by 2 has outperformed the 4 4 system with the ML performance by 5dB. This
was made possible with extra diversity gain achieved by repetition.

Hardware Emulation Results

 Comparable BER performance of 4 4, 8 8, and 16 16, with
different throughput given a fixed bandwidth
 Repetition coding by a factor 2 reduces the throughput by 2 , but

improves BER performance
 An 8 8 system with repetition coding by 2 outperforms the ML

4 4 system performance by 5dB

0 5 10 15 20 2510
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

BE
R

repetition 2
8 816 16

repetition 4

4 4
8 8

16 16

64-QAM data
0 5 10 15 20 2510

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No (dB)

BE
R 4 4 ML

rep-2
8 8

rep-4
16 16

16-QAM data

4 4

5 dB

14.14

Complexity Comparison

 Maximum likelihood: O(kM)

 Sphere decoding: O(M3)

 Example: k = 64 (64-QAM), M = 16 (16 antennas)

– Sphere decoding has 1025 lower complexity!

 Reduced complexity allows for higher-order MIMO systems

14.13

×

×
× ×

×
×

× ×
×

×
×

284 Chapter 14

Slide 14.15

Implementation of the SVD
algorithm is discussed next. We will
show key architectural techniques
for dealing with multiple frequency
sub-carriers and large algorithm
complexity. The focus will be on
area and energy minimization.

Slide 14.16

This slide shows a block diagram of
an adaptive blind-tracking SVD
algorithm. The core of the SVD
algorithm are the U and V blocks,
which estimate corresponding
matrices. Hat symbol is used to
indicate estimates. Channel
decoupling is done at the receiver.
As long as there is a sizable number
of received symbols within a
fraction of the coherence time, the
receiver can estimate U and from
the received data alone. Tracking
of V matrix is based on decision-
directed estimates of the

transmitted symbols. V matrix is periodically sent to the transmitter through the feedback channel.

We derive MIMO decoder specifications from the following system: a 4 4 antenna system that
uses variable PSK modulation, 16MHz channel bandwidth and 16 sub-carriers. In this chapter, we
will illustrate implementation of the U algorithm and rotation along U matrix, which has over 80%
of complexity of the entire SVD.

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip

14.15

Adaptive Blind-Tracking SVD

 MIMO decoder specifications
– 4x4 antenna system; variable PSK modulation
– 16 MHz channel bandwidth; 16 sub-carriers

U†·y

V†·x'

V·x'

U

V

y'x' x y
Demod

mod

V

MIMO
channel

uplink
V x

x'

U
out

14.16

 ×

Dedicated MHz-rate MIMO Decoders 285

Slide 14.17

The U block performs sequential
estimation of the eigenpairs,
eigenvectors and eigenvalues, using
adaptive MMSE algorithm.
Traditionally, this kind of tracking
is done by looking at the eigenpairs
of the autocorrelation matrix. The
algorithm shown here uses vector-
based arithmetic with additional
square root and division, which
greatly reduces implementation
complexity.

These equations are meant to
show the level of complexity we
work with. On top, we estimate

components of U and matrices using adaptive LMS-based tracking algorithm. The algorithm also
uses adaptive step size, computed from the estimated gains in different spatial channels. Then we
have square root and division implemented using Newton-Raphson iterative formulas. The
recursive operation also means nested feedback loops.

Overall, this is about 300 adders, 400 multipliers, and 10 square roots and dividers. This kind of
complexity is hard to optimize at the RTL level and chip designers typically don’t like to work with
equations. The question is, how do we turn the equations into silicon?

Slide 14.18

This slide shows Simulink model of
a MIMO transceiver. With this
graphical timed data-flow model,
we can evaluate the SVD algorithm
in a realistic closed-loop
environment. The lines between
the blocks carry wordlength
information.

The first step in design
optimization is wordlength
optimization, which is done using
the floating-to-fix point conversion
tool (FFC) described in Chap. 10.
The goal is to minimize hardware
utilization subject to user-specified

MSE error at the output due to quantization. The tool does range detection for integer bits and uses
perturbation theory to determine fractional bits. Shown here are total and fractional bits at the top
level. The optimization is performed hierarchically due to memory constraints and long simulation
time.

LMS-Based Estimation of U

wi(k)=wi(k–1)+ i· [yi(k) ·yi
†(k) ·wi(k–1)– i

2(k–1) ·wi(k–1)]

i
2(k) =wi

†(k) ·wi(k)
ui(k)= wi(k) / i

2(k)

yi+1(k)= yi(k) – [wi
†(k) ·yi(k) ·wi(k)] / i

2(k)

y1(k)

U LMS
Deflation
Antenna 1

U LMS
Deflation
Antenna 2

U LMS
Deflation
Antenna 3

U LMS

Antenna 4

(i = 1,2,3,4)

 This complexity is hard to optimize in RTL
– 270 adders, 370 multipliers, 8 sqrt, 8 div

14.17

Wordlength Optimized Design

Demod-Mod
Delay = 1Tsys

check_us_block

angle_u

compare_u
compare_v

res_chk_10

res_chk_u
res_chk_v

diff_V

inout

trng/trck

in out

tr.seq.tx

EN

tr.per

errors

EN

enTck

EN

enNp

in out

delay-7

in out

delay-6.2

in out

delay-6.1

in out
delay-4

inout

delay-2.1

c4

A Z

YA Z

X1

AZ

X

c4

[1,-1]

nbits

ib/p

mod-x

V-Modulation:
ch-1: 16-PSK
ch-2: 8-PSK
ch-3: QPSK
ch-4: BPSK

AZ

V

1/z

x'

V
x

Tx: V*x'
[-1,1] sequence

[-1,1] sequence

xind

xin

outs

eCnt

np2

xout

A Z

W [4x4]

ky [4x1]
nPow nPow

Sigma [4x1]

nb [4x1]

ob/p

ib/p

nbits

en4

eCnt1

eCnt2

eCnt3

eCnt4

y [4x1]

r [4x4]

y [4x4]

ky [4x1]

Sig

In1 FFC

y c

eg
R

eg
R

AZ

x'

V
x

Rx: V*x'

y

U
y '

Rx: U'*y

Resource
Estimator

A Z

RY

xhat

y
Sigma

y [4x4]

u [4x4]

VOrth

PE V

y

r [4x4]

U [4x4]

Sigma

W [4x4]

PE U-Sigma

A Z

N

ib/p
nbits

Sigma
[-1,1]

mod

c4

A Z

KY

in

nbits ob/px y

Channel
H = U*S*V'

AWGN

AWGN
Channel

0

Ch-4 Bit Errs

0

Ch-3 Bit Errs

0

Ch-2 Bit Errs

0

Ch-1 Bit Errs

Sy stem
Generator

y

y

xhat
xhat'

x 12,9
12,8

10,8

12,8
14,9

12,8
8,5

12,9

12,11

10,8

U

V

FFC

14.18

286 Chapter 14

The next step is to go down the hierarchy and optimize what’s inside the blocks.

Slide 14.19

Data-stream interleaving is applied
to reduce area of the
implementation. Recursive
operation is the underlying principle
in the LMS-based tracking of
eigenmodes, so we analyze simple
case here to illustrate the concept.
Top diagram implements the
recursive operation on the right.
The output z(k) is a sum of current
input and delayed and scaled
version of previous output. Clock
frequency corresponds to the
sample time. This simple model
assumes ideal multiply and add

blocks with zero latency.

So, we refine the model by adding appropriate latency at the output of the multiply and add blocks.
Then we can take this as an opportunity to interleave multiple streams of data and reduce area
compared to the case of parallel realization. This is directly applicable to multiple carriers
corresponding to narrowband sub-channels.

If the number of carriers N exceeds the latency required from arithmetic blocks, we add
balancing registers. We have to up-sample computation by N and time-interleave incoming data.
Data stream interleaving is applicable to parallel execution of independent data streams.

Slide 14.20

For time-serial ordering, we use
folding. PE* operation performs a
recursive operation (* indicated
recursion). We can take output of
the PE* block and fold it over in
time back to its input or select
incoming data stream y1 using the
life-chart on the right. The 16 sub-
carriers, each carrying a vector of
real and imaginary data, are sorted
in time and space to occupy 16
consecutive clock cycles to allow
folding over antennas.

Both interleaving and folding
introduce pipeline registers to

Multi-Carrier Data-Stream Interleaving

Recursive operation:
z(k) = x(k) + c ·z(k – 1)

N data streams:

bm

c

a
xN … x2 x1

zN … z2 z1

time index k

y1 y2 … yN

time index k – 1

z

a+b+m=N
N· fclk

fclk

c

z(k)x(k)

y(k–1)
x1, x2, …, xN

Extra b registers
to balance latency

14.19

Architecture Folding

16 data streams
data sorting

16 clk cycles

y2(k)y3(k)y4(k)

c1c16

y1(k)

s=0s=1s=1s=1

PE*

4fclk

in0

1

s

y1(k)
in

y1(k)

y2(k)y3(k)

y4(k)

 Folding = up-sampling & pipelining
– Reduced area (shared datapath logic)

c1c16 c2

14.20

Dedicated MHz-rate MIMO Decoders 287

memorize internal states, but share pipeline logic to save overall area.

Slide 14.21

One of the key challenges in
implementing recursive algorithms
is loop retiming. This example
shows loop retiming for an iterative
divider that was used to implement
1/ i(k) in the formulas from Slide
14.17. Using the DFG
representation and simply going
around each of these loops; we
identify the number of latencies in
the multiplier, adder, multiplexer,
and then add balancing delays (d1,
d2) so that the loop latency equals
N, the number of sub-carriers. It
may seem that this is an ill-

conditioned system because there are more degrees of freedom than constraints, but that is not the
case. Multiplier and adder latency are both a function of cycle time.

Slide 14.22

In order to determine proper
latency in the multiplier and adder
blocks, their latency is characterized
as a function of cycle time. It is
expected that the multiplier has
longer latency than the adder due to
larger complexity. For the same
cycle time we can exactly determine
how much add and multiply latency
we need to specify in our
implementation. The latencies are
obtained using the characterization
flow shown on the left. We thus
augment Simulink blocks with
library cards for area, power, and

speed of the building blocks.

Challenge: Loop Retiming

 Iterative division:

L2

L1

 Loop constraints:
– L1: m + u + d1 = N
– L2: 2m + a + u + d2 = N

Opt: m, a, u
d1, d2

 Latency parameters (m, a) are a function of cycle time
14.21

(1) ()·(2 ())d d dk y k y ky

Block Characterization Methodology

Simulink

Synopsys

RTL

netlist

Area
Power

Speed

Switch-level
accuracy

HSPICE

12

9

6

3

0
0 1 2 3

cycle time (norm.)

la
te

nc
y

mult
add

Area
Power

Speed

14.22

288 Chapter 14

Slide 14.23

This loop retiming approach can be
hierarchically extended to an
arbitrary level of complexity. This
DFG shows the entire U block,
which has five nested feedback
loops. We use the divider and
square root blocks from lower level
of hierarchy as nodes in the top-
level DFG. Each of the lower
hierarchical blocks brings
information about latency of
primary inputs to primary outputs,
and internal loops. In this example,
the internal loops L1

(1) and L2
(1) are

shown on the left. The superscript
indicates the level of hierarchy. Additional latency constraints are specified for each loop at the next
level of hierarchy, level 2 in this example. Loops L1

(2), L4
(2), and L5

(2) are shown. Another point to
note is that we can leverage the use of delayed LMS by allowing extra sample period (N clock cycles)
to relax constraints on the most critical loop. This was algorithmically possible in the adaptive SVD.

After setting the number of registers at the top level, there is no need for these registers to cross
the loops during circuit implementation. We ran top-level retiming on the square root and divide
circuits, and compared following two approaches: (1) retiming of designs with pre-determined block
latencies as described in Slides 14.21 22, 2) retiming of flattened top-level design with

Slide 14.24

We can use synthesis estimates for
various hierarchical blocks and feed
them back into Simulink. Here are
power numbers for the U blocks.
About 80% of power is used for
computations and 20% for data
manipulation to facilitate
interleaving and folding. The blocks
do not have the same numerical
complexity or data activity, so
power numbers vary from 0.2% to
27.7%. We can back-annotate each
of these values early in the design
process and estimate required
power for various system

U Block: Power Breakdown

 “report_power –hier –hier_level 2”
(one hier level shown here)

0.
2%

27
.7

%
0.

3% 6.
0%

2.
1%

3.
0%

2.
5%

0.
9%8.

3%

5.
9%

5.
0%

0.
7%

0.
2%

2.
1%

3.
1%

8.
1% 7.

3%

1.
0%

3.
0%

2.
4%

~20% overhead for data streaming
14.24

Hierarchical Loop Retiming

 Divider
– IO latency

2m + a + u + 1 (div)
– Internal Loops

L1
(1): 2m + a + u + d1 = N

L2
(1): m + u + d2 = N

 Additional constraints
(next layer of hierarchy)
– L1

(2): div + 2m + 4a + 2u + d1 = N
– · · ·
– L4

(2): 3m + 6a + u + d4 = N
– L5

(2): 6m + 11a + 2u + d5 = N + N

(delayed LMS)

m
3a
u

sqrt

u
1

2m
3a

m

y

y’

y

L1

L4

L5

u 3m
5a

div

2m
4a

a

a
u

m

14.23

(, and 14.
latencies. The first approach took 15 minutes and the second approach took 45 minutes. When the
same comparison was ran for the UΣ block, hierarchical approach with pre-determined retiming
took 100 minutes, while flat top-level retiming did not converge after 40 hours! This clearly
illustrates the importance of top-level hierarchical retiming approach.

Dedicated MHz-rate MIMO Decoders 289

components. From this Simulink description, we can map to FPGA or ASIC.

Slide 14.25

This is the architecture we
implemented. Interleaving by 16
(16 sub-carriers) and folding by 4 (4
antennas) combined reduce area by

mapped parallel implementation.
In the energy-delay space, this
architecture corresponds to the
energy-delay sensitivity for a
pipeline stage of 0.8, targeting
0.4V operation. The architecture is
then optimized as follows:

Starting from a 16-bit realization
of the algorithm, we apply
wordlength optimization for a 30%

reduction in energy and area.

The next step is logic synthesis where we need to incorporate gate sizing and supply voltage
optimizations. From circuit-level optimization results, we know that sizing is the most effective at
small incremental delays compared to the minimum delay. Therefore we synthesize the design with
20% slack and perform incremental compilation to utilize benefits of sizing for a 40% reduction in
energy and a 20% reduction in area of the standard-cell implementation. Standard cells are
characterized for 1V supply, so we translate timing specifications to that voltage. At the optimal VDD
and W, energy-delay curves of sizing and VDD are tangent, corresponding to equal sensitivity.

Compared to the 16-bit direct-mapped parallel realization with gates optimized for speed, the
total area reduction of the final design is 64 times and the total energy reduction is 16 times. Major
techniques for energy reduction are supply voltage scaling and gate sizing.

Energy/Area Optimization

 SVD processor in Area-Energy-Delay Space
– Wordlength optimization, architecture optimization
– Gate sizing and supply voltage optimizations

Energy

DelayArea 0

40%

16b design

wordlength

sizing

30%

Initial synthesis

7x

VDD scalingOptim.
VDD, W

30%

20%

Interl.
13.8x

Fold
2.6x

Final design

64x lower area,
16x lower energy
compared to 16-b
direct mapping

14.25

36 times compared to direct-

290 Chapter 14

Slide 14.26

Here is the summary of all design
techniques and their impact on
energy and area. Main techniques
for minimizing energy are
wordlength reduction and gate
sizing (both reduce the switching
capacitance), and voltage scaling.
Area is primarily minimized by
interleaving and folding. Overall, 2
Giga additions per second per mW
(GOPS/mW) of energy efficiency
is achieved with 20GOPS/mm2 of
integration density in 90nm CMOS
technology. These numbers will
serve as reference for flexibility

explorations in Chap. 15.

Slide 14.27

Next, chip measurement results will
be shown. The chip implements
dedicated algorithm optimized for
reduced power and area. The
algorithm works with single
frequency band and does not have
flexibility for adjusting antenna-
array size.

Outline

 MIMO communication background
– Diversity-multiplexing tradeoff
– Singular value decomposition
– Sphere decoding algorithm

 Architecture design techniques
– Design challenges and solutions
– Multidimensional data processing
– Energy and area optimization

 Chip 1:
– Single-mode single-band
– 4x4 MIMO SVD chip

14.27

Summary of Design Techniques

 Technique  Impact
– Wordlength opt 30% Area (compared to 16-bit)
– Gate sizing opt  15% Area
– Voltage scaling  7x Power
– Loop retiming  (together with gate sizing)
– Interleaving  16x Throughput
– Folding  3x Area

 Net result
– Energy efficiency: 2.1 GOPS/mW
– Area efficiency: 20 GOPS/mm2

(90 nm CMOS, OP = 12-bit add)

14.26

Dedicated MHz-rate MIMO Decoders 291

Slide 14.28

The chip implements an adaptive
4 4 singular value decomposition in
a standard-Vt 90nm CMOS
process. The core area is 3.5mm2,
and the total chip area with I/O
pads is 5.1mm2. The chip is
optimized for 0.4V. It runs at
100MHz and executes 70GOPS
12-bit equivalent add operations,
consuming 34mW of power in full
activity mode with random input
data. The resulting power/energy
efficiency is 2.1GOPS/mW. Area
efficiency is 20GOPS/mm2. This
100MHz operation is measured

over 9 die samples in a range of 385 to 425mV.

Due to the use of optimization techniques for simultaneous area and power minimization, the
chip achieves considerable improvement in area and energy efficiency as compared to representative
chips from the ISSCC conference [6]. The numbers next to the dots indicate year of publication and
paper number. All designs were normalized to a 90nm process for fair comparison. The SVD chip is
therefore a demonstration of achieving high energy and area efficiencies for a complex algorithm.
The next challenge is to add flexibility for multiple operation modes with minimal degradation of
energy and area efficiency. This will be discussed in Chap. 15.

