

Circuit Optimization

Prof. Dejan Marković ee216b@gmail.com

Agenda

- Understand E-D tradeoffs
 - Sensitivity-based opt.
- Formulate optimization
 - Energy & delay models
 - Sensitivity analysis
- Insights & further steps
 - Which variables to use
 - Extension to arch. space

Some Common Questions

- Is sizing better than V_{DD} for energy reduction?
- Optimal values of gate size and V_{DD}?
- Increase or decrease V_{DD} for energy reduction?
- Optimal ratio of leakage / switching for min E?
- Optimal circuit topology?
- Etc.

Energy-Delay Optimization

Energy-Delay Sensitivity

Slope of E-D curve around a design point (e.g. (A_0, B_0))

Solution: Equal Sensitivities

A fixed point is reached when all sensitivities are equal

Circuit-Level Optimization

Objective: minimize E $E = E(V_{DD}, V_{TH}, W)$ **Constraint:** Delay $D = D(V_{DD}, V_{TH}, W)$ **Tuning variables**

 V_{DD} , V_{TH} , W

Constraints

 $V_{DD}^{min} < V_{DD} < V_{DD}^{max}$ $V_{TH}^{min} < V_{TH} < V_{TH}^{max}$ $W^{min} < W$

Energy & Delay Models

Alpha-power based Delay Model

$$Delay = \frac{K_d \cdot V_{DD}}{(V_{DD} - V_{on} - \Delta V_T)^{\alpha_d}} \cdot \left(\frac{W_{out}}{W_{in}} + \frac{W_{par}}{W_{in}}\right)$$

$$V_{DD}^{ref} = 1.2V$$

FO4 (V_{DD}^{ref}) = 25ps

(*) [Sutherland et al., Logical Effort, 1999]

Energy Model for Circuit Optimization

Switching Energy

$$E_{sw} = \alpha_{0 \to 1} \cdot \left(C(W_{out}) + C(W_{par}) \right) \cdot V_{DD}^{2}$$

• Leakage Energy

$$E_{lk} = \frac{W_{in}}{W_0} \cdot I_0(S_{in}) \cdot 10^{-\frac{V_T - \gamma_D V_{DD}}{S}} \cdot V_{DD} \cdot D$$

with:

D: the cycle time $I_0(S_{in})$: normalized leakage current with inputs in state S_{in}

Switching Component of Energy

 $e_{ci} = K_e \cdot W_i \cdot (V_{DD,i-1}^2 + \gamma_i \cdot V_{DD,i}^2)$ (energy stored on the logic gate *i*)

Optimization

Optimization Setup

- Reference/nominal circuit
 - Sized for $D_{\min} \oslash V_{DD}^{\max}$, V_{T}^{ref}
 - Known average activity
- Define delay constraint
 - $D_{\rm con} = D_{\rm min} (1 + d_{\rm inc} / 100)$

- Minimize energy under delay constraint
 - Gate sizing (W), optional buffering
 - $V_{\rm DD}$ and $V_{\rm T}$ scaling

Sensitivity to Sizing and Supply

• Gate sizing (W)

$$-\frac{\partial E_{sw}}{\partial D} / \partial W_{i} = \frac{ec_{i}}{\tau_{ref} \cdot (h_{eff,i} - h_{eff,i-1})} \qquad \text{$$ oo for equal h_{eff}}$$

• Supply voltage (V_{DD})

$$-\frac{\partial E_{Sw}}{\partial D} / \partial V_{DD}}{\partial D} = 2 \cdot \frac{E_{Sw}}{D} \cdot \frac{1 - x_v}{\alpha_d - 1 + x_v}}{V_{DD}} = 2 \cdot \frac{E_{Sw}}{D} \cdot \frac{1 - x_v}{\alpha_d - 1 + x_v}}{V_{DD}} = 0$$

Sens(V_{DD})

V. Stojanović et al., ESSCIRC 2002, pp. 211-214. | D. Marković et al., IEEE JSSC, pp. 1282-1293, 8/04.

Sensitivity to Threshold Voltage

• Threshold voltage (V_T)

$$-\frac{\partial E / \partial (\Delta V_{TH})}{\partial D / \partial (\Delta V_{TH})} = P_{Lk} \cdot \left(\frac{V_{DD} - V_{on} - \Delta V_{TH}}{\alpha_d \cdot V_0} - 1\right)$$

Low initial leakage

 \Rightarrow speedup comes for "free"

Circuit Optimization Examples

- Inverter chain
- Memory decoder
 - Branching
 - Inactive gates
- Tree adder
 - Long wires
 - Re-convergent paths
 - Multiple active outputs

Example 3.1: Inverter Chain

- Properties of inverter chain
 - Single path topology
 - Energy increases geometrically from input to output

- Goal
 - Find optimal sizing W = [W₁, W₂, ..., W_N], supply voltage and buffering strategy to minimize energy

