UCLA Electrical Engineering

Spring 2024: ECE216B

VLSI Signal Processing

Prof. Dejan Marković

ee216b@gmail.com

Elevator Pitch

Area/energy-efficient mapping

of advanced DSP algorithms

to hardware

Background?

Familiarity with

• Digital ICs

VLSI design

Signal processing

What is This Course About?

High-level Model

- bit-true cycle-accurate
- hw-equivalent blocks
- target: FPGA or ASIC

Complex DSP

Min Energy & Area

- interleaving, folding
- iterative sqrt/div
- loop retiming

Opt Energy-Delay

- parallelism, time-mux
- circuit topology
- Vdd, Vth, gate size

Course Objectives

The implementation of signal processing systems in CMOS technology

 To understand the issues involved in the design of signal processing systems

DSP Chip Design Challenges

- Power-limited performance
- Flexibility (multi-mode, multi-standard)
- Separate algorithm & hardware design
- Increasing computational complexity

Course Outcomes

Systematic methodology for:

algorithm modeling, architecture exploration, and hardware optimizations

- Hardware-friendly algorithm development
- Optimized hardware implementation

Course Highlights

- A design methodology starting from a high-level description to an implementation optimized for performance, power and area
- Unified description of algorithm and hardware
 - Methodology for automated wordlength reduction
 - Automated exploration of many architectural solutions
 - Design flow for FPGA and custom hardware including chip verification
- Examples to show wide throughput range (kS/s to GS/s)
 - Outcomes: energy/area optimal design, technology portability
- Online resources: examples, references, tutorials etc.

Course Material

- Lecture notes
- Homework
- CAD tutorials
- Class project
- Selected papers from IEEExplore (http://ieeexplore.ieee.org)

Books

Textbook: DSP Architecture Design Essentials

Not required

Supplemental books

- Oppenheim, Schafer, "Discrete-Time Signal Processing,"
 Prentice Hall (1999)
- K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation," Wiley (1999)
- Rabaey, Nikolic, Chandrakasan, "Digital Integrated Circuits: A Design Perspective," Prentice Hall (2003)

Textbook

Springer
July 2012

extra online materials

Course/Book Development

- Over 15 years of effort and revisions...
 - Course material from UC Berkeley (Communication Signal Processing, EE225C), ~1995-2003
 - Profs. Robert W. Brodersen, Jan M. Rabaey, Borivoje Nikolić
 - The concepts were applied and expanded by researchers from the Berkeley Wireless Research Center (BWRC), 2000-2006
 - W. Rhett Davis, Chen Chang, Changchun Shi, Hayden So, Brian Richards, Dejan Marković
 - UCLA course (VLSI Signal Processing, EE216B), 2007-2012
 - Prof. Dejan Marković
 - The concepts expanded by researchers from UCLA, 2006-2013
 - Sarah Gibson, Vaibhav Karkare, Rashmi Nanda, Cheng C. Wang,
 Chia-Hsiang Yang, Tsung-Han Yu, Fang-Li Yuan
- The course/book is based on the above material
 - Lots of practical ideas and working examples

Energy-Efficient DSP Chips

2 GOPS/mW 100 MS/s

DSP architecture optimizationexamples

17 GOPS/mW 256 MS/s

Cogno

5 GOPS/mW 200 MS/s

8x8 SD

10 GOPS/mW 160 MS/s

RxDFE

[A-SSCC'11]

12 GOPS/mW 3.6 GS/s

Efficiency Comparison

Organization

The material is organized into four parts

Technology Metrics

Performance, area, energy tradeoffs and their implication on architecture design

DSP Operations & Their Architecture

Number representation, fixedpoint, basic operations (direct, iterative) & their architecture

3 Architecture Modeling &Optimized Implementation

Data-flow graph model, highlevel scheduling and retiming, quantization, design flow

4 Design Examples: GHz to kHz Radio baseband DSP, parallel data processing (MIMO, neural spikes), architecture flexibility

Part 1: Technology Metrics

Energy and delay modelsof logic gates as a functionof gate size and voltage...

are used to formulate sensitivity optimization, result: energy-delay plots

Extension to architecture tradeoff analysis...