Slide 14.29

4x4 MIMO SVD Chip, 16 Sub-Carriers

 Demonstration of energy, area-efficiency, and design complexity

0.01 0.1 1 10
0.01

0.1

1

10

100

Energy efficiency
(GOPS/mW)

Ar
ea

 e
ff

ic
ie

nc
y

(G
O

PS
/m

m
2)

1998
18-6

SVD

2000
4-2 1999

15-5

1998
7-6

2004
18-5

2000
14-8

1998
18-3

2000
14-5

Comparison with ISSCC chips

A-E-D
opt.

2.1 GOPS/mW
20 GOPS/mm2

@ VDD = 0.4 V

MIMO SVD chip

2.3 mm

2.
3

m
m

90 nm 1P7M Std-VT CMOS

14.28

[6] D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Minimization for Multidimensional
Signal Processing," IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 922-934, Apr. 2007.

[6]

Emulation and Testing Strategy

 Simulink test vectors are also used in chip testing

iBOB (FPGA)

Chip board
(ASIC)

14.29

×

Simulink was used for design entry
and architecture optimization. It is
also used for chip testing. We
export test vectors from Simulink,
program the design onto FPGA,
and stimulate the ASIC over
general-purpose I/Os. The results
are compared on the FPGA in real
time. We can bring in external
clock or use internally generated
clock from the FPGA board.

Slide 14.30

This is the result of functional
verification. The plot shows
tracking of eigenvalues over time,
for one sub-carrier. These
eigenvalues are the gains of
different spatial sub-channels.

After the reset, the chip is
trained with a stream of identity
matrices and then it switches to
blind tracking mode. Shown are
measured and theoretical values to
illustrate tracking performance of
the algorithm. Although the
algorithm is constrained with
constant-amplitude modulation, we

are still able to achieve 250Mbps over 16 sub-carriers using adaptive PSK modulation.

Slide 14.31

This table is a summary of
measured results reported in [7].

Optimal supply voltage is 0.4V
with 100MHz clock, but the chip is
functional at 255mV, running with
a 10MHz clock. The leakage power
is 12% of the total power in the
worst case, and clocking power is
14mW, including leakage. With
3.5mm2 of core area, the achieved
power density is 10mW/mm2.
Maximal throughput is 250Mbps
using 16 frequency sub-channels.

SVD Chip: Summary of Measured Results

Silicon Technology 90 nm 1P7M std-Vt CMOS
Total Power Dissipation 34 mW

Leakage / Clocking 4 mW / 14 mW
U / Deflation 20 mW / 14 mW

Active Chip Area 3.5 mm2

Power Density 10 mW/mm2

Opt VDD / fclk 0.4 V / 100 MHz
Min VDD / fclk 0.25 V / 10 MHz
Max Throughput 250 Mbps / 16 carriers

14.31

[7] D. Markovi , R.W. Brodersen, and B. Nikoli , "A 70GOPS 34mW Multi-Carrier MIMO Chip in
3.5mm2," in Proc. Int. Symp. VLSI Circuits, June 2006, pp. 196-197.

[7]

Measured Functionality

Theoretical

blind trackingtraining

Samples per sub-carrier

Ei
ge

nv
al

ue
s

0 500 1000 1500 2000
0

2

4

6

8

10

12

values

1
2

2
2

3
2

4
2

Data rate up to 250 Mbps over 16 sub-carriers

14.30

292 Chapter 14

Dedicated MHz-rate MIMO Decoders 293

Slide 14.32

This chapter presented optimal
diversity-spatial multiplexing
tradeoff in multi-antenna channels
and discussed algorithms that can
extract diversity and multiplexing
gains. The optimal tradeoff is
achieved using maximum likelihood
(ML) detection, but ML is infeasible
due to numerical complexity.
Singular value decomposition can
maximize spatial multiplexing (data
rate), but does not have flexibility
to increase diversity. Sphere
decoder algorithm emerges as a
practical alternative to ML.

Implementation techniques for a dedicated 4 4 SVD algorithm have been demonstrated. It was
shown that high-level retiming of recursive loops is crucial for timing closure during logic synthesis.
Using architectural and circuit techniques for power and area minimization, it was shown that
complex algorithms in a 90nm technology can achieve energy efficiency of 2.1GOPS/mW and area
efficiency of 20GOPS/mm 2. Next, it is interesting to investigate the energy and area cost of adding
flexibility for multi-mode operation.

References

 C.-H. Yang, Energy-Efficient VLSI Signal Processing for Multi-Band MIMO Systems, Ph.D.
Thesis, University of California, Los Angeles, 2010.

 L. Zheng and D. Tse, "Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-
Antenna Channels," IEEE Trans. Information Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.

 S. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications," IEEE
J. Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

 G.J. Foschini, "Layered Space-Time Architecture for Wireless Communication in a Fading
Environment when Using Multi-Element Antennas," Bell Labs Tech. J., vol. 1, no. 2, pp. 41–
59, 1996.

 A. Poon, D. Tse, and R.W. Brodersen, "An Adaptive Multiple-Antenna Transceiver for
Slowly Flat-Fading Channels," IEEE Trans. Communications, vol. 51, no. 13, pp. 1820–1827,
Nov. 2003.

 D. Markovi , B. Nikoli , and R.W. Brodersen, "Power and Area Minimization for
Multidimensional Signal Processing," IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 922-934,
April 2007.

 D. Markovi , R.W. Brodersen, and B. Nikoli , "A 70GOPS 34mW Multi-Carrier MIMO
Chip in 3.5mm2," in Proc. Int. Symp. VLSI Circuits, June 2006, pp. 196-197.

Summary and Conclusion

 Summary
– Maximum likelihood detection can extract optimal diversity and

spatial multiplexing gains from a multi-antenna channel
– Singular value decomposition maximizes spatial multiplexing
– Sphere decoder is a practical alternative to maximum likelihood
– Design techniques for managing design complexity while

minimizing power and area have been discussed

 Conclusion
– High-level retiming is critical for optimized realization of

complex recursive algorithms
– Dedicated complex algorithms in 90 nm technology can achieve

2 GOPS/mW
20 GOPS/mm2

14.32

×

Additional References

 S. Santhanam et al., "A Low-cost 300 MHz RISC CPU with Attached Media Processor," in
Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1998, pp. 298–299. (paper 18.6)

 J. Williams et al., "A 3.2 GOPS Multiprocessor DSP for Communication Applications," in
Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2000, pp. 70–71. (paper 4.2)

 T. Ikenaga and T. Ogura, "A Fully-parallel 1Mb CAM LSI for Realtime Pixel-parallel Image
Processing," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1999, pp. 264–265. (paper 15.5)

 M. Wosnitza et al., "A High Precision 1024-point FFT Processor for 2-D Convolution," in
Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1998, pp. 118–119. (paper 7.6)

 F. Arakawa et al., "An Embedded Processor Core for Consumer Appliances with 2.8
GFLOPS and 36 M Polygons/s FPU," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2004,
pp. 334–335. (paper 18.5)

 M. Strik et al., "Heterogeneous Multi-processor for the Management of Real-time Video and
Graphics Streams," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2000, pp. 244–245. (paper
14.8)

 H. Igura et al., "An 800 MOPS 110 mW 1.5 V Parallel DSP for Mobile Multimedia
Processing," in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1998, pp. 292–293. (paper 18.3)

 P. Mosch et al., "A 720 uW 50 MOPs 1 V DSP for a Hearing Aid Chip Set," in Proc. IEEE
Int. Solid-State Circuits Conf., Feb. 2000, pp. 238–239. (paper 14.5)

294 Chapter 14

Slide 15.1

This chapter discusses design
techniques for dealing with design
flexibility, in addition to complexity
that was discussed in the previous
chapter. Design techniques for
managing adjustable number or
antennas, modulations, number of
sub-carriers and search algorithms
will be presented. Multi-core
architecture, based on scalable
processing element will be
described. At the end, flexibility for
multi-band operation will be
discussed, with emphasis on flexible
FFT that operates over many signal

bands. Area and energy cost of the added flexibility will be analyzed.

Slide 15.2

We use a MIMO SVD chip as a
starting point in our study of the
energy and area cost of hardware
flexibility. This chip implements
singular value decomposition for
MIMO channels [1]. It supports
4 4 MIMO systems and 16 sub-
carriers. This chip achieves a 2.1
GOPS/mW energy-efficiency and
20GOPS/mm2 area efficiency at
0.4 V. Compared with the baseband
and multimedia processors
published in ISSCC, this chip
achieves the highest efficiency
considering both area and energy.

Now the challenge is how to add flexibility without compromising efficiency? Design flexibility is
the focus of this chapter.

Reference: 4x4 MIMO SVD Chip, 16 Sub-Carriers

 Challenge: add flexibility with minimal energy overhead

0.01 0.1 1 10
0.01

0.1

1

10

100

Energy efficiency
(GOPS/mW)

Ar
ea

 e
ff

ic
ie

nc
y

(G
O

PS
/m

m
2)

1998
18-6

SVD

2000
4-2 1999

15-5

1998
7-6

2004
18-5

2000
14-8

1998
18-3

2000
14-5

Comparison with ISSCC chips

A-E-D
opt.2.1 GOPS/mW

20 GOPS/mm2

@ VDD = 0.4 V

4x4 MIMO SVD chip

2.3 mm

2.
3

m
m

90 nm 1P7M Std-VT CMOS

15.2

[1] D. Markovi , R.W. Brodersen, and B. Nikoli , "A 70GOPS 34mW Multi-Carrier MIMO Chip in
3.5mm2," in Proc. Int. Symp. VLSI Circuits, June 2006, pp. 196-197.

 Dedicated MIMO chip [1]

MHz-rate Multi-Antenna Decoders:
Flexible Sphere Decoder Chip Examples

Chapter 15

with Chia-Hsiang Yang
National Chiao Tung University, Taiwan

×

 DOI 10.1007/978-1-4419-9660-2_15, © Springer Science+Business Media New York 2012
295D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

Slide 15.3

The chapter is structured as
follows. Design concepts for
handling flexibility for multiple
operating modes with respect to the
number of antennas, modulations
and carriers will be described first.

Slide 15.4

In hardware implementation of the
sphere decoding algorithm, focus
has mainly been on fixed antenna
array size and modulation scheme.
The supported antenna-array size is
restricted to 8×8 and mostly 4×4,
and the supported modulation
scheme is up to 64-QAM. The
search method is either K-best or
depth-first. In addition, most
designs consider only single-carrier
systems. The key challenges are the
support of larger antenna-array
sizes, higher-order modulation
schemes and flexibility. In this

chapter, we will demonstrate solutions to these challenges by minimizing hardware complexity so
that we can increase the supported antenna-array size, modulation scheme and add flexibility.

Outline

 Scalable decoder architecture
– Design challenges and solutions
– Scalable PE architecture
– Hardware complexity reduction

 Chip 1:
– Multi-mode single-band
– 16x16 MIMO SD Chip
– Energy and area efficiency

 Chip 2:
– Multi-mode multi-band
– 8x8 MIMO SD + FFT Chip
– Flexibility Cost

15.3

Representative Sphere Decoders

 Design challenges
– Antenna array size: constrained by complexity (Nmult)
– Constellation size: only fixed constellation size considered
– Search method: no flexibility for both K-best and depth-first
– Number of sub-carriers: only single-carrier systems considered

 We will next discuss techniques that address these challenges

Reference Array size Modulation Search method Ncarriers

Shabany, ISSCC’09 44 64-QAM K-best 1

Knagge, SIPS’06 88 QPSK K-best 1

Guo, JSAC’05 44 16-QAM K-best 1

Burg, JSSC’05
Garrett, JSSC’04 44 16-QAM Depth-first 1

15.4

296 Chapter 15

Scalable processing element (PE)
will be presented. The PE will be
used in two sphere-decoder chips to
demonstrate varying levels of
flexibility. The first chip will
demonstrate multi-PE architecture
for multi-mode single-band

antennas. The second chip will
extend the flexibility to multiple frequency bands. It features flexible FFT operation and also soft-
output generation for iterative decoding.

operation that supports up to 16 16 ×

Flexible MHz-rate MIMO Decoders 297

Slide 15.5

We start by reducing the size of the
multipliers, because multiplier size
is the key factor for complexity
reduction and allows for increase in
the antenna-array size. We consider
two equivalent representations. At
the first glance, the former has one
multiplication while the latter has
two. However, a careful
investigation shows the latter is a
better choice from hardware
perspective. First, sZF and QHy can
be precomputed. Hence, they have
negligible impact on the total
number of operations. Second, the

wordlength of s is usually shorter than sZF. Therefore, separating terms results in multipliers with
reduced wordlength, thus reducing the area and delay. The area reduction is at least 50% and the
delay reduction also reaches 50% for larger wordlength of R and sZF.

Slide 15.6

The first step is to simplify complex
multipliers since complex
multipliers used for Euclidean-
distance calculation dominate the
hardware area. An 8.5 times
reduction is achieved by using
folding technique. The size of the
multipliers also affects hardware
area directly. A seven times area
reduction is achieved by choosing a
simpler representation, using Gray
encoding to compactly represent
the constellation, and optimizing
wordlength of datapath. We can
further reduce the multiplier area by

using shift-and-add operations, replacing the negative operators with inverters and leaving the carry-
in bits in the succeeding adder tree. The final multiplier design is shown here, which has only one
adder and few inverters, and multiplexers [2]. With this design, a 40% area reduction is achieved
compared to the conventional implementation.

Numerical Strength Reduction

 Multiplier size is the key factor for complexity reduction
 Two equivalent representations

 The latter is a better choice from hardware perspective
– Idea: sZF and QHy can be precomputed
– Wordlength of s (3-bit real/imag part) is usually shorter than sZF
 separate terms multipliers with reduced wordlength/area

WL of sZF 6 8 10 12

WL(R) = 12, Area/delay 0.5/0.83 0.38/0.75 0.3/0.68 0.25/0.63

WL(R) = 16, Area/delay 0.5/0.68 0.38/0.63 0.3/0.58 0.25/0.54

Area and delay reduction due to numerical strength reduction

15.5

2ˆ argmin ()ZML Fs R s s 
2

ˆ argmin H
ML ys Q Rs 

#1: Multiplier Simplification

 Hardware area is dominated by complex multipliers
– 8.5 reduction in the number of multipliers (folding: 136 16)
– 7 reduction in multiplier size

Choice of mathematical expression: 16  16 16  4
Gray encoding, only odd numbers used: 16  4 16  3
Wordlength optimization: 16  3 12  3

Re{s}
/Im{s}

2’s
complement

Gray
code operation

7 0111 100 8 1
5 0101 101 4+1
3 0011 111 4 1
1 0001 110 1
1 1111 010 1  1
3 1101 011 3  1
5 1011 001 5  1
7 1001 000 7  1

Final multiplier design
s[1] s[0]

<<2

neg

<<1

1

-1

x4

x8

s[2]

s[0]

s[1] s[0]

Re{R}
/Im{R}

neg
0
1

1
0

1
0

0
1

15.6

[2] C.-H. Yang and D. Markovi , "A Flexible DSP Architecture for MIMO Sphere Decoding," IEEE
Trans. Circuits & Systems I, vol. 56, no. 10, pp. 2301-2314, Oct. 2009.

[2]

Overall 40% lower multiplier area

Slide 15.7

The second challenge is how to
support larger modulation sizes. To
improve BER performance, the
Schnorr-Euchner (SE) enumeration
technique states that we have to
traverse the constellation points
according to the distance increment
in an ascending order for each
transmit antenna. The basic idea of

Straightforward implementation is to calculate the distance of all possible constellation points and
find the point with the minimum distance as the first candidate. The hardware cost grows quickly as
the modulation size increases.

Slide 15.8

Efficient decision scheme is shown
here. The goal is to enumerate
possible constellation points
according to the distance increment
in an ascending order. In the
constellation plane, for example, we
first need to examine the point that
is the closest between RiiQi and bi.
Region partition search is based on
deciding the closest point by
deciding the region in which bi lies
[4]. This method is feasible because
real part and imaginary part can be
decoded separately as shown in the
gray highlights. The next question is

how to enumerate the remaining points?

#2: Metric Enumeration Unit (MEU)

 Schnorr-Euchner (SE) enumeration [3]

– Traverse the constellation candidates according to the distance
increment in an ascending order

– Corresponds to finding the points closest to bi and scaling
constellation points RiiQi from the closest to the farthest

Exhaustive search

15.7

RiiQ1 | |2

| |2

. .
 .

| |2

m
in

-s
ea

rc
h

bi

sub

sub

sub

. .
 .

RiiQ2

RiiQk

si
^I

Q

bi

Q1 Q2

Q4

Rii

Q3

 Exhaustive search is not suitable for large constellation size

2 2
iiRs by sR

ates accord
2R 2y Rs  

[3] A. Burg et al., "VLSI Implementation of MIMO Detection Using the Sphere Decoding Algorithm,"
IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1566-1577, July 2005.

Efficient Decision Scheme

 Decision plane transformation
– Decode bi/Rii on plane

 bi on plane Rii·
– Decode Re and Im parts separately
– Scalable to high-order constellations

Q

I
bi

Q

I

0

0

decision
boundary

Rii

15.8

bi

Region
decision

Region
decision

sî

real part

imag. part

Rii

Rii

[4] C.-H. Yang and D. Markovi , "A Flexible VLSI Architecture for Extracting Diversity and Spatial
Multiplexing Gains in MIMO Channels," in Proc. IEEE Int. Conf. Communications, May 2008,
pp. 725-731.

[4]

298 Chapter 15

this algorithm is using locally
optimal solution to speed up the
search of globally optimal solution.
In the constellation plane, we have
to traverse the point closest to bi
and scale constellation points RiiQi

from the closest to the farthest [3]. In this example, Q2 should be visited first, and Q4 second.

Flexible MHz-rate MIMO Decoders 299

Slide 15.9

Geometric relationship can be used
instead of sorting algorithm to
simplify calculation and reduce
hardware cost. Again, we use

search point and remaining points.
Eight surrounding constellation
points are divided into 2 subsets
first: 1-bit error and 2-bit errors
using Gray coding. Take the 2-bit

point is decided by checking the
sign of the real part and imaginary
part of (bi Riisi), which has four
combinations. After examining the

2nd point, the 3
decision boundary. The same idea is used for 1-bit error subset.