Inverter Chain: Gate Sizing & Buffering

- Variable taper achieves minimum energy
- Reduce number of stages at large d_{inc}

MS Excel Optimization: Inverter Chain

- 5-stage inverter chain loaded with $C_L = 1024$
 - Sizing optimization for D_{min} + 10% constraint

Inv chain									
stage	1	2	3	4	5				
size	1	2.74	7.83	25.20	109.79	1024			
Energy	3.44	9.75	30.68	127.42	1100.85		Etot	1272.14	objective
Delay	3.44	3.56	3.92	5.06	10.03		Dtot	26.00	constraint
									variable
fanout	2.74	2.86	3.22	4.36	9.33		Emax	1602.7	
							Dmin	23.5	

- Method: use Solver Add-In (under File / Options)
 - A push-button optimization...

Inverter Chain: V_{DD} **Optimization**

- Variable taper achieved by voltage scaling
- V_{DD} reduces energy of the final load first

Inverter Chain: Optimization Results

- Parameter with the largest sensitivity has the largest potential for energy reduction
- Two discrete supplies mimic per-stage V_{DD}

Example 3.2: SRAM Decoder

W vs. V_{DD} for Reducing Energy Peak

- V_{DD} less effective than W optimization
- Buffering also reduces energy peak

[B. Amrutur, Ph.D. Thesis, Stanford, 8/99]

Example 3.3: Tree Adder

Tree Adder: Optimization Results

• Internal energy: W more effective than V_{DD} • For d_{inc} = 10%: $\Delta E_W = -55\%$, $\Delta E_{2Vdd} = -27\%$

Few Insights

A Look at Tuning Variables...

10% excess delay → 30-70% energy reduction

Peak performance is very power inefficient!

Limited Range of Circuit Optimization

- ±30% around D_{ref}
- Else, too much E or D
- Need for arch. opt.

A Look at Tuning Variables

Equal sensitivity unless variables reach their bounds

A Look at Tuning Variables

Optimal Circuit Parameters

• Large variation in optimal parameters V_{DD}^{opt}, V_{TH}^{opt}, W^{opt}

Reference/nominal parameters (V_{DD}^{ref} , V_{TH}^{ref}) are rarely optimal

Lessons from Circuit Optimization

- Sensitivity-based optimization framework
 - Equal marginal costs ⇔ Energy-efficient design
- Effectiveness of tuning variables
 - Sizing is the most effective for small d_{inc}
 - V_{DD} is better for large delay increments
- Peak performance is VERY power inefficient
 - ~70% energy reduction for 20% delay penalty
- Limited performance range of tuning variables
 - Additional variables for higher energy-efficiency

Choosing Circuit Topology: Optimal Register?

• Given energy-delay tradeoff for adder and register (two register options), what is the best energy-delay tradeoff in the ALU?

Balancing Sensitivity Across Circuit Blocks

Micro-Architectural Optimization

Example 3.4: 802.11a Baseband

[An 802.11a baseband processor]

- Direct mapped architecture
- 200 MOPS/mW
 - 80 MHz clock!
 - 40 GOPS
 - Power = 200 mW
 - 0.25 μm CMOS
- The architecture has to track technology

Wireless Baseband Chip Design

- Direct mapping is the most energy-efficient
- Technology is too fast for dedicated hardware
 - Opportunity to further reduce energy and area

A Number of Variables to Consider

• How to optimally combine all variables?

Towards Architecture Optimization

Architectural Feedback from Technology

- Simulink hardware library implicitly carries information only about latency and wordlength (we can later choose sample period when targeting an FPGA)
- ASIC flow: block characterization exposes technology features such as speed, power, and area
- But, technology parameters scale each generation
 - Need a general and quick characterization methodology
 - Propagate results back to Simulink to avoid iterations

Cycle Time is Common for All Blocks

Datapath Characterization

Balance tradeoffs due to gate size (W) and supply voltage (V_{DD})

Circuit Level

- Optimal design point
 - Curves from W and

V_{DD} are tangent (equal sensitivity)

• Goal: keep all pipelines at the same E-D point

Summary | Method & Results

- Optimal energy-delay tradeoff obtained by tuning gate size, V_{DD} and V_{TH} can be calculated by optimization
 - Convex formulation of delay-constrained energy min
 - Circuit-level E-D tradeoff allows for quick comparison of multiple circuit topologies
- Insights from circuit optimization
 - Min-delay design consumes the most energy
 - Gate sizing is the most effective for small delays
 - V_{DD} is the most effective for medium delays
 - V_{TH} is the most effective for large delays

Summary | Limitations

- Circuit optimization is effective in a narrow band of delay
- More degrees of freedom (e.g. architectural) are needed for broader range of performance tuning in an energy-efficient way
 - Next lecture