Part 2: DSP Operations and Their Architecture

Ch 5: Arithmetic for DSP Overflow mode Quantization mode

Number representation, quantization modes, fixed-point arithmetic

Iterative DSP algorithms for standard ops, convergence analysis, the choice of initial condition

Direct and recursive digital filters, direct and transposed, pipelined...

FFT and wavelets (multi-rate filters)

Part 3: Architecture Model & Optimization

Ch 11: Architectural Optimization

Data-flow graph G

for architecture transformations based on high-level scheduling and retiming, an automated GUI tool is built...

Ch 12: Simulink-Hardware Flow

Part 4: Design Examples: GHz to kHz

Adaptive channel gain tracking, parallel data processing (SVD)

Increased number of antennas, added flexibility for multimode operation

Wide Range of Examples

- Integrated circuits for future radio and healthcare devices
 - 4 orders of magnitude in speed: kHz (neural) to GHz (radio)
 - 3 orders of magnitude in power: μW/mm² to mW/mm²

Class Topics

- Circuit and DSP basics
 - Circuit and architecture techniques
 - Scheduling and retiming
- Arithmetic for DSP
- Evolving tools landscape
 - Matlab/Simulink, Synphony HLS, Stratus HLS, PyGears
 - CADA (Configurable Architecture Design Automation)
- Building blocks
 - Filters, time-frequency analysis, DSP kernels
- Systems
 - Communications, Biomedical, Adaptive learning

Design Trajectory: From DSP Theory...

Sample & Quantize

Digital

Audio Video Radar

Signal

Add Multiply Memory

Processing

...to Optimized Hardware Realization

Automated design + verification

Class Organization

- 4 homework assignments
- 1 term-long design project
- Midterm
- Final

24S ECE216B: Schedule and Syllabus

Weeks 1-5: Methods	
1	(4/2) Introduction
	(4/4) Energy, Delay Models
2	(4/9) Circuit Optimization
	(4/11) Arch. Techniques
3	(4/16) Architecture Flexibility
	(4/18) Arithmetic for DSP
4	(4/23) CORDIC, Div, Sqrt
	(4/25) Digital Filters
5	(4/30) CGRA and UDSP
	(5/5) HLS, CADA Intro

Weeks 6-10: Flows	
6	(5/7) Midterm exam
	(5/9) Data-flow Graphs
7	(5/14) SDR TxRx Design, Opt.
	(5/16) Intro to AI/ML Hw
8	(5/21) Architecture Studies
	(5/23) FFTs & Wavelets
9	(5/28) FFT Architecture Opt.
	(5/30) FPGA Architecture
10	(6/4) Project Presentations
	(6/6) Project Presentations

State-of-the-Art: discussion of class research explorations on state-of-the-art in productivity tools, hardware, applications

Architecture Studies (5/21)

- Focus on AI/ML scheduling
- A shift from hardware to software
- Example AI/ML Hw/Sw co-design
 - AHA, MoCA, Efficient Compute
 - List of papers / topics coming by 5/9

Grading Policy & Organization

20% • 4 homework sets

30% • Project

25% • Midterm

25% • Final exam

Homework and Project

- Bi-weekly homework (4 assignments)
 - Fine-grain DSP blocks
- Final project: an AI/ML multi-function accelerator
 - Work in teams of three (~15 projects total)

Gantt Chart

• In-class presentations in weeks 8 (5/21)

Synopsys 32/28nm GTech

32/28nm EDK + libraries

- EDK + libs: Synopsys kit and libs
- Std cell
- I/O
- Mem
- PLL
- Ref. designs

CAD Environment

Lecture

1

ECE216B

Introduction

Prof. Dejan Marković

ee216b@gmail.com

iPhone5 A6 Processor

From: Google Images

Inside the iPad

About \$259.10, or 52 percent, of the \$499 retail price of the low-end 16 gigabyte (GB) model iPad is tied up in its hardware, including building cost and miscellaneous box contents. The material cost is \$289.10 for the middle-of-the-road 32GB iPad priced at \$599. The deluxe 64GB version that sells for \$699 costs about \$348.10 to crank off the assembly line.

A6X | iPad4

Dual-core CPU More capable GPUs

http://photos.appleinsider.com

Signal processing content expanding

Specialized hardware for energy efficiency

Keeping vo with Standards

New standard = New chip?