Slide 15.10

The third step is to resolve
limitation of the conventional
search algorithms: depth-first and
K-best. Depth-first starts the search
from the root of the tree and
explores as far as possible along
each branch until a leaf node is
found or the search is outside the
search radius. It can examine all
possible solutions, but the
throughput is low. K-best
approximates the breath-first search
by keeping K branches with the
smallest partial Euclidean distance
at each level and finding the best

one at the last stage. Since only forward search is allowed, error performance is limited.

#3: Search Algorithm

 Conventional search algorithms
– Depth-first: starts from the root of the tree and explores as far

as possible along each branch until a leaf node is found
– K-best: keeps only K branches with the smallest partial

Euclidean distance (PED) at each level

Depth-first K-best

ant-M ... ant-2 ant-1

constellation
plane

constellation
plane

forward trace
backward trace

ant-M ... ant-2 ant-1

15.10

Efficient Candidate Enumeration

 8 surrounding constellation points divided into 2 subsets:
– 1-bit error and 2-bit errors if Gray coding is used

 The 2nd closest point decided by the decision boundaries
 The remaining points decided by the search direction

15.9

(a) (b)

(c) (d)

1-bit error
subset

2-bit error
subset

2nd closest point 3rd to 5th points

I

Q

110110

110111

110101 111101

111111

111110 101110

101111

101101

real part

bi

Riisi

Imag. part

#1 #2 #2

#3

#4

#5

#2 #2

#3

#4

#5

#1

--- decision boundary

search direction

rd to 5th points are decided by the search direction, which is decided by another

decision boundary to decide the 2nd

error subset as an example: the 2nd

300 Chapter 15

Slide 15.11

The basic architectures for these
two search methods are shown
here. Depth-first uses folding
architecture and K-best uses multi-
stage architecture. In essence,
depth-first allows back-trace search,
but K-best searches forward only.
The advantages of depth-first
include smaller area and better
performance. In contrast, K-best
provides constant throughput and

Slide 15.12

Metric calculation unit has to
compute summation of Riisi. We use
an FIR-like architecture to facilitate
metric calculation. Because the
trace goes back up by one layer
instead of random jump, a bi-
directional shift register chain is
used to support back trace and
forward trace. Coefficients of R
matrix can be stored in an area-
efficient way, because R is an
upper-triangular matrix. The real
and imaginary parts can be
organized into a square memory
without storing 0s.

Architecture Tradeoffs

 Basic architecture

Depth-first (folding)

PE

K-best (parallel and multi-stage)

PE
1

PE
2

PE
M...

Algorithm Area Throughput Latency Radius shrinking

Depth-first Small Variable Long Yes

K-best Large Constant Short No

 Practical considerations

 Algorithmic considerations
– Depth-first can reach ML given enough cycles
– K-best cannot reach ML, it can approach it

15.11

Metric Calculation

 Metric Calculation Unit (MCU) computes

 Bi-directional shift register chain is embedded to support back
trace and forward trace

 Area-efficient storage of R matrix coefficients:
off-diagonal terms organized into a square memory

15.12

Ri,i Ri,i+1 Ri,M

. . .

Ri,i+2 . . .

si+1
si

si+2 sM

adder tree

1

M

ii i
j i

R s

shorter latency. Combining these
advantages is quite challenging.

Flexible MHz-rate MIMO Decoders 301

Slide 15.13

Given the ability to use multiple
processing elements concurrently,
we consider a multi-core search
algorithm from [5]. It distributes
search paths over multiple
processing elements. Since each PE
has the flexibility in forward and
backward search, the whole search
space can be examined when
additional processing cycles are
available. When a higher
throughput is not required, we can
increase the energy efficiency by
reducing clock frequency and
supply voltage due to the

distribution of computations.

Slide 15.14

To extend the processing period for
signal processing across PEs,
multiple data streams or sub-
carriers are interleaved into each PE
sequentially. As shown here, only
one sub-carrier is processed in one
clock cycle, but it is processed over
all PEs. For area saving, the input
register bank can be shared by all
PEs, so we don’t need to build 16
copies for 16 PEs. For power
saving, we can disable inactive
registers for other sub-carriers
using clock-gating technique since
only one sub-carrier is processed in

one clock cycle.

A Multi-Core Search Algorithm

 Search paths distributed over multiple processing elements
 Flexibility in forward and backward trace allows the search of

more solutions when additional processing cycles are available
 Higher energy efficiency by reducing clock frequency & voltage

constellation
plane

PE 1
PE 2

PE L

forward trace
backward trace

ant-M ... ant-2 ant-1

...

Multi-core

15.13

[5] C.-H. Yang and D. Markovi , "A Multi-Core Sphere Decoder VLSI Architecture for MIMO
Communications," in Proc. IEEE Global Communications Conf., Dec. 2008, pp. 3297-3301.

[5]

#4: Data-Interleaved Processing

 Shared register bank for reduced area (16 1)
– Token signal is passed to activate individual registers
– Clock-gating technique for data retrieval (90% power saving)

Clock cycle

S
ub

ca
rr

ie
r

P
E

Clock cycle

. . .

da
ta

st
re

am
1

da
ta

st
re

am
2

da
ta

st
re

am
N

. . .

da
ta

st
re

am
1

da
ta

st
re

am
2

. . .

da
ta

st
re

am
N ...

8
da

ta
st

re
am

s

16 antennas
1000 0

1000 0

1000 0

search direction

PE1
PE16

0

clock control signal

1

0

...

15.14

302 Chapter 15

Slide 15.15

The block diagram of one PE is
shown here. Each PE is scalable to
support varying antenna arrays,
multiple modulations, and multiple
data streams through signal
processing and circuit techniques.
Flexibility in antenna-array size is
supported through hardware reuse.
Simplified boundary-decision
scheme is used to support multiple
modulation schemes. Bi-directional
shift registers support flexible
search method. Data-interleaving
technique is used to support
multiple sub-carriers. Flexibility is

added with a small area overhead.

Slide 15.16

Overall, a 20 times area reduction is

mapped architecture using signal
processing and circuit techniques
listed here. Main area impact comes
from architecture folding (an 8.5x
reduction). Simplified metric
enumeration gives additional 30%
area reduction, simplified multiplier
further reduces overall area by 20%
and so does the wordlength
reduction step.

Scalable PE Architecture

sub

shift- register chain

Symbol
selection

sub

R

ŝ

bi

...

yi
~

7 pipeline
stagesadder tree

...

...

partial product

MCU

MEU

Rii

folding architecture:
multiple antenna

arrays

Flexibility

radius
check

new search path

bi-directional shift
register chain:

backward trace and
forward trace

data-interleaving:
multiple sub-carriers

symbol mapping:
multiple modulations

 Antenna array: 2x2 – 16x16, Modulation: BPSK – 64-QAM
 Sub-carriers: 8 – 128, Detection: Depth-first, K-best

15.15

Hardware Complexity Reduction

 An 20 area reduction compared to 16-bit direct mapping
– Signal processing & circuit techniques

folding simplified
multiplier

memory
reduction

wordlengh
reduction

initial

8.5x

20%
5%

20%

total 20x
reduction

A
re

a

MEU
simplfication

30%

15.16

achieved compared to 16-bit direct-

Flexible MHz-rate MIMO Decoders 303

Slide 15.17

The scalable processing element
from Slide 15.15 will now be used
for multi-PE architecture to
demonstrate hard-output multi-
mode single-band MIMO sphere
decoding. The focus will be on
energy and area efficiency analysis
with respect to added design
flexibility. 16×16 MIMO chip will
be used as design example for the
flexibility analysis.

Slide 15.18

Here is the chip micrograph of
multi-core single-band sphere
decoder [6]. This chip is fabricated
in a standard-VT 1P8M 90 nm
CMOS process. It can support the
flexibility summarized on the left.
The core supply voltage is tunable
from 0.32 V to 1.2 V according to
the operation mode. The overall die
area is 8.88 mm2, within which the
core area is 5.29 mm2; each PE has
area of 0.24 mm2. Register banks
and scheduler facilitate multi-core
operation.

Outline

Scalable decoder architecture

– Design challenges and solutions

– Scalable PE architecture

– Hardware complexity reduction

Chip 1:

– Multi-mode single-band

– 16x16 MIMO SD Chip

– Energy and area efficiency

Chip 2:

– Multi-mode multi-band

– 8x8 MIMO SD + FFT Chip

– Flexibility Cost

15.17

Chip 2: Multi-Core Sphere Decoder, Single-Band

 Flexibility

– 22 – 1616 antennas

– BPSK – 64QAM

– K-best / depth-first

– 8-128 sub-carriers

 Supply voltage

– Core: 0.32 V – 1.2 V

– I/O: 1.2 V / 2.5 V

 Silicon area

– Die: 8.88 mm2

– Core: 5.29 mm2

– PE: 0.24 mm2

PE

1

PE

2

PE

3

PE

4

PE

5

PE

6

PE

7

PE

8

PE

9

PE

10

PE

11

PE

12

PE

13

PE

14

PE

15

PE

16

2.98 mm

2
.9

8
 m

m

register bank / scheduler

1P8M 90nm Low-VT CMOS

2
.9

8
 m

m

2.98 mm

15.18

[6] C.-H. Yang and D. Marković, "A 2.89mW 50GOPS 16x16 16-Core MIMO Sphere Decoder in 90nm
CMOS," in Proc. IEEE European Solid-State Circuits Conf., Sep. 2009, pp. 344-348.

[6]

304 Chapter 15

Slide 15.19

More PEs are used to improve
BER performance or throughput.
In the single-PE case, one node is
examined each cycle. When the
node is outside the search radius,
backward-search is required. When
a solution with a smaller Euclidean
distance is found, the search radius
can be shrunk to reduce the search
space. The search process continues
until all the possible nodes are
examined if there is no timing
constraint. In the multiple-PE case,
we put multiple PEs to search at the
same time. Therefore, more nodes

are examined each cycle. Like the single-PE, the search paths will be bounded in the search radius
for all PEs. Since multiple PEs are able to find the better solutions earlier, the search radius can be
shrunk faster. Again, the search process continues until all the possible nodes are examined if there
is no timing constraint.

Slide 15.20

By connecting multiple PEs, a new
search path can be loaded directly
when a previously assigned search
tree is examined [2]. Search radius is
updated through interconnect
network when a solution with a
smaller Euclidean distance is found.

Search paths are distributed over
16 processing elements. The multi-
core architecture provides a 10x
higher energy efficiency than the
single-core architecture by reducing
clock frequency and supply voltage
while keeping the same throughput
[7]. On the other hand, operating at

the same clock frequency, it can provide a 16x higher throughput. By connecting multiple PEs, the
search radius is updated through the interconnect network. It updates the search radius by checking
the Euclidean distance of all PEs to speed up search process. It also supports multiple sub-carriers.
Multiple sub-carriers are interleaved into PEs through hardware sharing.

Parallel (Multi-PE) Processing

 Limitation of single-PE design
– More processing cycles needed to achieve the ML performance,

which decreases the throughput

 Search over multiple PEs
..

.

. . .

. . .

...

...
...

... ...
...

Single-PE Multi-PE
trace-back

radius
shrinking

..
.

. . .

. . .

...

...
...

... ...
...

15.19

A Multi-Core Architecture

 Distributed search: slower fclk, lower VDD

 Updates search radius by examining all PEs
 Allocates new search paths to the PEs conditionally
 Multi-core is 10 more energy-efficient than single-core

15.20

[2] C.-H. Yang and D. Markovi , "A Flexible DSP Architecture for MIMO Sphere Decoding," IEEE
Trans. Circuits & Systems I, vol. 56, no. 10, pp. 2301-2314, Oct. 2009.

[7] R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in MATLAB/Simulink
Environment," in Proc. Symp. VLSI Circuits, June 2008, pp. 192-193.

[7]

[2]

I/O

Radius
checking and

updating

PE-1 PE-2 PE-3 PE-4

P
E

-5
P

E
-6

P
E

-7
P

E
-8

PE-9PE-10PE-11PE-12

P
E

-1
3

P
E

-1
4

P
E

-1
5

P
E

-1
6

SC

Interconnect
PE-1

PE-8

PE-9

PE-2 PE-5 PE-6

PE-7

PE-13 PE-14

PE-16PE-15PE-12PE-11

PE-10

PE-4

P
E

-3

PE: processing element
SC: frequency sub-carrier

PE
SC-1 SC-2 SC-3 SC-4

S
C

-5
S

C
-6

S
C

-7
S

C
-8

SC-9SC-10SC-11SC-12

S
C

-1
3

S
C

-1
4

S
C

-1
5

S
C

-1
6

Mux

MEU

Distr.
Mem

MCU

S
ha

re
d

M
em

Flexible MHz-rate MIMO Decoders 305

Slide 15.21

To test the chip, we use an FPGA
board to implement pattern
generation and logic analysis. The
functionality of the FPGA is built
in a Simulink graphical
environment and controlled
through MATLAB commands. Two
high-speed Z-DOK+ connectors
provide data rate up to 500 Mbps.
The test data are stored in the on-
board block RAM and fed into the
ASIC board. The outputs of the
ASIC board are captured and
stored in the block RAM, and
transferred to PC for further

analysis. The real-time operation and easy programmability simplify the testing process and data
analysis.

Slide 15.22

Multi-Core Improves BER Performance

 Max throughput: # processing cycles = # Tx antennas
 BER performance improvement when Eb/N0 > 15 dB
– 3-5 dB for 1616 systems – 4-7 dB for 44 systems

44 antenna array, 16-QAM1616 antenna array

Eb/No (dB)

64-QAM 1-core
64-QAM 4-core
64-QAM 16-core
16-QAM 1-core
16-QAM 4-core
16-QAM 16-core

0 5 10 15 20 2510 5

10 4

10 3

10 2

10 1

100

16-QAM 1-core
16-QAM 4-core
16-QAM 16-core
16-QAM ML

performance
improvement

7dB

BE
R

BE
R

Eb/N0 (dB)Eb/N0 (dB)

64-QAM 4-core
64-QAM 16-core

16-QAM 4-core
16-QAM 16-core

10 1

100

10 3

10 4

0 5 15 20 2510

10 2

PEs
increases

15.22

FPGA-aided ASIC Verification

 FPGA board controlled through MATLAB
– FPGA implements pattern generation and logic analysis
– Z-DOK+ connectors: data rate up to 500 Mbps

FPGA
board

ASIC
board

15.21

MATLAB™

performance can be improved. A 3-
5 dB improvement is observed for
16×16 systems. For 4×4 array size,

Here are the results of BER
performance. We constrain the
number of processing cycles to be
equal to the number of transmit
antennas for the maximum
throughput. For 16×16 array size,
the solid line represents the 64-
QAM modulation and the dashed
line represents the 16-QAM
modulation. As we increase the
number of PEs, the BER

improvement over the 1-PE architecture. Note that the performance gap between the re d -line and
the ML detection comes from the constraint on the number of processing cycles. The circuit
performance is shown next.

16 PEs provide a 7 dB

306 Chapter 15

Slide 15.23

The clock frequency of the chip is
set to 16, 32, 64, 128, and 256MHz
for a bandwidth of 16MHz. Power
consumption for these operation

Chip 2: Performance Summary

Modulation BPSK – 64QAM
Data streams 8 – 128
Array size 22 – 1616
Algorithm K-best/depth-first
Mode (complex/real) C
Process (nm) 90
Clock freq. (MHz) 16 – 256
Power (mW) 2.89/0.32V – 275/0.75V
Energy (pJ/bit) 30.1 – 179
Bandwidth (MHz) 16
Throughput (bps/Hz) 12 – 96

Fl
ex

ib
ili

ty

15.24

Chip 2 Measurements: Tunable Performance

Efficiency
Power
(GOPS/mW)
 HS: 3
 LP: 17
Area
(GOPS/mm2)
 9.50

0.2

0.4

0.6

0.8

M
in

im
um

 V
DD

(V
)

Clock frequency (MHz)
0 50 100 150 200 250 300

0

100

200

300

400

To
ta

l p
ow

er
 (m

W
)

(Energy: pJ/bit)

0.75

0.48

47.8

275

High speed (HS): 1,536 Mbps, 275 mW @ 0.75 V, 256 MHz

(179)

(122.4)

(30.1)

Low power (LP): 96 Mbps, 2.89 mW @ 0.32 V, 16 MHz

0.75

275

(17(9))

0.32

2.89

15.23

points ranges from 2.89mW at
0.32V to 275mW at 0.75V, which
corresponds to the energy
efficiency of 30.1pJ/bit to
179pJ/bit.

Slide 15.24

It also has higher flexibility in terms
of antenna array size, modulation
scheme, search algorithm, an
number of sub-carriers with a
small hardware overheard.

d

Compared with the state-of-the-art
chip, the proposed chip has up to
8x higher throughput/BW, in which
4 times comes from the antenna
array size and 2 times comes from
complex-valued signal processing.
This chip also has 6.6x lower
energy/bit, which mainly comes
from hardware reduction, clock-
gating technique and voltage scaling.

Flexible MHz-rate MIMO Decoders 307

Slide 15.25

If we compare the MIMO decoder
chip with the SVD chip from
Chap. 14, we find that the sphere
decoder has even better energy
efficiency, as shown on the right.
This is mainly due to multiplier
simplification, leveraging Gray code
based arithmetic, clock gating, and
aggressive voltage scaling. The area
efficiency of the sphere decoder is

Slide 15.26

We next consider extending the
flexibility to multiple signal bands.
The receiver architecture is shown
in this slide. The signals captured by
multiple receive antennas are
digitized through ADCs and then
converted back to frequency
domain through FFT. The
modulated data streams carried
over the narrow-band sub-carriers
are constructively combined
through the MIMO decoder. Soft
outputs are generated for advanced

Area and Energy Efficiency

 Highest energy efficiency in the open literature
– Power-Area optimization across design boundaries
– Multiplier simplification that leverages Gray coding

 Cost of flexibility: 2 area cost (multi-core control)

Cost of flexibility
(2 area cost)

Energy efficiency(GOPS/mW)

SVD (VLSI’06)
100 MHz

(0.4 V)

105 150

10

20

Ar
ea

 e
ff

ic
ie

nc
y

(G
O

PS
/m

m
2)

Sphere
Decoder

256 MHz
(0.75 V)

16 MHz
(0.32 V)

15

5

0Ar
ea

 e
ff

ic
ie

nc
y

(G
O

PS
/m

m
2)

Energy efficiency(GOPS/mW)

15.25

More Flexibility: Multi-Band Rx Architecture

 Goal: Complete MIMO decoder with FFT in < 10 mW

FFTA/D

FFTA/D

FFTA/D

...

