
ECE 216B 1

ECE 216B

Problem 1. Delay Model
A

import numpy as np

from scipy.optimize import curve_fit

import matplotlib.pyplot as plt

Given data from the problem

V_DD = np.array([1.00, 0.90, 0.80, 0.70, 0.60, 0.50, 0.45, 0.

40, 0.35]) # Supply Voltage in Volts

t_p_typical = np.array([28, 32, 38, 47, 66, 108, 154, 241, 42

3]) # Propagation delay in picoseconds for typical process

Function to model t_p as a function of V_DD

def model_t_p(V_DD, K_d, V_on, alpha_d):

 return (K_d * V_DD) / ((V_DD - V_on)**alpha_d)

Initial guesses for the parameters

initial_guess = [1, 0.2, 1]

Perform the curve fit

popt, pcov = curve_fit(model_t_p, V_DD, t_p_typical, p0=initi

al_guess)

Extracting the optimal values of K_d, V_on, and alpha_d

K_d_optimal, V_on_optimal, alpha_d_optimal = popt

Using the obtained parameters to plot the fitted curve

ECE 216B 2

V_DD_fit = np.linspace(min(V_DD), max(V_DD), 100) # Generatin

g V_DD values for plotting

t_p_fit = model_t_p(V_DD_fit, *popt) # Calculated t_p values

using the fitted model

Plotting the original data and the fitted curve

plt.figure(figsize=(10, 6))

plt.scatter(V_DD, t_p_typical, label='Original Data', color

='red')

plt.plot(V_DD_fit, t_p_fit, label='Fitted Curve', color='blu

e')

plt.title('Fitted Curve of Propagation Delay vs Supply Voltag

e')

plt.xlabel('Supply Voltage V_DD (V)')

plt.ylabel('Propagation Delay t_p (ps)')

plt.legend()

plt.grid(True)

plt.show()

Show the optimal parameters

K_d_optimal, V_on_optimal, alpha_d_optimal

Result
(13.918365303752909, 0.22301753019097617, 2.1643271130258395)

ECE 216B 3

I employed a nonlinear fitting method to a mathematical model of propagation
delay, which is expressed as follows:

﻿

Where:

﻿ represents the propagation delay of a FO4 gate,

﻿ is the supply voltage,

﻿, ﻿, and ﻿ are the parameters to be determined.

The nonlinear curve fitting yielded the following optimal values for the parameters:

The scaling factor ﻿ is approximately ﻿,

The effective turn-on voltage ﻿ is approximately ﻿,

The exponent ﻿ is approximately ﻿.

t ​ =p ​(V ​−V ​)DD on
α ​d

K ​⋅V ​d DD

t ​p

V ​DD

K ​d V ​on α ​d

K ​d 13.92

V ​on 0.223V

α ​d 2.16

ECE 216B 4

B

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Define the provided data

data = {

 'VDD': [1.00, 0.90, 0.80, 0.70, 0.60, 0.50, 0.45, 0.40,

0.35],

 'tp_slow': [36, 42, 51, 67, 99, 182, 279, 480, 922],

 'tp_typical': [28, 32, 38, 47, 66, 108, 154, 241, 423],

 'tp_fast': [21, 24, 27, 33, 43, 63, 83, 119, 186],

 'Energy': [19.4, 15.4, 12.1, 9.04, 6.45, 4.31, 3.42, 2.6

5, 1.99]

}

Convert to a DataFrame

df = pd.DataFrame(data)

Calculate the Energy-Delay Product (EDP) for each corner

df['EDP_slow'] = df['tp_slow'] * df['Energy']

df['EDP_typical'] = df['tp_typical'] * df['Energy']

df['EDP_fast'] = df['tp_fast'] * df['Energy']

Find the VDD value that minimizes EDP for each corner

min_EDP_slow_VDD = df.loc[df['EDP_slow'].idxmin(), 'VDD']

min_EDP_typical_VDD = df.loc[df['EDP_typical'].idxmin(), 'VD

D']

min_EDP_fast_VDD = df.loc[df['EDP_fast'].idxmin(), 'VDD']

Plot the Energy-Delay Product (EDP) for all process corners

plt.figure(figsize=(10, 6))