Today: CPUs + Accelerators

NVIDIA Tegra 2

Accelerators:

- Increasingly larger fraction of chip area
- Low area utilization
 a.k.a. **DARK** silicon
- Accelerators for fixed standards

Architecture Insights | Recent Tegra Chips

Customization, increasing number of cores...

Tegra 2 (2011)

Tegra 3 (2012)

Tegra 4 (2013)

Dual-A9

- Quad-A9
- Power-saver core
- 72 GPU cores
- LTE modem
- Computational camera

From: Google Images

Heterogeneous Computing in Mobile SoCs

Increasing "dark silicon" area (A12: ~45%, A15: ~55%), <10% chip is active

Apple A12 die photo

ASSPs: Rapid Growth in Development Cost

Towards economic end of scaling...

The Basic Problem

Algorithm designers

Chip designers

Shannon limit, Raleigh fading, cyclostationary process

? ^\$*#^\$E(W^\$^&\$

^\$*#^\$E(W^\$^&\$?

Gate delay, leakage power number of bits, latency

- Very constrained implementation choices
- Design reentry (Matlab/C, HDL)

Algorithm-Hardware Co-Design Approach

• Unified HLS (e.g. Simulink) environment

- Enter design only once!
- Algorithm verification / emulation
- Abstract view of architecture
- FPGA based ASIC debug

Hardware-equivalent blocks

- Basic ops: add, multiply, shift, mux...
- Implementation constraints
 - Word-size, latency

XSG Model Example: Iterative 1/sqrt()

----- Show Implementation Parameters

Cancel

Apply

User defined parameters

- Latency
- Sample period

Block Characterization

Automated Chip Synthesis

10,000
FPGA
slices

\$\times\$
1mm²
(90nm
CMOS)

Energy-Area-Performance Space

 Each point is an architecture automatically generated in Simulink using scheduling and retiming

[Rashmi Nanda]

Simulink & Data-flow Graphs

An End-to-End Software Stack

- Hardware-aware C++ to binary compiler
- Integrated validation

Software: Compiler Front-End

.CPP Source File

```
main()
{
    int c[10];
    int a = 3;
    int b = 5;
    int i = 0;
    int d = 6;
    while (i <= 10)
    {
        b += 9 + d;
        a += 4 * udspOperator(b, 3);
        c[i] = 3 * udspOperator(a, 3) - 7;
        i++;
    }
}</pre>
```

Clang/LLVM Compiler

```
# =>This Inner Loop Header: Depth=1
    .cv_loc 0 1 20 0
                                   # LLVM_Test.cpp:20:0
   cmp dword ptr [rsp + 48], 10
    jg .LBB0_3
# %bb.2:
                                       # in Loop: Header=BB0_1 Depth=1
                                   # LLVM_Test.cpp:22:0
    mov eax, dword ptr [rsp + 44]
    add eax, dword ptr [rsp + 52]
                                   # LLVM_Test.cpp:23:0
    .cv loc 0 1 23 0
    mov ecx, dword ptr [rsp + 52]
   mov edx, 3
call "?udspOperator@@YAHHH@Z"
    shl eax, 2
    add eax, dword ptr [rsp + 56]
    .cv_loc 0 1 24 0
                                   # LLVM_Test.cpp:24:0
    mov ecx, dword ptr [rsp + 56]
    call "?udspOperator@@YAHHH@Z"
```

DFG Generator

DFG Optimizer + Pre-processing

Python source: future work

Software: Compiler Back-End

Parallel Data Processing

Single dimensional → Multidimensional data

Multi-core Processors

IBM / Sony / Toshiba

MIMO Communications

Belkin

Neuroscience

www.sci.utah.edu

Algorithm-hardware co-design?

Energy-Delay Tradeoff

Processors

- Maximize performance
- Highest V_{DD} required

Communications

- Minimize energy & area
- Typically, sensitivity ~1

Neuroscience

- Power density << 0.8mW/mm²
- Aggressive V_{DD} scaling

Parallel Data in Neuroscience

Summary: Focus of This Course

3 components of the design problem

Algorithm specification

 Floating-point, implementation independent, system simulation

Architecture mapping

- High-level synthesis based approach
- Rapid architecture tradeoffs

• Hardware optimizations

- Real-time emulation
- FPGA/ASIC implementation