Channel
Estimator

Channel
Decoder

RF

RF

RF
pre-
proc.

MIMO
Decoder

(soft/hard
output)

15.26

reduced by 2x due to interconnect
and multi-core control overhead.

error-correction signal processing.
The design target is to support

multiple signal bands (1.25 MHz to 20 MHz) with power consumption less than 10 mW.

308 Chapter 15

Slide 15.27

The 3GPP-LTE is chosen as an
application driver in this design.
The specifications of 3GPP-LTE
systems related to digital baseband
are shown in the table. Signal bands
from 1.25 MHz to 20MHz are
required. To support varying signal
bands, the FFT block has to be
adjusted from 128 to 2,048 points.

We assume up to 8×8 antenna
array for scalability to future
cooperative relay-based MIMO
systems. In this work, we will
leverage hard-output sphere
decoder architecture scaled down to

work with 8×8 antennas, include flexible FFT and add soft-output generation.

Slide 15.28

We will next present power-area
minimization techniques for multi-
mode multi-band sphere decoder
design. We will mainly focus on the
flexible FFT module and evaluation
of the additional cost for multi-
band flexibility.

Reference Design Specifications

 Design considerations
– Make 8x8 array: towards distributed MIMO
– Leverage hard-output multi-core SD from chip 1

(re-design for 8x8 antenna array)
– Include flexible FFT (128-2048 points) front-end block
– Include soft-output generation

 What is the cost of multi-mode multi-band flexibility?

Bandwidth (MHz) 1.25, 2.5, 5, 10, 15, 20

FFT size 128, 256, 512, 1024, 1536, 2048

Antenna configuration 11, 22, 32, 42

Modulation QPSK, 16QAM, 64QAMLT
E

Sp
ec

s

15.27

Outline

 Scalable decoder architecture
– Design challenges and solutions
– Scalable PE architecture
– Hardware complexity reduction

 Chip 1:
– Multi-mode single-band
– 16x16 MIMO SD Chip
– Energy and area efficiency

 Chip 2:
– Multi-mode multi-band
– 8x8 MIMO SD + FFT Chip
– Flexibility Cost

15.28

Flexible MHz-rate MIMO Decoders 309

Slide 15.29

Hard-output MMO sphere decoder
kernel from the first chip is
redesigned to accommodate
increased number of sub-carriers as
required by LTE channelization.
Soft outputs are supported through
a low-power clock-gated register
bank (to calculate Log-likelihood
ratio). Power consumption listed
here is for 20 MHz band in the 64-
QAM mode. The chip dissipates 5.8
mW for the LTE standard, 13.83
mW for full 8×8 array with soft-
outputs [8]. The hard-output sphere
decoder kernel achieves E/bit of 15

pJ/bit (18.7GOPS/mW) and outperforms prior work. The chip micrograph and summary are
shown on this slide. The chip fully supports LTE and has added flexibility for systems with larger
array size or cooperative MIMO processing on smaller sub-arrays.

Slide 15.30

Reconfigurable FFT block is
implemented by several small
processing units (PUs), as shown in
this slide. The FFT block is scalable
to support 128 to 2,048 points by
changing datapath inter-connection.
Multi-path single-delay-feedback
(SDF) architecture provides high
utilization for varying FFT sizes.
Unused PUs and delay lines are
clock-gated for power saving.
Twiddle (TW) factors are generated
by trigonometric approximation
instead of fetching coefficients
from ROMs for area reduction. To

support varying FFT sizes, we adopt a single-path-delay-feedback (SDF) architecture.

Chip 3: 8x8 3GPP-LTE Compliant Sphere Decoder

 3G-LTE is just a subset of supported operating modes [8]

3.
16

 m
m

2.17 mm

Reg. File Bank

128-2048 pt
FFT

Hard-output
Sphere

Decoder So
ft

-o
ut

pu
t B

an
k

k

Pr
e-

pr
oc

.
Technology 1P9M 65 nm Std-VT CMOS

Max. BW 20 MHz

FFT size 128, 256, 512, 1024, 1536, 2048

Array size 2×2 – 8×8

Modulation BPSK, QPSK, 16QAM, 64QAM

Outputs Hard/Soft

Mode Complex valued

Core area 2.39×1.40 mm2

Gate count 2,946K

Power 13.83 mW (5.8 mW for LTE)

Energy/bit 15 pJ (21 pJ (ESSCIRC’09), 100 pJ (ISSCC’09))

15.29

[8] C.-H. Yang, T.-H. Yu, and D. Markovi , "A 5.8mW 3GPP-LTE Compliant 8x8 MIMO Sphere Decoder
Chip with Soft-Outputs," in Proc. Symp. VLSI Circuits, June 2010, pp. 209-210.

Key Block: Reconfigurable FFT

 Multiple Single-Delay-Feedback (SDF) architecture

PU2

D128

PU3

D64/D32

PU4

D32/D16

PU1

D16/D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

15.30

310 Chapter 15

Slide 15.31

The PUs are modular to support
different radix representations,
allowing power-area tradeoffs. We
take the highest radix to be 16.
This requires four processing units,
as the building blocks shown on the
right. Higher-order processing
elements can be reconfigured to
lower-order ones. For example,
PU4 can be simplified to PU3,
PU2, or PU1; PU3 can be
simplified to PU2 or PU1, etc. This
modularity will be examined in
architectural exploration for each
FFT size.

Slide 15.32

With the 2-D decomposition, we
can re-formulate the FFT operation
as shown in the equations on this
slide. k=k1×k 2 is the FFT bin
index and N=N1×N2 is the FFT
length. k1 and k2 are the sub-FFT
bin index for N1-point FFT and N2-
point FFT, respectively.

Modular Processing Unit

 Processing units (PUs)
– modular
– reconfigurable to support

different operations

-j
-

C1

C2

PU3 (2/1) PU4 (3/2/1)

-j
-

C1

C2

C6

Type Implementation
Radix-16 PU1+PU2+PU3+PU4
Radix-8 PU1+PU2+PU3
Radix-4 PU1+PU2
Radix-2 PU1

PU1

-

-j

-

PU2 (1)

15.31

2-D FFT Decomposition: Algorithm

 FFT size N = N1 × N2

15.32

21

0

() ()
N

n

nkj
NX k x n e






1 2 2 1 2 11 2

1 2

1 2

2 ()1

0

()1

1 2 2
0

()
n n k k N

j
N N

NN N

n n

x n N n e
  

 



 

1 1 2 1 2 22 1
1 1 2 2

2 1

2 2 21

1 2 2
0

1

0

()
n kN N n k n k

j j

n n

j
N N N Nx n N n e e e

  







       
    

 

N1-point FFT

N2-point FFT

Twiddle factor

Flexible MHz-rate MIMO Decoders 311

Slide 15.33

Each N1-point FFT can be
operated at N2-times lower
sampling rate in order to maintain
the throughput while further
reducing the supply voltage to save
power. In our application N2 =8
for all but 1,536-point design where
N2 =6. The FFT is built with
several smaller processing units, so
we can change the supported FFT
size by changing the connection.

Slide 15.34

2,048-point FFT is made with N1 =
256 and N 2 = 8. The 256-point
FFT is decomposed into two stages
with radix-16 factorization. Radix-
16 is implemented by concatenating

in Slide 15.31. Delay-lines associated
with PUs are configured to adjust
signal delay properly.

2-D FFT Decomposition: Architecture

 Example:
N1 = 256, N2 = 8 (/6)

PU2

D128

PU3

D64/D32

PU4

D32/D16

PU1

D16/D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

15.33

Example: 2048-pt FFT

 256-point FFT: configuration = 1616

factor 16

imp PU1+PU2+PU3+P4

256 pt.
SDF FFT

8 pt.
FFT

factor 16

imp PU1+PU2+PU3+P4

15.34

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

PU1, PU2, PU3, and PU4, as shown

312 Chapter 15

Slide 15.35

1,536-point design shares the same
front-end processing with 2,048-
point design and uses N2= 6 in the
back-end.

Slide 15.36

The 1,024-point FFT is
implemented by disabling PU2 at
the input (shown in gray) to
implement the radix-8 stage
followed by the radix-16 stage. The

Example: 1024-pt FFT

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

256 pt.
SDF FFT

8 pt.
FFT

 256-point FFT: configuration = 816

factor 16

imp PU1+PU2+PU3+P4

15.36

Example: 1536-pt FFT

256 pt.
SDF FFT

6 pt.
FFT

 256-point FFT: configuration = 1616

factor 16

imp PU1+PU2+PU3+P4

factor 16

imp PU1+PU2+PU3+P4

15.35

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

idle PU2 module is turned off for
power saving.

Flexible MHz-rate MIMO Decoders 313

Slide 15.37

512-point FFT can be implemented
with two radix-8 stages by disabling

Slide 15.38

256-point design is implemented
with the radix-4 stage followed by
the radix-8 stage by disabling the
units shown in gray.

Example: 512-pt FFT

64 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D32

PU4

D16

PU1

D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 88

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

15.37

Example: 256-pt FFT

32 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D64

PU4

D16

PU1

D8

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 48

factor 8

imp PU1+PU2+PU3

PU1+PU3+PU4

factor 4

imp PU1+PU2

PU1+PU4

15.38

the two PU2 front units shown in
gray.

314 Chapter 15

Slide 15.39

Finally, 128-point FFT that uses
radix-16 in the first stage is shown.

Two key design techniques for
FFT area and power minimization
are parallelism and FFT
factorization. Next, we are going to
illustrate the use of these
techniques.

Slide 15.40

Parallelism is used to reduce power
consumption by taking advantage
of voltage scaling. Parallel
architecture allows for slower
operating frequency and therefore
lower supply voltage. Combined
with the proposed FFT structure,
the value of N2 is the level of
parallelism. To decide the optimal
level of parallelism, we plot feasible
combinations in the Power vs. Area
space (normalized to N1 = 2,048, N2
=1 design) and choose the one
with minimal power-area product as
the optimal design. According to

our analysis, N2= 4 and N2=8 have similar power-area products. We choose 8-way parallel design
to lower the power consumption.

Example: 128-pt FFT

16 pt.
SDF FFT

8 pt.
FFT

PU2

D128

PU3

D64

PU4

D32

PU1

D16

PU2

D8

PU3

D4

PU4

D2

PU1

D1

TW factor

 256-point FFT: configuration = 116

factor 16

imp PU1+PU2+PU3+P4

factor 1

imp N/A

15.39

Optimal Level of Parallelism (N2)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Normalized
Area

N1=1024
N2=1

N1=512
N2=2

N1=256
N2=4 N1=128

N2=8
N1=64
N2=16

N2: level of parallelism

N1 = 256
N2 = 8

Optimal design

N1 = 2048
N2 = 1

N1 = 512
N2 = 4 N1 = 128

N2 = 16
Normalized

Area

Normalized
Power

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

 Optimal design: Minimum power-area product

15.40

N1 = 1024
N2 = 2

Flexible MHz-rate MIMO Decoders 315

Slide 15.41

Next, we optimize each N1-point
FFT by the processing unit
factorization. Take a 256-point FFT
as the design example. There are 13
possible radix factorizations, as
illustrated in the Table. Each
processing unit and the
concatenated twiddle factor
multiplier have different areas and
switching activities, allowing power
and area tradeoff. The plot shows
power and area among the possible
architectures for a 256-point FFT,
normalized to the radix-2 case.
Power-area product reduction of

75 % can be achieved by using 2 radix-16 processing elements (A13) as the building block.

Slide 15.42

Here, we analyze different radix
factorizations for the 128–2,048-
point FFT design. The optimal
reconfiguration is decided by the
architecture with the minimum
power-area product. For 128-point
FFT, 8-times parallel with radix-16
is the optimal choice. Other
combinations are not shown here
due to their poor performance.
Using this methodology, we can
decide the optimal reconfiguration
for all required FFT sizes. All the
big dots represent the optimal
factorization for various FFT sizes.

Optimal Factorization for 256-pt FFT

Possible architectures
for 256-pt FFT

Ref. Design
A1

A2
A3

A4
A5

A6A7A8
A9A10 A11

A12
A13 Final Design Norm

A

0.6

0.8

1

0.4 0.6 0.8 1
0.4

Optimal design

Ref design
A1

A13

Arch R2 R4 R8 R16 Mult

A1 8 7

A2 6 1 6

A3 4 2 5

A4 5 1 5

A5 3 1 1 4

A6 4 1 4

A7 1 2 1 3

A8 2 2 3

A9 2 1 1 3

A10 1 2 2

A11 2 1 2

A12 1 1 1 2

A13 2 1

N
or

m
al

ize
d

Po
w

er

Normalized Area

15.41

400 600 800 1000 1200 1400
200

300

400

500

600

700

800

Optimal FFT Factorization for all FFT Sizes

 Optimal reconfiguration decided by power-area product

FFT
size

Optimal
Factorization

2048 16168

1536 16166

1024 8168

512 888

256 488

128 168Av
g.

 A
dd

iti
on

/c
yc

le
(N

or
m

. P
ow

er
)

2x16
4x8

256pt (8x parallel)

8x8
4x16

512pt (8x parallel)

Total # of Adders (Norm. Area)

16

4x4

128pt (8x parallel)

4x8x8

16x16

1536pt (6x parallel)

4x8x8

16x16

2048pt (8x parallel)

8x16

4x4x8

1024pt (8x parallel)

15.42

316 Chapter 15

Slide 15.43

Combining the 2-D FFT
decomposition and processing-unit
factorization, a 20-times power-area
product reduction can be achieved
compared to the single delay
feedback radix-2 1,024-point FFT
reference design. To decide the
optimal level of parallelism, we
enumerate and analyze all possible
architectures and plot them in the
power vs. area space. An 8×
parallelism has the minimum
power-area product considering
voltage scaling. Overall, a 95%
(20x) power-area reduction is

achieved compared to the reference design, where 5× comes from architecture parallelism and 4×
comes from radix factorization.

Slide 15.44

For the delay line implementation,
we compare register-file (RF) and
SRAM-based delay lines. According
to the analysis, for a larger size
delay line, RF has smaller area and
less power consumption even
though the cell area of RF is bigger.
But even for the same length delay
line, there are several different
memory partitions. Again, we plot
all possible combinations in the
power-area space and choose the
design with the minimum power-
area product. 2×256 is optimal for
length 512, and 4×256 is optimal

for length 1024.

FFT Architecture: Summary

 Optimal design: 20 power-area product reduction
– 5 improvement: optimal parallelism (1)
– 4 improvement: optimal FFT factorization (2)

Ref. design

Po
w

er
-A

re
a

Pr
od

uc
t

80%

75%

95%

(1) (1) + (2)

15.43

Delay-Line Implementation

 Delay line: Register-File (6T/cell) outperforms SRAM
DL size 51232 Delay line 102432 Delay line

Architecture SRAM RF SRAM RF

Area (mm2) 0.042 0.037 0.052 0.044

Power (mW) 0.82 0.21 0.84 0.24

 Optimal RF memory decided by power-area product

512x32

2x256x32

4x128x32

8x64x32

1024x32

2x512x32

4x256x32
8x128x32

15.44

Flexible MHz-rate MIMO Decoders 317

Slide 15.45

Power breakdown of the chip is
shown here. Since these five blocks
have individual power supplies, we
can measure their own powers.
Operating for 8×8 antenna array
with soft outputs, the chip

4×4 mode with only hard outputs,
the chip dissipates 5.8mW of
power.

Slide 15.46

Let’s see the cost of flexibility. Area
and energy efficiency of SVD chip
(chip1), SD chip (chip 2), and LTE-
SD chip (chip3) are compared. The
area efficiency of LTE-SD chip is
dropped by 2.8× compared to the
SVD chip, and 1.3× compared to
the previous SD chip. The area-
efficiency reduction comes from
the control and interconnect
overhead of multi-PE, multi-PU,
and also from memory overhead
for register file. The energy
efficiency of SD chip and LTE-SD
chip is 1.5×–8.5× higher than that

of the SVD chip. The improved energy efficiency is attributed to optimization across design

Chip 2: Power Breakdown
Po

w
er

 (m
W

)

0

1

2

3

4

5

6

7

FFT core RF bank hard-output
SD kernel

pre-proc.
unit

soft-output
bank

8x8 w/ soft-outputs

4x4 w/o soft-outputs

(VDD, fClk) 8x8 w/ soft outputs 4x4 w/ hard outputs

FFT core (parallel x 8) 6.20 (0.45 V, 20 MHz) 2.83 (0.43 V, 10 MHz)

RF bank (32 kb) 2.35 (1 V, 40-160 MHz) 1.18 (1 V, 20-80 MHz)

Hard-output SD kernel (16-core) 0.97 (0.42 V, 10 MHz) 0.45 (0.36 V, 5 MHz)

Pre-processing unit 4.06 (0.82 V, 160 MHz) 1.34 (0.64 V, 80 MHz)

Soft-output bank (parallel x 8) 0.25 (0.42 V, 20 MHz) N/A

Total power 13.83 mW 5.8 mW
15.45

Cost of Flexibility

 2.8 area cost compared to SVD chip
– Multi-PE and multi-PU control overhead
– Memory overhead (register file)

2.2x

Energy efficiency(GOPS/mW)

SVD

100 MHz
(0.4 V)

105 150

10

20

Ar
ea

 e
ffi

ci
en

cy
 (G

O
PS

/m
m

2)

SD

256 MHz
(0.75 V)

16 MHz
(0.32 V)

15

5

0

LTE-SD

LTE-SD
20 MHz
(0.45 V)

160 MHz
(0.82 V)

20

1.3x

15.46

boundaries, arithmetic simplification, voltage scaling and clock-gating techniques.

dissipates 13.83 mW. Operating for

318 Chapter 15

Slide 15.47

In conclusion, the flexible SD and
LTE-SD chips are able to provide
1.5× – 8.5× higher energy
efficiency than the dedicated SVD
chip. 16-core sphere decoder
architecture provides 6× higher
energy efficiency for same
throughput or 16× higher
throughput for same operating
frequency compared to single-core
architecture. Optimal
reconfigurable FFT provides a 20
times power-area product reduction
from algorithm, architecture and
circuit design. We optimize this

FFT through FFT factorization, PU reconfiguration, memory partition and delay-line
implementation. Combined with clock-gating technique, multi-voltage design, and aggressive voltage
scaling, this chip consumes less than 6 mW for LTE standard in a 65 nm CMOS technology.