ECE 216B 5

plt.plot(df['VDD'], df['EDP_slow'], marker='o', label='Slow C

orner')

plt.plot(df['VDD'], df['EDP_typical'], marker='s', label='Typ

ical Corner')

plt.plot(df['VDD'], df['EDP_fast'], marker='^', label='Fast C

orner')

plt.xlabel('Supply Voltage VDD (V)')

plt.ylabel('Energy-Delay Product (EDP) [ps * fJ]')

plt.title('Energy-Delay Product (EDP) vs. Supply Voltage (VD

D)')

plt.legend()

plt.grid(True)

plt.gca().invert_xaxis() # Inverting the x-axis to show the

decrease in VDD

plt.show()

(min_EDP_slow_VDD, min_EDP_typical_VDD, min_EDP_fast_VDD)

Result:

(0.7, 0.7, 0.5)

ECE 216B 6

C

1. Determine the propagation delays at ﻿ and ﻿ from the
provided data table. Call these ﻿ and ﻿, respectively.

2. Calculate the delay ratio ﻿.

3. Apply this ratio to the target clock frequency to adjust for the change in
propagation delay due to the change in supply voltage.

﻿

where
﻿ is the target frequency at ﻿, and ﻿is the equivalent

frequency at ﻿.

V ​ =DD 0.6V V ​ =DD 1V
t ​p0.6 t ​p1.0

​

t ​p0.6

t ​p1.0

f ​ =1.0 f ​ ×0.6 ​

t ​p1.0

t ​p0.6

f ​0.6 V ​ =DD 0.6V f ​1.0

V ​ =DD 1V

ECE 216B 7

﻿ is 66 ps (from the table) and at ﻿ is 28 ps. Using these
values:

﻿

﻿

Problem 2.
a) The key findings of the paper demonstrate that Amber, a reconfigurable System
on Chip (SoC), substantially enhances the efficiency and performance of imaging,
vision, and machine learning (ML) applications. This is achieved through three
major technological innovations: fast dynamic partial reconfiguration (DPR), on-
chip streaming memories specifically designed for affine access patterns, and
reduced overhead for complex arithmetic operations. These advancements allow
Amber to support multiple computational kernels simultaneously with rapid
reconfiguration times. Additionally, it reduces both the physical area and power
consumption by optimizing the way memory is accessed and handled, and
improves energy efficiency while reducing the complexity and space required for
complex arithmetic operations in hardware.

b) Despite these advancements, the proposed system has notable limitations. The
integration of such advanced features into a cohesive system presents a complex
challenge, potentially complicating the system-level integration. This complexity
might also extend to the compiler technology required to efficiently map high-level
application code onto Amber's architecture, potentially limiting its accessibility
and ease of use. Furthermore, while Amber shows considerable improvements
over existing FPGA-based systems, the paper does not fully address real-world
application issues such as scalability and broader technological compatibility.

V ​ =DD 0.6V V ​ =DD 1V

f ​ =1.0 250MHz × ​28ps
66ps

= 589.285714MHz

ECE 216B 8

Problem 3.

A

﻿

﻿

﻿

﻿

﻿

D ≈ 11.65

B

Assume voltage is VDD

﻿

﻿

﻿

C

﻿

D = x ​ +2 ​ +
x ​2

(4+4)
​ +4

x ​4
​ +

x ​4

16 4 ⋅ γ

​D =
dx ​2

d 1 − ​ =
x ​2

2
8 0

​D =dx ​4

d
​ −4

1
​ =x ​4

2
16 0

x ​ =2 2 ​2

x ​ =4 8

E = α ⋅ VDD ⋅2 C

= VDD ⋅2 α ⋅ (1 + x ​ +2 4 + x ​ +4 20)

= 3.583VDD2

1.1 ⋅D ​ ≈min 12.826

ECE 216B 9

import numpy as np

def find_optimal_sizing_v2():

 x, y = np.meshgrid(np.linspace(0.01, 5.0, 500), np.linspa

ce(0.01, 5.0, 500))

 d = x + 8 / x + y / 4 + 16 / y

 condition = d <= 12.826

 sumxy = x + y

 minsum = np.min(sumxy[condition])

 idx = np.argmin(sumxy[condition])

 optimal_x = x[condition].flat[idx]

 optimal_y = y[condition].flat[idx]

 optimal_d = d[condition].flat[idx]

 return optimal_d, optimal_x, optimal_y, minsum

Execute the function

find_optimal_sizing_v2()

Result:

(12.82480259870065, 1.74, 2.76, 4.5)

Delay is about 12.824802;

optimal ﻿;

optimal ﻿;

﻿

x ​ =2 1.74

x ​ =4 2.76

E = 3.0VDD2