Slide 15.48

Hardware realization of MHz-rate
sphere decoding algorithm is
presented in this chapter. Sphere
decoding can approach maximum
likelihood (ML) detection with
feasible computational complexity,
which makes it attractive for
practical realization. Scaling the
algorithm to higher number of
antennas, modulations, and number
of frequency sub-carriers is
challenging. The chapter discussed
simplifications in multiplier
implementation that allows
extension to large antenna arrays

(16×16), decision plane partitioning for metric enumeration, and multi-core search for improved
energy efficiency and performance. Flexible processing element is used in a multi-core architecture
to demonstrate multi-mode and multi-band operation with minimal overhead in area efficiency as
compared to dedicated MIMO SVD chip.

Results

 A 4x4 SVD achieves 2 GOPS/mW & 20 GOPS/mm2 (90 nm CMOS)

 Multi-mode single-band sphere decoder is even more efficient
– Scalable PE allows wide range of performance tuning

Low power: 2.89 mW & 96 Mbps @ 0.32 V (17 GOPS/mW)
High speed: 275 mW & 1,536 Mbps @ 0.75 V (3 GOPS/mW)

– Multi-core (PE) architecture provides
Higher power efficiency: 6x for same throughput
Improved BER performance: 3-5 dB
Higher throughput: 16x

 Multi-mode multi-band flexibility is achieved through flexible FFT
– 3GPP-LTE compliant 88 MIMO decoder can be implemented in

< 6mW in a 65 nm CMOS

15.47

Summary

 Sphere decoding is a practical ML approaching algorithm
 Implementations for large antenna array, constellation, and

number of carriers is challenging
– Multipliers are simplified by exploiting Gray-coded modulation

and wordlength reduction
– Decision plane partitioning simplifies metric enumeration
– Multi-core search allows for increased energy efficiency or

improved throughput
 Flexible processing element for multi-mode/band operation
– Supports antennas 2x2 to 16x16, modulations BPSK to 64QAM,

8 to 128 sub-carriers, and K-best/depth-first search
– Multi-mode operation is supported with 2x reduction in area

efficiency due to overhead to operate multi-core architecture
– Multi-band LTE operation incurs another 1.3x overhead

15.48

Flexible MHz-rate MIMO Decoders 319

References

 C.-H. Yang and D. Markovi , "A Multi-Core Sphere Decoder VLSI Architecture for MIMO
Communications," in Proc. IEEE Global Communications Conf., Dec. 2008, pp. 3297-3301.

 C.-H. Yang and D. Markovi , "A 2.89mW 50GOPS 16x16 16-Core MIMO Sphere Decoder
in 90nm CMOS," in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2009, pp. 344-348.

 R. Nanda, C.-H. Yang, and D. Markovi , "DSP Architecture Optimization in
Matlab/Simulink Environment," in Proc. Symp. VLSI Circuits, June 2008, pp. 192-193.

 C.-H. Yang, T.-H. Yu, and D. Markovi , "A 5.8mW 3GPP-LTE Compliant 8x8 MIMO
Sphere Decoder Chip with Soft-Outputs," in Proc. Symp. VLSI Circuits, June 2010, pp. 209-
210.

 C.-H. Yang, T.-H. Yu, and D. Markovi , "Power and Area Minimization of Reconfigurable
FFT Processors: A 3GPP-LTE Example," IEEE J. Solid-State Circuits, vol. 47, no.3, pp. 757-
768, Mar. 2012.

Slide 16.1

This chapter presents a design
example of a kHz-rate neural
processor. A brief introduction to
kHz design will be provided,
followed by an introduction to
neural spike sorting. Several spike-
sorting algorithms will be reviewed.
Lastly, the design of a 130- W, 64-
channel spike-sorting DSP chip will
be presented.

Slide 16.2

The designs we analyzed thus far
operate at few tens to hundreds of
MHz and consume a few tens to
hundreds of milliwatts of power.
The sample rate requirement for
these applications roughly tracks
the speed of the underlying
technology. There are many
applications that dictate sample
rates much below the speed of
technology such as those found in
medical implants or seismic sensors.
Medical implants in particular
impose very tight power density
limits to avoid tissue overheating.

This chapter will therefore address implementation issues related to kHz-rate processors with
stringent power density requirements (10–100x below communication DSP processors).

Need for kHz Processors

 Conventional DSPs for communications operate at a few hundred
MHz and consume tens to hundreds of mW of power

 Signals in biomedical and geological applications have
bandwidths of 10 to 20 kHz
– These applications are severely power constrained

(desired power consumption is tens of W)
Implantable neural devices are power density limited (<< 800 W/mm2)
Seismic sensor nodes are limited by battery life
(desired battery life of 5 – 10 years)

 There is a need for energy-efficient implementation of kHz-rate
DSPs to process signals for these applications

 In this chapter, we describe the design of a 64-channel spike-
sorting DSP chip as an illustration of design techniques for kHz-
rate DSP processors

16.2

kHz-Rate Neural Processors

Chapter 16

with Sarah Gibson and Vaibhav Karkare
University of California, Los Angeles

 DOI 10.1007/978-1-4419-9660-2_16, © Springer Science+Business Media New York 2012
321D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

322 Chapter 16

Slide 16.3

This slide reviews the energy-delay
tradeoff in combinational logic.
The solid line indicates the optimal
tradeoff that is bounded by the
minimum-delay point (MDP) and
the minimum-energy point (MEP).
All designs below the line are
infeasible and all designs above the
line are suboptimal. The
discrepancy between the MDP and
the MEP is about one order of
magnitude in energy (for example,
scaling VDD from 1.0V to 0.3V
gives an order of magnitude
reduction in energy per operation)

where the energy is limited by leakage. Designing for the kHz sample rates thus requires circuit
methods for aggressive leakage minimization as well as architectural techniques that minimize
leakage through reduced area. The use of these techniques will be illustrated in this chapter.

Slide 16.4

Electrophysiology is the technique
of recording electrical signals from
the brain using implantable
microelectrodes. As shown in this
figure, the voltage recorded by a
microelectrode is the resulting sum
of the activity from multiple
neurons surrounding the electrode.
In many cases, it is important to
know which action potentials, or
“spikes”, come from which neuron.
The process of assigning each
action potential to its originating
neuron so that information can be
decoded is known as “spike

sorting.” This process is also used in basic science experiments seeking to understand how the brain
processes information as well as in medical applications like brain-machine interfaces (BMIs), which
are often controlled by single neurons.

Energy-Delay Optimization and kHz Design

 Optimal tradeoff is the blue line between minimum-delay point
(MDP) and minimum-energy point (MEP)

Time/Op

En
er

gy
/O

p

Dmin

Emin
MEP

MDP
Traditional

operation region

Ultra-low-energy
region

suboptimal

infeasible

~ 1,000 x

~
10

x

GHz MHz kHz

 kHz rates are
sub-optimal
due to high
leakage power

16.3

What is Neural Spike Sorting?

 Electrophysiology is the technique of
recording electrical signals from the
brain using microelectrodes
 Single-unit activity (signals recorded

from individual neurons) is needed for:
– Basic neuroscience experiments
– Medical applications, e.g.:

Epilepsy treatment
Brain-machine interfaces (BMIs)

 Neural signals recorded by microelectrodes are frequently
composed of activity from multiple neurons surrounding the
electrode
 Spike sorting is the process of assigning each action potential to

its originating neuron so that information can be decoded
16.4

and about three orders of magnitude in speed. The dotted line shows kHz region, beyond MEP,

kHz-Rate Neural Processors 323

Slide 16.5

This slide provides background on
neural spike sorting. Spike sorting
is generally performed in five
successive steps: spike detection,
spike alignment, feature extraction
(FE), dimensionality reduction, and
clustering. Spike detection is simply
the process of separating the actual
spikes from the background noise.
In alignment, each spike is aligned
to a common point, such as the
maximum value or the maximum
derivative. In feature extraction,
spikes are transformed into a
certain feature space that is

designed to separate groups of spikes more easily than can be done in the original space (i.e., the
time domain). Dimensionality reduction is choosing which features to retain for clustering and
which to discard. It is often performed after feature extraction to improve the accuracy of, and to
reduce the complexity of, subsequent clustering. Finally, clustering is the process of classifying
spikes into different groups (i.e., neurons) based on the extracted features. The final result of spike
sorting is a list of spike times for each neuron in the recording. This information can be represented
in a graph called a “raster plot”, shown on the bottom of the right-most subplot of this figure.

Slide 16.6

Now we will review a number of
spike-detection and feature-
extraction algorithms. All spike
detection methods involve first pre-
emphasizing the spike and then
applying a threshold to the
waveform. The method of pre-
emphasis and the method of
threshold calculation are presented
for each of the following spike-
detection algorithms: absolute-value
thresholding, the nonlinear energy
operator (NEO), and the stationary
wavelet transform product (SWTP).
Then, four different feature-

extraction algorithms will be described: principal component analysis (PCA), the discrete wavelet
transform (DWT), discrete derivatives (DD), and the integral transform (IT).

The Spike-Sorting Process

1. Spike Detection: Separating spikes from noise

2. Alignment: Aligning detected spikes to a common reference

3. Feature Extraction: Transforming spikes into a certain set of
features (e.g. principal components)

4. Dimensionality Reduction: Choosing which features to use in
clustering

5. Clustering: Classifying spikes into different groups (neurons)
based on extracted features

16.5

Algorithm Overview

 Spike detection
– Absolute-value threshold
– Nonlinear energy operator (NEO)
– Stationary wavelet transform product (SWTP)

 Feature extraction
– Principal component analysis (PCA)
– Discrete wavelet transform (DWT)
– Discrete derivatives (DD)
– Integral transform (IT)

16.6

324 Chapter 16

Slide 16.7

One simple, commonly used
detection method is to apply a
threshold to the voltage of the
waveform. This threshold can be
applied to either the raw waveform
or to the absolute value of the
waveform. Applying a threshold to
the absolute value of the signal is
more intuitive, since spikes can
either be positive- or negative-
going. The equations shown for
the calculation of the threshold
(Thr) are based on an estimate of
the median of the data [1]. Note
that this figure shows ±Thr (red

dashed lines) applied to the original waveform rather than +Thr applied to the absolute value of the
waveform.

Slide 16.8

The nonlinear energy operator
(NEO) [2] is another method of
pre-emphasizing the spikes. The
NEO is large only when the signal
is both high in power (i.e., x2(n) is
large) and high in frequency (i.e.,
x(n) is large while x(n+1) and
x(n 1) are small). Since a spike by
definition is characterized by
localized high frequencies and an
increase in instantaneous energy,
this method has an obvious
advantage over methods that look
only at an increase in signal energy
or amplitude without regarding the

frequency. Similarly to the method in [1], the threshold Thr was automatically set to a scaled version
of the mean of the NEO. It can be seen from this figure that the NEO has greatly emphasized the
spikes compared to the figure in the previous slide.

Spike-Detection Algorithms:
Absolute-Value Thresholding

Apply threshold to:

 Absolute value of the original voltage waveform [1]

16.7

[1] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised Spike Detection and Sorting with
Wavelets and Superparamagnetic Clustering,” Neural Comp., vol. 16, no. 8, pp. 1661-1687,
Aug. 2004.

4 NThr

| ()|
0.6745N media

x n
n

Spike-Detection Algorithms: NEO

Apply threshold to:

 Nonlinear energy operator (NEO) [2]

16.8

[2] J. F. Kaiser, “On a Simple Algorithm to Calculate the ‘Energy’ of a Signal,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process, vol. 1, Apr. 1990, pp. 381-384.

2[()] () (1)· (1)x n n x n x nx

1

1 [()]
N

n

Thr C x n
N

kHz-Rate Neural Processors 325

Slide 16.9

The Discrete Wavelet Transform
(DWT), originally presented in [4],
is ideally suited for the detection of
signals in noise (e.g., edge detection,
speech detection). Recently, it has
also been applied to spike
detection. The stationary wavelet
transform product (SWTP) is a
variation on the DWT presented in
[3], as outlined in this slide.

Slide 16.10

This figure shows an example of
the SWTP signal and the calculated
threshold.

Spike-Detection Algorithms: SWTP

Apply threshold to Stationary Wavelet Transform Product (SWTP)

1. Calculate SWT at 5 consecutive dyadic scales:

2. Find the scale 2 j,max with the largest sum of absolute values:

3. Calculate point-wise product between SWTs at this & the two previous
scales:

4. Smooth with Bartlett window w(n)

5. Threshold:

16.9

(2 ,), 1,...,5jW n j 1,...,5

1

argmax | (2 ,)|
N

j
max

j n

j W n

2

() | (2 ,)|
max

max

j
j

j j

P N W n

1

1
() ()

N

n

Thr C w n P n
N

Spike-Detection Algorithms: SWTP

 Apply threshold to Stationary Wavelet Transform Product [3]

16.10

[3] K.H. Kim and S.J. Kim, “A Wavelet-based Method for Action Potential Detection from Extracellular
Neural Signal Recording with Low Signal-to-noise Ratio,” IEEE Trans. Biomed. Eng., vol. 50, no. 8,
pp. 999-1011, Aug. 2003.

1

1
() ()

N

n

Thr C w n P n
N

326 Chapter 16

Slide 16.11

Principal Component Analysis
(PCA) has become a benchmark FE
method in neural signal processing.
In PCA, an orthogonal basis
(“principal components” or PCs) is
calculated for the data that captures
the directions in the data with the
largest variation. Each spike is
expressed as a series of PC
coefficients. (These PC coefficients
or scores, shown in the scatter plot,
are then used in subsequent
clustering.) The PCs are found by
performing eigenvalue
decomposition of the covariance

matrix of the data; in fact, the PCs are the eigenvectors themselves.

Slide 16.12

Besides being a well understood
method, PCA is often used because
it is an efficient way of coding data.
Typically, most of the variance in
the data is captured in the first 2 or
3 principal components, thus
allowing a spike to be accurately
represented in 2- or 3-dimensional
space. However, a main drawback
to this method is that the
implementation of the algorithm is
quite complex. Just computing the
principal component scores for
each spike takes over 5,000
additions and over 5,000

multiplications (assuming 72 samples per spike), not to mention the even greater complexity
required to perform the initial eigenvalue decomposition to calculate the principal components
themselves. Another drawback of PCA is that it achieves the greatest performance when the
underlying data is from a unimodal Gaussian distribution, which may or may not be the case for
neural data. If the data is non-Gaussian, or multimodal Gaussian, then the basis vectors will not be
independent, but only uncorrelated. Furthermore, there is no guarantee that the direction of
maximum variance will correspond to features that help discriminate between groups. For example,
consider a feature taken from a unimodal distribution with a high variance. Now consider a feature
taken from a multimodal distribution with a lower variance. Clearly the feature with the multimodal
distribution will allow for the discrimination between groups, even though the overall variance of
that feature could be lower.

Feature-Extraction Algorithms: PCA

 Projects data onto an orthogonal set of basis vectors such that
the first coordinate (called the first principal component)
represents the direction of largest variance

16.11

 Algorithm:
1. Calculate covariance matrix of data

(spikes) (N-by-N).
2. Calculate eigenvectors (“principal

components”) of covariance matrix
(N 1-by-N vectors).

3. For each principal component (i =
1,…,N), calculate the i th “score” as
the scalar product of the data point
(spike) and the i th principal
component.

e

Feature-Extraction Algorithms: PCA

 Pros:
– Efficient (coding): can represent spike in 2 or 3 PCs

 Cons:
– Inefficient (implementation): hard to perform

eigendecomposition in hardware
– Only finds independent axes if the data is Gaussian
– There is no guarantee that the directions of maximum variance

will contain good features for discrimination

16.12

kHz-Rate Neural Processors 327

Slide 16.13

The discrete wavelet transform has
been proposed for FE by [4]. The
DWT should be a good method for
FE since it is a multi-resolution
technique that provides good time
resolution at high frequencies and
good frequency resolution at low
frequencies. The DWT is also
appealing because it can be
implemented using a series of filter
banks, keeping the complexity
relatively low. However, depending
on the choice of mother wavelet
and on the number of wavelet
scales used, the number of

computations required to compute the wavelet coefficients for each spike can become high.

Slide 16.14

Discrete Derivatives (DD) is a
method similar to the DWT but
simpler [5]. In this method,
discrete derivatives are computed
by calculating the slope at each
sample point, over a number of
different time scales. A derivative
with time scale means taking the
difference between spike sample at
time n and spike sample that is
samples apart.

The benefits of this method are
that its performance is very close to
that of DWT while being much less
computationally expensive. The

main drawback, however, is that it increases the dimensionality of the data, thus making subsequent
dimensionality reduction even more critical.

Feature-Extraction Algorithms: DWT

 Wavelets computed at dyadic scales
form an orthogonal basis for
representing data

 Convolution of wavelet with data
yields wavelet “coefficients”

 Can be implemented by a series of
quadrature mirror filter banks

 Pros and Cons
– Pro: Accurate representation of

signal at different frequencies
– Con: Requires convolutions

 multiple mults/adds per sample

16.13

[4] S. G. Mallat, “A Theory for Multiresolution Dignal Decomposition: The Wavelet Representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.

[4]

Feature-Extraction Algorithms: DD

 Like a simplified version of DWT
 Differences in spike waveform s(n) are

computed at different scales:

 Must perform subsequent dimensionality
reduction before clustering

 Pros and Cons
– Pro: Leads to accurate clustering
– Pro: Very simple implementation
– Con: Increases dimensionality
– Con: Subsequent dimensionality

reduction increases overall system
complexity

16.14

[5] Z. Nadasdy et al., “Comparison of Unsupervised Algorithms for On-line and Off-line Spike
Sorting,” presented at the 32nd Annu. Meeting Soc. for Neurosci., Nov. 2002.
[Online]. Available: http://www.vis.caltech.edu/ zoltan/

[(() ())]dd ss n n s n

[5]

328 Chapter 16

Slide 16.15

The last feature-extraction method
considered here is the integral
transform (IT) [6]. As shown in the
top figure, most spikes have both a
positive and a negative phase. In
this method, the integral of each
phase is calculated, which yields
two features per spike. This
method seems ideally suited for
hardware implementation, since it
can be implemented very simply
and since it inherently achieves such
a high level of dimensionality
reduction (thereby reducing the
complexity of subsequent

clustering). The main drawback, however, is that it has been shown not to perform well. That is
because these features tend not to be good discriminators for different neurons.

Slide 16.16

In a traditional neural recording
system, unamplified raw data is sent
outside the body through wires.
Spike sorting of this data is
performed offline, in software.
This setup for neural recording has
several disadvantages. It precludes
real-time processing of data, and
can only provide support for a
limited number of channels. It also
restricts freedom of movement of
the subject, and the wires increase
the risk of infection. Spike sorting
on a chip implanted inside the skull
solves these problems. It provides

the fast, real-time processing that is necessary for brain-machine interfaces. It also provides output
data-rate reduction, which enables wireless transmission of data for a large number of channels.
Thus, there is a clear need for the development of spike-sorting DSP chips.

Feature-Extraction Algorithms: IT

 Most spikes have a negative and positive phase
 Algorithm

1. Calculate integral of negative phase ()
2. Calculate integral of positive phase ()

 Pros and Cons
– Pro: Efficient implementation (accumulators,

no multipliers)
– Pro: High dimensionality reduction
– Con: Does not discriminate between

neurons well

16.15

[6] A. Zviagintsev, Y. Perelman, and R. Ginosar, “Algorithms and Achitectures for Low Power Spike
Detection and Alignment,” J. Neural Eng., vol. 3, no. 1, pp. 35-42, Jan. 2006.

2

12 1

1
()

t

t t

V t
t t

2

12 1

1 ()
t

t t

V t
t t

[6]

Need for On-Chip Spike Sorting

 Traditional neural recording system: wired data; sorting offline in software

16.16

– Disadvantages of traditional approach
Not real time
Limited number of channels

 Improved neural recording system: wireless data; sorting online, on-chip

– Advantages of in-vivo system
Faster processing
Data rate reduction

Wireless transmission of data
possible

kHz-Rate Neural Processors 329

Slide 16.17

There are a number of design
constraints for a spike-sorting DSP
chip. The most important
constraint for an implantable neural
recording device is power density.
A power density of 800 W/mm2
has been shown to damage brain
cells, so the power density must be
significantly lower than this limit.
Output data rate reduction is
another important design
constraint. Low output data rates
imply low power for wireless
transmission. Thus, a higher
number of channels can be

supported for a given power budget. The spike-sorting DSP should also have a low area to allow
for integration of the DSP, along with the analog front end and RF circuits, to the base of the
recording electrode. This figure shows a 100-channel recording electrode array, which was
developed at the University of Utah [7] and which has a base area of 16mm2.

Slide 16.18

In the following design example, we
have used a technology-driven
algorithm-architecture selection
process to implement the spike-
sorting DSP. Complexity-
performance tradeoffs of several
algorithms have been analyzed in
order to select the most hardware
friendly spike-sorting algorithms
[8]. Energy- and area-efficient
choices have been made in the
architecture and circuit design
process that lead to a low-power
implementation for the
multichannel spike-sorting ASIC

[9]. The following few slides will elaborate on each of these design steps.

Design Challenges

 Power density
– Tissue damage at

800 W/mm2

 Data-rate reduction
– Low power
– Large number of

channels
 Low area

– Integration with
recording array

Utah Electrode Array [7]

[7] R. A. Normann, “Microfabricated Electrode Arrays for Restoring Lost Sensory and Motor
Functions,” International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and
Microsystems, pp. 959-962, June 2003.

16.17

Design Approach

 Technology-aware algorithm
selection

 Energy- & area-efficient
architecture and circuits

 Low-power, multi-channel ASIC
implementation

16.18

330 Chapter 16

Slide 16.19

Several algorithms have been
published in literature for each of
the spike-sorting steps described
earlier. However, there is no
agreement as to which of these
algorithms are the best-suited for
hardware implementation. To
elucidate this issue, we analyzed the
complexity-performance tradeoffs
of several spike-sorting algorithms
[8]. Probability of detection,
probability of false alarm, and
classification accuracy were used to
evaluate the algorithm performance.
The figure on this slide shows the

signal-processing flow used to calculate the accuracy of each of the detection and feature-extraction
(FE) algorithms considered. Algorithm complexity was evaluated in terms of the number of
operations per second required for the algorithm and the estimated area (for 90-nm CMOS). These
two metrics were then combined into a “normalized cost” metric for each algorithm.

Slide 16.20

This figure shows both the
probability of detection versus SNR
(left) and the probability of false
alarm versus SNR (right) for each
detection method that was
investigated. The absolute-value
method has a low probability of
false alarm across SNRs, but the
probability of detection falls off for
low SNRs. The probability of
detection for NEO also falls off for
low SNRs, but the drop-off occurs
later and is less drastic. The
probability of false alarm for NEO,
however, is slightly higher than that

of absolute-value for lower SNRs. The performance of SWTP is generally poorer than that of the
other two methods.

Algorithm Evaluation Methodology

 Goal: To identify high-accuracy, low-complexity
algorithms

 Algorithm metrics
– Accuracy
– NOPS
– Area

 Generated test data sets using neural signal
simulator
– SNR: 20 dB to 15 dB

 Tested accuracy of the spike-detection and
feature-extraction methods described in the
“algorithm overview”

16.19

max
NOPS Area

Normalized Cost
NOPS Areamax

i i
i

i i ii

[8] S. Gibson, J.W. Judy, and D. Markovi , "Technology-Aware Algorithm Design for Neural Spike
Detection, Feature Extraction, and Dimensionality Reduction," IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 18, no. 4, pp. 469-478, Oct. 2010.

[8]

Spike Detection Accuracy Results

 Left: Probability of detection vs. SNR for each detection method
 Right: Probability of false alarm vs. SNR for each detection method
 Curves for each of the 96 data sets are shown. For each method,

the median across all data sets is shown in bold.
16.20

kHz-Rate Neural Processors 331

Slide 16.21

Receiver Operating Characteristic
(ROC) curves were used to evaluate
the performance of the various
spike-detection algorithms. For a
given method, the ROC curve was
generated by first performing the
appropriate pre-emphasis and then
systematically varying the threshold
on the pre-emphasized signal from
very low (the minimum value of the
pre-emphasized signal) to very high
(the maximum value of the pre-
emphasized signal). At each
threshold value, spikes were
detected and PD and PFA were

calculated in order to form the ROC curve. The area under the ROC curve (also called the “choice
probability”) represents the probability that an ideal observer will correctly classify an event in a two-
alternative forced-choice task. Thus, a higher choice probability corresponds to a better detection
method.

This figure shows the median ROC curve for all data sets and noise levels (N=1632) for each
spike-detection method. It is again clear from this figure that the SWTP method is inferior to the
other two methods. However, the curves corresponding to the absolute value and NEO methods
are quite close, so it is necessary to consider the choice probability for each method in order to
determine which of these methods is better. Since NEO has the highest choice probability, it is the
most accurate of the three spike-detection methods.

Slide 16.22

This table shows the estimated
MOPS, area, and normalized cost
for each of the spike-detection
algorithms considered. The
absolute-value method is shown to
have the lowest overall cost of the
three methods, with NEO in a
close second. The figure beneath
the table shows a plot of median
choice probability versus the
normalized cost for each algorithm.
The best choice for hardware
implementation would lie in the
high-accuracy, low-cost (upper, left)
corner. Thus, it is clear that NEO

is best-suited for hardware implementation.

Spike Detection Accuracy Results

 Median ROC curve for each detection method (N = 1632). The
areas under the curves (choice probabilities) are as follows:
Absolute Value, 0.925; NEO, 0.947; SWTP, 0.794

16.21

Spike Detection Complexity Results

 The median choice probability of
all data sets and noise levels
(N = 1632), versus normalized
computational cost for each
spike- detection algorithm

16.22

Algorithm MOPS Area [mm2] Normalized
Cost

Absolute
Value 0.4806 0.06104 0.0066

NEO 4.224 0.02950 0.0492
SWTP 86.75 56.70 2

332 Chapter 16

Slide 16.23

This table shows the same results as
before but for the feature-
extraction methods. The IT
method is shown to have the lowest
overall cost of the three methods,
with DD in a close second. The
figure beneath the table shows the
mean classification accuracy versus
normalized cost for each feature-
extraction algorithm. Again, the
best choice for hardware
implementation would lie in the
high-accuracy, low-cost (upper, left)
corner. Thus, it is clear that DD is
best-suited feature-extraction

algorithm for hardware implementation.

Slide 16.24

We chose NEO for detection,
alignment to the maximum
derivative, and discrete derivatives
for feature extraction. This figure
shows the block diagram of a
single-channel spike-sorting DSP
core [9]. The NEO block calculates
(n) for incoming data samples. In

the training phase, the threshold
calculation module calculates the
threshold as the weighted average
of (n) for the input data. This
threshold is used by the detector to
signal spike detection. The
preamble buffer saves a sliding

window of the input data samples. Upon threshold crossing, this preamble is saved along with the
following samples into the register bank memory as the detected spike. The maximum derivative
block calculates the offset required to align the spikes to the point of maximum derivative. The FE
block then calculates the uniformly sampled discrete derivative coefficients for the aligned spike.
The 8-bit input data, which enters the module at a rate of 192kbps, is converted to aligned spikes,
which have a rate of 38.4kbps. The extracted features have a data rate of 16.8kbps, thus providing
a 91.25% reduction in the data rate. The detection and alignment modules occupy 33% and 47% of
the total 0.1 mm2 area of a single-channel DSP core. The FE module occupies the remaining 20%.
It is interesting to note that the single-channel DSP core is a register-dominated design with 50% of
the area occupied by registers. The low operating frequency and register dominance makes the

Feature Extraction Complexity and Accuracy Results

 Mean classification accuracy,
averaged over all data sets and
noise levels (N = 1632), after
fuzzy c-means clustering versus
computational cost for each FE
algorithm. Error bars show
standard error of the mean.

16.23

Algorithm MOPS Area [mm2] Normalized
Cost

PCA 1.265 0.2862 1.4048
DWT 3.125 0.06105 1.2133
DD 0.1064 0.04725 0.1991
IT 0.05440 0.03709 0.1470

Single-Channel DSP Kernel

16.24

Data Rate (kbps)

dd s n s n s n

kbps)
Relative Area (%)

16.8 kbps

192 kbps

20%47%

33%

38.4 kbps

Offset argmax(() (1))
n

s n s n

2() () (1)· (1)n x n x n x n

1

1 ()
N

n

Thr C n
N

[()] () ()dd s n s n s n

[9] V. Karkare, S. Gibson, and D. Markovi , "A 130- W, 64-Channel Spike-Sorting DSP Chip," in Proc.
IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 289-292.

[9]

kHz-Rate Neural Processors 333

design of a spike-sorting DSP different from the conventional DSP ASICs, which tend to be high-
frequency and logic-dominated systems.

Slide 16.25

Now that we are familiar with the
spike-sorting DSP and its features,
let us analyze the design from an
energy-delay perspective. This plot
shows the normalized energy per
channel versus the normalized delay
for the spike-sorting DSP core [9].
The DSP has a critical-path delay
equivalent to 466 FO4 inverters at
the nominal supply voltage. This
implies that the design at the
minimum-delay point (MDP) is
2000 times faster than the
application delay requirement. The
E-D curve shown by the red line

assumes operation at the maximum possible frequency at each voltage. However, since the
application delay is fixed, there is no reward for early computation, as the circuit continues to leak
for the remainder of the clock cycle. Operating the DSP at the nominal supply voltage would thus
put us at the high energy point labeled 1.2V, where the DSP is heavily leakage-dominated. In order
to reduce the energy consumed, we used supply-voltage scaling to bring the design from the high
energy point at 1.2V to a much lower energy at 0.3V. However, mere supply-voltage scaling for a
single-channel DSP puts us at a sub-optimal point beyond the minimum-energy point (MEP) for the
design. To bring the DSP to a desirable operating point between the minimum-delay and minimum-
energy points, we chose to interleave the single-channel architecture.

Slide 16.26

Interleaving allows us to use the
same logic hardware for multiple
channels, thereby reducing the logic
leakage energy consumed per
channel. Interleaving also reduces
the depth of the datapath and
pushes the MEP to a higher delay,
thus bringing the MEP closer to the
application delay requirement. The
reduction in the logic leakage
energy and the shift to a better
operating point cause the energy
per channel at application delay to
decrease with higher degrees of

Direct-Mapped Architecture

Critical path:
 466 FO4 inverters

Required delay:
 Significantly higher than

MDP & MEP

E-D curve:
 Solid: optimal
 Dashed: sub-optimal

1-ch arch is sub-opt:
 VDD scaling falls well

beyond MEP

16.25

Improved Architecture: Interleaving

Reduced logic leakage:
 Datapath logic sharing
 Shorter critical path

Interleaving results:
 MEP at higher delay
 For 8 channels,

we are back on the
optimal E-D curve
 Increase in register

switching energy
 For > 16 channels,

register switching
energy dominates

16.26

334 Chapter 16

interleaving. Beyond 8-channel interleaving, the design operates between the minimum-delay and
the minimum-energy points. However, the number of registers in the design remains constant with
respect to the number of channels interleaved. The switching energy of these registers increases
with interleaving. Therefore, as more than 16 channels are interleaved, the energy per channel starts
to increase due to an increase in register switching energy [9].

Slide 16.27

This curve shows the energy per
channel at the application delay
versus the number of channels
interleaved [9]. It can be seen that
the energy is at a minimum at 8-
channel interleaving and increases
significantly beyond 16-channel
interleaving. In addition to
reduction in energy per channel,
interleaving also allows us to reduce
area for the DSP, since the logic is
shared between multiple channels.
The area occupied by registers,
however, remains constant. At
high degrees of interleaving, the

register area dominates over the logic area. This causes the area savings to saturate at 16-channel
interleaving, which offers an area reduction of 47%. Since we expect to be well within the power
density limit, we chose to trade headroom in energy in favor of increased area reduction. We,
therefore, chose to implement the 64-channel DSP with a modular architecture consisting of four
16-channel interleaved cores.

Slide 16.28

The modularity in the architecture
allows us to power gate the inactive
cores to reduce the leakage. In
conventional designs, we need a
PMOS header at the VDD, since the
source voltage of an NMOS can
only go up to VDD VTN.
However, in our design the supply
voltage is 0.3V, but the voltage on
the sleep signal at the gate can be
pushed up to 1.2V. Therefore it is
possible to use an NMOS header
for gating the VDD rail. The NMOS
sleep transistor has a VGS greater
than the core VDD in the active

Choosing the Degree of Interleaving

 Energy per channel
– Minimum for

8 channels
– Rapidly increases for

> 16 channels

 Area savings
– Saturate at

16 channels
– 47% area reduction

for 16 channels

 We chose 16-channel interleaving
– Headroom in energy traded for larger area reduction

16.27

NMOS Header for Power Gating

 NMOS header switch
– Lower leakage than PMOS for the same delay increase
– Impact on our design: 70% reduction in leakage

16.28

kHz-Rate Neural Processors 335

mode, while maintaining negative VGS in the sleep mode. The high overdrive in the active mode
implies that we need a much narrower NMOS device for a given on-state current requirement than
the corresponding PMOS. The narrow NMOS device leads to a lower leakage in the sleep mode.
This plot shows the ratio of the maximum on-state versus off-state current for the NMOS and
PMOS headers at different supply voltages. It is seen that for voltages lower than 0.7V, the NMOS
header has a better ION/IOFF ratio than has the PMOS header. In this chip, we used NMOS devices
for gating the VDD and the GND rail [9].

Slide 16.29

We also used logic restructuring
and wordlength optimization to
further reduce the power and area

designed so as to avoid redundant
signal switching. For instance,
consider the circuit shown here for
the accumulation of (n) for the
threshold calculation in the training
phase. The output of the
accumulation node is gated such
that the required division for
averaging only happens once at the
end of the training period, thereby
avoiding the redundant switching as

(n) is being accumulated. We also exploited opportunities for hardware sharing. For example, the
circuit for the calculation of (n) is shared between the training and detection phases. Wordlength
optimization was performed using an automated wordlength optimization tool [10]. Iteratively
increasing constraints were specified on the mean squared error (MSE) at the signal of interest until
detection or classification errors occur. For instance, it was determined that a wordlength of 31 bits
is needed at the accumulation node for (n) to avoid detection errors. Wordlength optimization
offers 15% area reduction compared to a design with a fixed MSE of 5 10 6 (which is equal to the
input MSE).

Power and Area Minimization

 Logic restructuring
– Reduce switching activity
– Reuse hardware

 Wordlength optimization
– Specify iterative MSE constraints [10]

– 15% area reduction compared to design with MSE 5×10 6

[10] C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California, Berkeley,
2004.

Accumulator

16.29

1

()
N

n

n
()n

×

of the DSP. The logic was

336 Chapter 16

Slide 16.30

We used a MATLAB/Simulink-
based graphical environment to
design the spike-sorting DSP core.
The algorithm was implemented in
Simulink, which provided a bit-true,
cycle-accurate representation of the
design. The Synplify DSP blockset
was used to auto-generate the HDL
from the Simulink model. The
HDL was synthesized and the
output of the delay-annotated
netlist was verified with respect to
the output of the Simulink model.
The netlist was also used for place-
and-route to obtain the final layout

for the DSP core. Since synthesis estimates were obtained with an automated flow from the

avoided the design re-entry that is common in traditional design methods. Also, numbers from
technology characterization could be used with the Simulink model to obtain area and performance
estimates early in design phase.

Slide 16.31

This slide shows the die photo of

mentioned earlier, the 64-channel
DSP has a modular architecture
consisting of four cores that
process 16 channels each. All cores
except core 1 are power-gated. The
modularity in the architecture
allows for easy extension of the
design to support a higher number
of channels. Input data for 64
channels arrives at a clock rate of
1.6MHz and is split into four
streams of 400kHz each using a
serial-parallel (S/P) converter. At

the output, the data streams from the four cores are combined by the parallel-serial (P/S) converter
to form a 64-channel-interleaved output stream. Since we use a reduced voltage at the core, a level
converter with cross-coupled PMOS devices was designed to provide a 1.2-V swing at the I/O pads.
The chip supports three output modes to output raw data, aligned spikes, or spike features. The
detection thresholds are calculated on-chip, as opposed to many previous spike-sorting DSPs that
require the detection threshold to be specified by the user. The training phase for threshold

Spike-Sorting DSP Chip

 Modular architecture
– 4 cores process

16 channels each
– S/P and P/S conversion
– Voltage-level conversion

 Modes of operation
– Raw data
– Aligned spikes
– Spike features

 Detection thresholds
– Calculated on-chip
– Independent training for

each channel 1P8M Std-VT 90-nm CMOS

16.31

[11] R. Nanda, C.-H. Yang, and D. Markovi , “DSP Architecture Optimization in MATLAB/Simulink
Environment,” in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193.

MATLAB-based Chip Design Flow

 MATLAB/Simulink-based
graphical design
environment
– Bit-true, cycle-accurate

algorithm model
– Automated architecture

exploration [11]

– Avoids design entry
iterations

 Provides early area and
performance estimates for
algorithm design

16.30

Simulink model, various architecture options could be evaluated [11]. The algorithm needed to be
entered only once in the design flow in the form of a Simulink model. This methodology thus

the spike-sorting DSP chip. As

kHz-Rate Neural Processors 337

calculation can be initiated independently for each channel. Hence, a subset of noisy channels can
be trained more often than the rest without affecting the detection output on the other channels.

Slide 16.32

This figure shows a sample output
for simulated neural data having an

a snapshot of the raw data, part (b)
the aligned spikes, and part (c) the
uniformly sampled DD coefficients.
In parts (b) and (c), samples have
been color-coded according to the
correct classification of that sample.
That is, for every spike in the time-
domain (b) and for every DD
coefficient in the feature domain
(c), the sample is colored green if it
originates from neuron 1 or purple
if it originates from neuron 2. It is

known a priori that the simulated neural data has two neurons which, as seen in (b), are difficult to
distinguish in the time domain. However, these classes separate nicely in the discrete-derivative
domain (c). The classification accuracy of this example is 77% when time-domain spikes are
clustered. When discrete derivative coefficients are used instead, the classification accuracy is
improved to 92%.

Slide 16.33

This figure shows a sample output
of the chip when human data is
processed. The raw data is
recorded using one of the nine 40-
m-diameter electrodes positioned

in the hippocampal formation of a
human epilepsy patient at UCLA.
Part (a) shows the raw data, part (b)
the aligned spikes, and part (c) the
FE coefficients. In this case, the
samples in (b) and (c) have been
colored according to the results of
clustering.

Sample Output (Simulated Data)

16.32

SNR = 2.2 dB

CA = 77 % CA = 92 %

()x n

()s n ()dd n

Sample Output (Human Data)

16.33

()x n

()s n ()dd n

SNR of −2.2dB. Part (a) shows

338 Chapter 16

Slide 16.34

core voltage of 0.55V. The chip
consists of 650k gates and uses two
clocks of 0.4MHz and 1.6MHz.
The slower clock is derived on-chip
from the faster clock. The power
consumption of the chip is
2 W/channel when processing all
64 channels. Data-rate reduction of
91.25% is obtained as input data at
a rate of 11.71Mbps is converted

to spike features at 1.02Mbps. The chip can be used to process 16, 32, 48, or 64 channels at a time.
The accuracy of the chip for the simulated neural data illustrated earlier is given by a probability of
detection of 86%, a probability of false alarm of 1%, and a classification accuracy of 92%. The
corresponding median numbers calculated for the SNR range of 15dB to 20dB are 87%, 5%, and
77%, respectively. The total power consumption is 130 W for 64-channel operation. When only
one core is active, the chip consumes 52 W for processing 16 channels. The die occupies an area
of 7.07mm2 with a core area of 4mm2. A classification accuracy of over 90% is obtained for all
simulated data sets with positive SNRs. The average power density of the cores is 30 W/mm2.

Slide 16.35

Neural spike sorting is an example
of a kHz-rate application where the
speed of technology far exceeds
application requirements. This
necessitates different architectural

based on heavy interleaving is used
to reduce area and leakage. At the
circuit level, supply voltage scaling
down to the sub-threshold regime
and additional power gating can be
used to reduce leakage power.

Chip Performance

 Power
– 130 W for

64 channels
– 52 W for

16 channels

 Area
– Die: 7.07 mm2

– Core: 4 mm2

 Classification
accuracy
– Over 90 %

for SNR > 0 dB

Technology 1P8M 90-nm CMOS
Core VDD 0.55 V
Gate count 650 k
Clock domains 0.4 MHz, 1.6 MHz
Power 2 W/channel
Data reduction 91.25 %
No. of channels 16, 32, 48, 64

Power density: 30 W/mm2

SNR 2.2 dB Median
PD 86 % 87 %
PFA 1 % 5 %
Class. accuracy 92 % 77 %

16.34

Summary

 Spike sorting classifies spikes to their putative neurons
– It involves detection, alignment, feature extraction, and

classification steps, starting with a 20-30kS/s data
– Each step reduces data rate for wireless transmission

Feature extraction reduces data rate by 11x
– Using spike features instead of aligned spikes improves

classification accuracy

 Real-time neural spike sorting works at speeds (30 kHz) far below
the speed of GHz-rate CMOS technology
– Low data rates result in leakage-dominated designs
– Extensive power gating is required to reduce power

16.35

This table shows a summary of the
chip, built in a 90-nm CMOS
process. The DSP core designed
for 0.3 V operation could be
verified in silicon for a minimum

and circuit solutions. Architecture

kHz-Rate Neural Processors 339

References

 R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised Spike Detection and
Sorting with Wavelets and Superparamagnetic Clustering,” Neural Comp., vol. 16, no. 8, pp.
1661–1687,
Aug. 2004.

 J. F. Kaiser, “On a Simple Algorithm to Calculate the ‘Energy’ of a Signal,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, Apr. 1990, vol. 1, pp. 381–384.

 K.H. Kim and S.J. Kim, “A Wavelet-based Method for Action Potential Detection from
Extracellular Neural Signal Recording with Low Signal-to-noise Ratio,” IEEE Trans. Biomed.
Eng., vol. 50, no. 8, pp. 999–1011, Aug. 2003.

 S.G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, July
1989.

 Z. Nadasdy et al., "Comparison of Unsupervised Algorithms for On-line and Off-line Spike
Sorting," presented at the 32nd Annual Meeting Soc. for Neurosci., Nov. 2002. [Online]. Available:
http://www.vis.caltech.edu/~zoltan

 A. Zviagintsev, Y. Perelman, and R. Ginosar, “Algorithms and Architectures for Low Power
Spike Detection and Alignment,” J. Neural Eng., vol. 3, no. 1, pp. 35–42, Jan. 2006.

 R.A. Normann, “Microfabricated Electrode Arrays for Restoring Lost Sensory and Motor
Functions,” in Proc. International Conference on TRANSDUCERS, Solid-State Sensors, Actuators
and Microsystems, pp. 959-962, June 2003.

 S. Gibson, J.W. Judy, and D. Markovi , "Technology-Aware Algorithm Design for Neural
Spike Detection, Feature Extraction, and Dimensionality Reduction," IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 18, no. 4, pp. 469-478, Oct. 2010.

 V. Karkare, S. Gibson, and D. Markovi , "A 130 uW, 64-Channel Spike-Sorting DSP Chip,"
in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 289-292.

 C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, University of California,
Berkeley, 2004.

 R. Nanda, C.-H. Yang, and D. Markovi , “DSP Architecture Optimization in
Matlab/Simulink Environment,” in Proc. Int. Symp. VLSI Circuits, June 2008, pp. 192-193.

Additional References

 M. Abeles and M.H. Goldstein Jr., "Multispike Train Analysis," Proceedings of the IEEE, vol.
65, no. 5, pp. 762–773, May 1977.

 R.J. Brychta et al., “Wavelet Methods for Spike Detection in Mouse Renal Sympathetic
Nerve Activity,” IEEE Trans. Biomed. Eng., vol. 54, no. 1, pp. 82–93, Jan. 2007.

 S. Gibson, J.W. Judy, and D. Markovi , "Comparison of Spike-Sorting Algorithms for
Future Hardware Implementation," in Proc. Int. IEEE Engineering in Medicine and Biology Conf.,
Aug. 2008, pp. 5015-5020.

 E. Hulata et al., “Detection and Sorting of Neural Spikes using Wavelet Packets,” Phys. Rev.
Lett., vol. 85, no. 21, pp. 4637–4640, Nov. 2000.

340 Chapter 16

 K.H. Kim and S.J. Kim, "Neural Spike Sorting under Nearly 0-db Signal-to-noise Ratio using
Nonlinear Energy Operator and Artificial Neural-network Classifier," IEEE Trans. Biomed.
Eng., vol. 47, no. 10, pp. 1406–1411, Oct. 2000.

 M.S. Lewicki. “A Review of Methods for Spike Sorting: The Detection and Classification of
Neural Action Potentials,” Network, vol. 9, R53-R78, 1998.

 S. Mukhopadhyay and G. Ray, "A New Interpretation of Nonlinear Energy Operator and its
Efficacy in Spike Detection," IEEE Trans. Biomed. Eng., vol. 45, no. 2, pp. 180–187, Feb.
1998.

 I. Obeid and P.D. Wolf, "Evaluation of Spike-detection Algorithms for a Brain-machine
Interface Application," IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 905–911, Jun. 2004.

 A. Zviagintsev, Y. Perelman, and R. Ginosar, “Low-power Architectures for Spike Sorting,”
in Proc. Int. IEEE EMBS Conf. Neural Eng., Mar. 2005, pp. 162–165.

Slide 17.1

The material in this book shows
core ideas of DSP architecture
design. Techniques presented can
aid in extracting performance,
energy and area efficiency in future
applications. New ideas will also
have to emerge to solve future
problems. In the future, we feel,
the main design problem will be
how to achieve hardware flexibility
and energy efficiency
simultaneously.

Slide 17.2

We can no longer rely on
technology scaling to improve
energy efficiency. The plot on the
slide shows energy efficiency in
GOPS/mW, which is how many
billion operations per second you
can do in one milliwat of power,
versus technology generation. Such
energy efficiency represents the
intrinsic computational capability of
silicon technology. The numbers
on the horizontal axis represent
channel length (L).

In the past (e.g. 1990s), the
number of digital computations per

unit energy greatly improved with smaller transistors and lower operating voltage (VDD). Things are
now different. Energy efficiency is tapering off with scaling. Scaling of voltage has to slow down
due to increased leakage and process variation, which results in reduced energy efficiency according
to the formula. In the future, the rate of shrinking the channel length will be delayed due to
increased development and manufacturing cost.

Technology scaling, overall, is no longer providing benefits in energy efficiency as in the past.
This change in technology greatly emphasizes the need for energy-efficient design.

CMOS Scaling Has Changed

 1990’s: both VDD and L scaling
 2000’s: VDD scaling slowing down, L scaling
 2010’s: rate of L scaling slowing down

17.2

1
Csw · VDD

2 · (1+Elk/Esw)
Energy efficiency =

L & VDD

mostly L

L delayed

0.1

1

10

100

250 180 130 90 65 45 32 22

En
er

gy
 E

ff
ic

ie
nc

y
(G

O
PS

/m
W

)

L (nm)
16 12

Brief Outlook

 DOI 10.1007/978-1-4419-9660-2, © Springer Science+Business Media New York 2012
341D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

342 DSP Architecture Design Essentials

Slide 17.3

Applications are getting more
complex. Increased functional
diversity has to be supported on the
same device. The amount of data
processing for adding new features
is exploding. Let’s take a recent
(2010) example of an iPad. When
Apple decided to put H.264
decoder on iPad, they had to use
specialized hardware to meet the
energy efficiency requirements.
Software was not an option,
because it would have consumed
too much power. Future
applications will be even more

constraining. In applications such as high-speed wireless, multi-antenna and cognitive radio or mm-
wave beamforming, software solutions wouldn’t even meet real-time requirement regardless of
power. Software solutions wouldn’t even be an option. There are numerous other applications
where real-time throughput and energy efficiency have to come from specialized hardware.

Adding too many pieces of specialized hardware, however, to support a diverse set of features

Slide 17.4

There are two ways to provide

programmable DSP processor and
develop application-specific
software. People have been doing
that for a long time. This approach
works well for low-throughput and
ad-hoc operations, but falls short
on delivering the performance and
energy efficiency required from
high-throughput applications such
as high-sped wireless.

Alternatively, we could use an
FPGA, which is a reconfigurable
hardware that you customize each

time you need to execute a new algorithm. Unlike programmable DSP where your hardware is
fixed, now you have uncommitted resources, which you can configure to support large degrees of
parallelism and provide very high throughput.

Applications Have Changed

 Signal processing content increasing
– Increasing functional diversity

Communications, multimedia, gaming, etc.
Hardware accelerators

– Increasing complexity
High-speed WiFi: multi-antenna, cognitive radio, mm-wave, etc.
Healthcare, neuroscience

 Apple iPad example
– Support for H.264 decoder was done in hardware
– Software solution was too much power

 Specialized hardware is not the answer for future problems
– Chips that are energy efficient and flexible are needed

17.3

Software

17.4

Programmable DSP FPGA (Flexible DSP)

Specialized Proc. Reconfigurable hardware

Conditional ops, floating point Repetitive operations

Multi-core programming is difficult Implicitly parallel hardware

Low throughput (~10MS/s apps) High throughput (10-100x GOPS)

Hardwarevs.

would not be effective. Future designs must be energy efficient and flexible at the same time.

Ways to Provide Flexibility

flexibility. We can use a

Brief Outlook 343

Slide 17.5

slide shows energy and area
efficiency comparisons for different
types of processors. We took data
from the top two international
conferences in chip design over the
past 12 years and averaged the
numbers to observe general
ranking. FPGA companies don’t
publish their data, but it is widely
believed that FPGAs are at least
15x less efficient in both energy and
area than dedicated chips.

Since programmable DSPs can’t
deliver the performance and efficiency for high-throughput applications, as we’ve discussed, we
need to drive up efficiency of reconfigurable hardware towards the upper-right corner. It would be
great if we could possibly eliminate the need for dedicated chips.

Slide 17.6

Apart from technical reasons, we
need to take a quick look into the
economic implications. Here, we
see which technologies have been
used by dedicated designs in the
past 10 years. Entries in the table
indicate percentage of new designs
in respective technologies. Good
news is on the left: scaling improves
performance and lowers cost for
high-volume chips. Bad news on
the right is that the cost of design
development is inversely
proportional to feature size. We
need over $100 million to develop a

chip in 28-nm technology.

That’s why dedicated chips still use 90nm as the preferred technology. On the other hand,
FPGA companies exploit the most advanced technology available. Due to their regularity, the
development cost is not as high. So, if we retain the efficiency benefits of dedicated chips without

17.5

1010.1

Average Area Efficiency (GOPS/mm2)

0.001

1

10

0.01

Av
er

ag
e

En
er

gy
 E

ff
ic

ie
nc

y
(G

O
PS

/m
W

)

Proc

Prog. DSP

Dedicated

100

0.1

FPGA

Goal: narrow
this gap

ISSCC & VLSI 1999-2011, averaged

Rising Cost of ASIC Design

Node
(nm)

2002
(%)

2003
(%)

2004
(%)

2005
(%)

2006
(%)

2007
(%)

2008
(%)

2009
(%)

2010
(%)

2011
(%)

Cost
($M)

28 0 0 0 0 0 0 0 0 >0 >0 110
32 0 0 0 0 0 0 0 1 2 2 80
40 0 0 0 0 0 1 2 4 6 7 60
45 0 0 0 0 0 1 2 4 6 7 60
65 0 0 0 1 2 6 8 10 13 15 55
90 0 1 8 13 18 23 23 24 24 24 30

130 18 37 42 29 29 27 27 25 24 24 20
180 38 27 23 20 17 14 12 10 10 8 13
250 16 15 12 12 11 9 9 8 7 6 5
350 21 16 12 12 11 10 8 8 6 5 3
500 5 4 3 7 7 6 6 5 4 4 2

>500 1 1 0 6 6 6 5 5 5 5 <1
Total 100 100 100 100 100 100 100 100 100 100 -

17.6

Source: Altera & Gartner (2009)

18FPGA 37FPGA 42FPGA
13FPGA 18FPGA

6FPGA

2FPGA 4FPGA
2FPGA 2FPGA

In
te

gr
at

io
n,

 L
ow

er
 C

os
t,

Pe
rf

or
m

an
ce

In
cr

ea
se

d
Ri

sk
s

&
 D

ev
el

op
m

en
t C

os
t

FPGADedicated#1 Design Technology:

% Design Starts by Technology

M.C. Chian, FPGA 2009 (panel).

In both cases, the cost of
flexibility is quite high. This

Efficiency and Flexibility in One Chip?

giving up the flexibility benefits of FPGAs, that would be a revolutionary change.

344 DSP Architecture Design Essentials

Slide 17.7

FPGAs are energy inefficient,
because of their interconnect
architecture. This slide shows a
small section of an FPGA chip
representing key FPGA building
blocks. The configurable logic
block (CLB) consists of look-up
table (LUT) elements that can be
configured to do arbitrary logic.
The switch-box array consists of bi-
directional switches that can be
configured to establish connections
between CLBs.

The architecture shown on the
slide is derived from O(N2)

complexity, where N represents the number of logic blocks. Clearly, full connectivity cannot be
supported, because the number of switches would outpace Moore’s law. In other words, if the
number of logic elements N were to double, the number of switches N2 would quadruple. This is
why FPGAs never have full connectivity.

Depopulation and segmentation are two techniques that are used to manage connectivity. The
switch-box array shown on the slide would have 12 12 switches for full connectivity, but only a few
diagonal switches are provided. This is called depopulation. When two blocks that are physically
close are connected, there is no reason to propagate electricity down the rest of the wire, so the wire
is then split into segments. This technique is called segmentation. Both of the techniques are used
heuristically to control connectivity. As a result, it is nearly impossible to fully utilize an FPGA chip
without routing congestion and/or performance degradation.

Despite reduced connectivity, FPGA chips still have more than 75 % of chip area allocated for
the interconnect switches. The impact on power is also quite significant: interconnect takes up
about 60 % of the total chip power.

Inefficiency Comes from 2D-Mesh Interconnect

17.7

From O(N2) complexity

Full connectivity
is impractical

(10k LUTs = 1M SBs)

CLB

LUT LUT
LUT LUT

Switch-box
Array

I/O
Connection

Box

Bi-directional
Switch Box

 Called a “gate array”,
interconnect occupies
3-4x the logic area!

58%

22% 19%

Interconnect

 Virtex-4 power breakdown

Sheng, FPGA 2002, Tuan TVLSI 2/2007.

×

Brief Outlook 345

Slide 17.8

To improve energy efficiency,
hierarchical networks have been
considered. Two representative
approaches, tree of meshes and
butterfly fat tree, are shown on the
slide. Both networks have limited
connectivity even at local levels and
also result in some form of a mesh.

Consider the tree of meshes, for
example. Locally connected groups
of 4 PEs are arranged in a network.
As you can see, each PE has 3
wires. We would then need 4*3 =
12 switches, while only 6 are
available. This means 50% of

connectivity even at the lowest level. Also, the complexity of the centralized mesh grows quickly.

Butterfly fat tree attempts to provide more dedicated connectivity at each level of hierarchy, but
still results in a large central switch. We, again, have very similar problem as in 2D mesh: new levels
of hierarchy use centralized global resources for routing. Dedicated resources would be more
desirable for new levels of hierarchy. This is a critical problem to address in the future in order to
provide energy efficiency without giving up the benefits of flexibility.

Slide 17.9

In summary, we are near the end of
CMOS scaling for both technical
and economic reasons. Energy
efficiency is tapering off, design
cost is going up. We must
investigate architecture efficiency in
light of these challenges.

Applications are getting more
complex and the amount of digital
signal processing is growing rapidly.
Future applications, therefore,
require energy efficient flexible
hardware. Architecture of the
interconnect network is crucial for
providing energy efficiency.

Hierarchical Networks

 Limited bisection networks
 Limited connectivity (even at local levels)
 Centralized switches (congestion)

17.8

Tree of Meshes Butterfly Fat Tree

A. DeHon, VLSI 10/2004.

Summary

 Technology has gone through a change
– Energy efficiency tapering off
– Design cost going up

 Applications require functional diversity and flexible hardware
– New design criteria: hardware flexibility and efficiency
– Emphasis on architecture efficiency

 Architecture of interconnect network is crucial for achieving
flexibility and energy efficiency

 Design problem of the future: hardware flexibility and efficiency

17.9

Design problem of the future, therefore, is how to simultaneously achieve hardware flexibility
and energy efficiency.

346 DSP Architecture Design Essentials

References

 M.C. Chian, Int. Symp. on FPGAs, 2009, Evening Panel: CMOS vs. NANO, Comrades or
Rivals?

 T. Tuan, et al., "A 90-nm Low-Power FPGA for Battery-Powered Applications," IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 296-300, Feb.
2007.

 L. Sheng, A.S. Kaviani, and K. Bathala, "Dynamic Power Consumption in Virtex™-II
FPGA Family," in Proc. FPGA 2002, pp. 157-164.

 A. DeHon, "Unifying Mesh- and Tree-Based Programmable Interconnect," IEEE Trans.
Very Large Scale Integration Systems, vol. 12, no. 10, pp. 1051-1065, Oct. 2004.

Index

The numbers indicate slide numbers (e.g. 12.15 indicates Slide 15 in Chapter 12).

Absolute-value thresholding 16.6
Adaptive algorithms 6.38
Adaptive equalization 7.40
Adjacent-channel power ratio 13.33
Alamouti scheme 14.7
ALAP scheduling 11.30
Algorithm-to-hardware flow 12.7
Aliasing 13.20
Alpha-power model 1.18, 1.19
ALU 2.19
Architecture-circuit co-design 2.27
Architecture flexibility 4.2
Architecture folding 15.15
 (also see folding)
Architecture variables 2.24
Architecture optimization 2.25, 12.20
Architectural transformations 3.23, 11.2
Area-energy-performance tradeoff 3.28
Area efficiency 4.19, 4.28, 15.46
Area per operation 4.13
Array multiplier 5.23
ASAP scheduling 11.27
Asynchronous clock domains 12.41

BEE2 system blockset 12.32
Bellman-Ford algorithm 11.12, 11.40
BER performance 15.22
Binary-point alignment 10.4
Blind-tracking SVD algorithm 14.16
Block RAM 12.36
Brain-machine interface 16.4
Branching unit 3.10
Billion instructions per second (BIPS) 3.12
BORPH operating system 12.39
Butterfly fat tree 17.8

Carrier multiplication 13.18
Carry-save adders 8.25
Carry-save arithmetic 5.26, 12.25
Cascaded CIC filter 13.22

Cascaded IIR filter 7.29
Characterization 2.29
CIC filter 7.37, 13.19
Circuit optimization 1.27, 2.2, 2.21
Circuit variables 2.24
Classification accuracy 16.19, 16.34
Clock gating 15.14
Clustering 16.5
Code compression 7.56, 7.57
Cognitive radio 13.3
Common sub-expressions 5.32
Complexity-performance tradeoff 16.18
Computational complexity 8.17
Configurable logic block 17.7
Connectivity 17.8
Convergence 6.28, 6.29, 6.38
Cooley-Tukey mapping 8.9, 8.10
Coordinate translation 6.8
CORDIC 6.3
CORDIC iteration 6.7
CORDIC rotation 6.5
Cork function 8.39
Correlation 5.34
Cost of design 17.6
Cost of flexibility 4.4
Covariance matrix 16.11
Critical path 3.8
Critical-path delay 3.3
Cut-sets 7.17, 11.7
Cycle latch 2.20

Data path 3.3
Data-rate reduction 16.34
Data-stream interleaving 3.17, 14.19, 15.13
Data-flow graph 9.4, 9.7-9, 12.13
Decimation filter 7.35, 7.36, 13.12
Decimation in frequency 8.13
Decimation in time 8.12, 8.13
Decision-feedback equalizers 7.46, 7.47
Dedicated chip 4.8, 4.17

 DOI 10.1007/978-1-4419-9660-2, © Springer Science+Business Media New York 2012
347D. Markovi and R.W. Brodersen, DSP Architecture Design Essentials, Electrical Engineering Essentials,

348 Index

Delay line 15.44 (continued)
Denormals 5.7
Depopulation 17.7
Depth-first search 15.10
DFT algorithm 8.5
Digital front end 13.5
Digital mixer 13.17
Dimensionality reduction 16.5
Direct-form FIR filter 7.14
Discrete derivatives 16.14
Discrete Fourier transform (DFT) 8.2
Discrete wavelet transform 8.40, 16.13
Distributed arithmetic 7.50, 7.51, 7.52
Diversity gain 14.6
Diversity-multiplexing tradeoff 14.6, 14.10
Divide-and-conquer approach 8.6
Division 6.19
Down-sampling 13.7, 13.12
Down-sampler implementation 8.44
DSP chip 4.15
Dyadic discrete wavelet series 8.38

Eigenvalues 14.17, 14.30
Eigenvalue decomposition 16.11
Eigenvectors 14.17
Electronic interchange format (EDIF) 12.4
Electrophysiology 16.4
Energy 1.3, 1.4
Energy model 2.3
Energy-area-performance space 12.21
Energy-delay optimization 1.26, 2.12
Energy-delay product (EDP) 1.23
Energy-delay space 3.14
Energy-delay sensitivity 2.5
Energy-delay tradeoff 1.22, 1.25-27, 12.24
Energy efficiency 4.6, 14.26, 14.28, 15.25,
 17.2
Energy per bit 15.24, 15.29
Energy per channel 16.27
Energy per operation 3.6
Equalizer 7.40, 7.42
Error vector magnitude (EVM) 13.37
Ethernet link 12.38
Euclidean distance 14.11, 15.6, 15.20

Farrow structure 13.27
Feature extraction 16.5, 16.6
Feedback loops 7.30, 7.32

FFT energy estimation 8.29
FFT timing estimation 8.28
Fine-grain pipelining 11.18
FIR filter 7.13, 12.25
Fixed point 10.3, 10.4
Fixed-point unit 3.10
Fixed-point arithmetic 5.2
Flexibility 15.24
Flexible radio architecture 14.2
Floating-point unit 3.10
Floating-point arithmetic 5.2
Flip-flop 2.20
Floating-to-fixed-point conversion 10.5
Floorplan 5.27
Folyd-Warshal algorithm 11.12
Folding 3.20, 3.22, 3.26, 11.36, 14.20, 14.25
Fourier transform 8.3
FPGA 12.3, 12.30, 12.38, 17.4
Fractional decimation 13.24
Fractionally-spaced equalizer 7.48
Frequency-domain representation 8.3
Functional verification 12.30

Gain error 6.12
Gate capacitance 1.12
Gate sizing 14.25
GOPS/mm2 14.26, 14.28
GOPS/mW 14.26, 14.28
GPIO blocks 12.33
Graphical user interface (GUI) 12.12
Gray coding 15.6, 15.9

H.264 decoder 17.3
Haar wavelet 8.42, 8.43
Hardware emulation 12.5
Hardware-in-the-loop tools 12.43
Hardwired logic 2.23
Hard-output sphere decoder 15.27
Hierarchical loop retiming 14.23
High-level architectural techniques 12.22
High-level retiming 7.18
High-throughput applications 17.4

Ideal filter 7.8
IEEE 754 standard 5.4
IIR filter architecture 7.26
IIR filter 7.23, 7.24, 7.25
Image compression 8.48

Index 349

Implantable neural recording 16.17
 (continued)
Input port 9.13
Interconnect architecture 17.7
Interpolation 7.35, 7.37
Initial condition 6.26, 6.31, 6.34, 6.38
Integer linear programming (ILP) 12.46-8
Interleaving 3.22, 3.26, 14.25, 16.26
Inter-iteration constraint 9.8, 11.35
Interpolation 13.25
Inter-symbol interference 7.11, 7.46
Intra-iteration constraint 9.8
Integral transform 16.15
Inverter chain 2.10, 2.11, 2.12
Iteration 6.6, 6.33, 9.2
Iteration bound 11.17
Iterative square root and division 6.22

Jitter compensation 10.25

K-best search 15.10
Kogge-Stone tree adder 2.13

Latency vs. cycle time tradeoff 12.24
Leakage energy 1.6, 1.13
Leakage power 1.5
Least-mean square equalizer 7.43, 7.44
Leiserson-Saxe Algorithm 11.12
LIST scheduling 11.31
LMS-based tracking 14.17
Load/shift unit 3.10
Logarithmic adder tree 7.19
Logic depth 3.12, 3.15
Long-term evolution (LTE) 13.10
Look-up table 17.7
Loop retiming 14.21

Mallat’s wavelet 8.40
Master-slave latch 2.20
Maximum likelihood detection 14.10
Median choice probability 16.22
Medical implants 16.2
Memory decoder 2.10
Memory 5.35
Memory code compression 7.56, 7.58
Memory partitioning 7.55
Metric calculation unit 15.12
Metric enumeration 15.16

Microprocessor 2.23, 4.8
MIMO communication 14.5
MIMO transceiver 14.18
Minimum delay 2.7, 2.9
Minimum energy 1.17, 3.15, 16.25
Minimum EDP 1.24, 3.6
Mixed-radix FFT 8.18
MODEM 7.4
MOPS 4.5
 MOPS/mm2 4.19
Morlet wavelet 8.37
MSE error 10.9
MSE-specification analysis 10.22
Multi-core search algorithm 15.13
Multiplier 5.22, 5.23, 5.25
Multi-path single-delay feedback 15.30
Multi-rate filters 7.35
Multidimensional signal processing 14.1

Neural data 16.32
Newton-Raphson algorithm 6.24, 14.17
NMOS header 16.28
Noise shaping 13.15
Nonlinear energy operator 16.8
Numerical complexity 8.18
Nyquist criterion 13.11

Off-path loading 2.10
Operation 4.5
Optimal ELk/ESw 3.15
Optimization flow 12.8
Out-of-band noise 13.20
Overflow 5.14, 5.15
Oversampling 13.9

Parallelism 3.2, 3.4, 3.14, 3.24, 11.19, 12.21,
 15.40
Parallel architecture 12.18
Parasitic capacitance 1.11, 1.12
Path reconvergence 2.10
Perturbation theory 10.9
Phase detector 13.28
Pipelining 3.2, 3.8, 3.14, 3.24, 7.16, 11.14
Polyphase implementation 8.45, 8.46
Post-cursor ISI 7.46, 7.47
Power 1.3, 1.4
Power density 16.2
Power gating 16.28

350 Index

Power-delay product (PDP) 1.23 (continued)
PowerPC 4.15
Pre-cursor ISI 7.46, 7.47
Pre-processed retiming 11.41
Principal component analysis 16.11
Probability of detection 16.19
Probability of false alarm 16.19
Programmable DSP 2.23, 4.8

QAM modulation 15.22
Quadrature-mirror filter 8.41
Quantizer 5.16
Quantization noise 5.21, 13.31
Quantization step 5.17

Radio design 7.6
Radio receiver 7.5
Radix 2 8.12
Radix-2 butterfly 8.15, 8.25
Radix-4 butterfly 8.16
Radix-16 factorization 15.34
Radix factorization 15.41
Raised-cosine filter 7.3, 7.10, 7.11
Real-time verification 12.30, 12.41
Receiver operating characteristic 16.21
Reconfigurable FFT 15.30
Recursive flow graph 11.16
Region partition search 15.8
Register bank 15.18
Register file 15.44
Repetition coding 14.14
Resource estimation 10.12, 10.21
Retiming 3.30, 7.18, 7.31, 11.3-6, 12.21,
 12.48
Retiming weights 11.10
Ripple-carry adder 5.24
ROACH board 12.38
Roll-off characteristics 7.8
Rotation mode 6.14
Rounding 5.6, 5.8, 5.18
RS232 link 12.36

Sampling 5.16
Saturation 5.19
Schedule table 12.17
Scheduling 11.23, 11.40, 12.48
Schnorr-Euchner enumeration 15.7
Search radius 14.12, 15.19

Segmentation 17.7
Sensitivity 2.6
 Gate sizing 2.11
Short-time Fourier transform (STFT) 8.33
Sigma-delta modulation 13.14, 13.31-32
Sign magnitude 5.12
Signal band 15.26
Signal bandwidth 7.7
Signal-flow graph (SFG) 7.15, 8.14, 9.4
Signal-to-quantization-noise ratio (SQNR)
 5.21
Simulink block diagram 9.11
Simulink design framework 12.4
Simulink libraries 9.12
Simulink test bench model 12.33
Singular value decomposition (SVD) 14.3,
 14.9
Sizing optimization 2.11
Soft-output decoder 15.29
Spatial-multiplexing gain 14.6
Specification marker 10.16
Spectral leakage 7.4
Sphere decoding algorithm 14.12
Spike alignment 16.5
Spike detection 16.5
Spike sorting 16.4, 16.5, 16.6
Spike-sorting ASIC 16.18, 16.31
Spike-sorting DSP 16.17, 16.31
Split-radix FFT (SRFFT) 8.22

Stationary wavelet transform product 16.9
Step size 7.45
Square-root raised-cosine filter 7.13
SRAM 15.44
Sub-threshold leakage current 1.14, 1.15
Superscalar processor 3.9
Supply voltage scaling 1.16, 14.25
Switching activity 1.9, 5.33
Switched capacitance 1.11, 4.5
Switching energy 1.6, 1.7, 1.10, 2.4
Switching power 1.5
Subcarriers 15.14, 15.20
Sub-Nyquist sampling 13.13
SynplifyDSP 9.12

Tap coefficients 7.45
Taylor-series interpolation 13.27
Technology scaling 17.2 (continued)

Index 351

Time multiplexing 3.2, 3.16, 3.25, 12.15,
 12.21
Time-invariant signal 8.3
Time-interleaved ADC 13.16
Time-frequency resolution tradeoff 8.34
Timing constraint 11.13
Throughput 3.6
Training phase 16.31
Transition probability 5.34
Transformed architecture 12.16
Transmit filter 7.4
Transposed FIR filter 7.21
Transposition 9.5
Tree adder 2.10, 2.13
Tree of meshes 17.8
Tree search 14.12
Truncation 5.18
Tuning variables 2.14
Twiddle factors 8.19, 8.26, 15.30
Two’s complement 5.10

Ultra-wide band (UWB) 12.27
Unfolding 7.32, 11.20-22, 12.26
Up-sampling filter 13.35
Unsigned magnitude 5.11

V-BLAST algorithm 14.7
Vectoring mode 6.14
Virtex-II board 12.37
Voltage scaling 12.21

Wallace-tree multiplier 5.28, 5.29
Wavelet transform 8.35, 8.36
WiMAX 13.10
Windowing function 8.34
Wordlength analysis 10.18
Wordlength grouping 10.20
Wordlength optimization 10.2, 14.18, 14.25,
 16.29
Wordlength optimization flow 10.14
Wordlength range 10.16
Wordlength reader 10.17
Wrap-around 5.19

Xilinx system generator (XSG) 9.12

ZDOK+ connectors 12.35, 12.37, 15.21
Zero-forcing equalizer 7.42

	DSP Architecture Design Essentials
	Contents
	Preface
	Part I Technology Metrics
	Part II DSP Operations and Their Architecture
	Part III Architecture Modeling and Optimized Implementation
	Part IV Design Examples: GHz to kHz
	Brief Outlook
	Index

