

DSP Arithmetic

Prof. Dejan Marković

ee216b@gmail.com

Agenda

- Number systems
- Quantization effects
- Data dependencies
- Implications on power
- Adders and multipliers

Number Systems: Algebraic

- High-level abstraction
- Infinite precision
- Often easier to understand
- Good for theory/algorithm development
- Hard to implement

C. Shi, Floating-point to Fixed-point Conversion, Ph.D. Thesis, UC Berkeley, 2004.

Number Systems: Floating Point

- Widely used in CPUs
- Floating precision
- Good for algorithm study and validation

Value = (-1)^{Sign} × 1.Mantissa × 2^(Exponent – Bias)

IEEE 754 standard	Sign	Exponent	Mantissa	Bias
Single precision [31:0]	1 [31]	8 [30:23]	23 [22:0]	127
Double precision [63:0]	1 [63]	11 [62:52]	52 [51:00]	1023

J.L. Hennesy and D.A. Paterson, Computer Architecture: A Quantitative Approach, (2nd Ed), Morgan Kaufmann, 1996.

Example of Floating-Point Representation

Value = (-1)^{Sign} × Fraction × 2^(Exponent – Bias)

non-IEEE-standard floating point

$$\pi = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline Frac & Exp & Bias = 3 \end{bmatrix}$$

• Calculate π

$$\pi = (-1)^{0} \times (1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} + 0 \times 2^{-6})$$
$$\times 2^{(1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} - 3)} = 3.125$$

• Very few bits are used in this representation \Rightarrow low accuracy (actual value π = 3.141592654...)

Floating-Point Standard: IEEE 754

Properties

- Half-way rounding
- **2** Special values
- **3** Denormals
- 4 Rounding modes

IEEE 754: Half-Way Rounding

Rounding a "half-way" result to the nearest float (picks even)

Example: $6.1 \times 0.5 = 3.05$ (base 10, 2 digits) even 3.0 3.1 (base 10, 1 digit)

4 • Rounding modes:

Nearest	Toward 0	Toward –∞	Toward ∞
default			

2 IEEE 754: Special Values

Examples:

- sqrt(-0.5) = NaN, f(NaN) = NaN
 - verify this in MATLAB
- $1/0 = \infty, 1/\infty = 0$
- $\arctan(x) \rightarrow \pi/2$ as $x \rightarrow \infty \Rightarrow \arctan(\infty) = \pi/2$

3 IEEE 754: Denormals

Representation of Floating-Point Numbers

IEEE 754 standard	Sign	Exponent	Mantissa	Bias
Single precision [31:0]	1 [31]	8 [30:23]	23 [22:0]	127

Single precision: 32 bits

1. Mantissa (for number conversion)

Example: 1 10000001 0100...0 sign exponent Mantissa $129 - 127 \quad 0.01_2 = 0.25$ (1.Mantissa = 1.25) $-1.25 \times 2^2 = -5$

Special (Reserved) Cases

Notation

- Significand = everything other than exponent
 - Sign & mantissa
 - 1.Mantissa (default for number convsersion)

Exponent	Mantissa	Value
0	0	0
0	Nonzero	Denormal
255	0	± Infinity
255	Nonzero	NaN

- Exponent ranges from -126 to +127
 - With 0 and 255 reserved as above

Fixed Point: 2's Complement Representation

- *W*_{Int} and *W*_{Fr} suitable for predictable dynamic range
 o-mode (saturation, wrap-around)
 - q-mode (trunc, roundoff)
- Economic for implementation

Fixed Point: Unsigned Magnitude

- Useful built-in MATLAB functions:
 - fix, round, ceil, floor, dec2bin, bin2dec, etc.
- Converting representations in MATLAB
 - dec2bin(round(pi*2^6), 10)
 - bin2dec(above)*2^-6
- How to specify hardware descriptions?

Fixed Point: Example Hardware Descriptions

Fixed-Point Representations

- Sign magnitude
- 2's complement
 - $x + (-x) = 2^n$ (complement each bit, add 1)
 - Most widely used (signed arithmetic easy to do)
- 1's complement
 - $x + (-x) = 2^n 1$ (complement each bit)
- **Biased:** add bias, encode as ordinary unsigned number

• $k + bias \ge 0$, $bias = 2^{n-1}$ (typically)

Example: Fixed-Point Representations

<u>Assume:</u> *n* = 4 bits, *k* = 3, -*k* = ?

• Sign magnitude: $k = 0011_2 \rightarrow -k = 1011_2$

- 1's complement: $-k = 1100_2$ $k + (-k) = 2^n 1$
- Biased: $k + bias = 1011_2$ $-k + bias = 0101_2 = 5 \ge 0$ $2^{n-1} = 8 = 1000_2$

2's Complement Arithmetic

• Most widely used representation, simple arithmetic

Discard the sign bit (if there is no overflow)

• Overflow occurs when Carry into MSB ≠ Carry out of MSB

Carry out of MSB = Carry into MSB \rightarrow No overflow!

Overflow

• Property of 2's complement

Negation = bit-by-bit complement + 1

 $\rightarrow C_{in} = 1$, result: a - b

Quantization Effects

Quantization

2's complement representation

Quantization Modes: Rounding, Truncation

Feedback systems: rounding

Overflow Modes: Wrap Around

A.V. Oppenheim, R.W. Schafer, with J.R. Buck, Discrete-Time Signal Processing, (2nd Ed), Prentice Hall, 1998.

Overflow Modes: Saturation

Feedback systems: saturation

Quantization Noise

Binary Multiplication

• Arguments: X, Y

$$X = \sum_{i=0}^{M-1} X_i \cdot 2^i \qquad Y = \sum_{j=0}^{N-1} Y_j \cdot 2^j$$

• Product: Z

$$Z = X \cdot Y = \sum_{k=0}^{M+N-1} z_k \cdot 2^k = \left(\sum_{i=0}^{M-1} X_i \cdot 2^i\right) \cdot \left(\sum_{j=0}^{N-1} Y_j \cdot 2^j\right)$$
$$Z = \sum_{i=0}^{M-1} \left(\sum_{j=0}^{N-1} X_i \cdot Y_j \cdot 2^{i+j}\right)$$

J. Rabaey, A. Chandrakasan, B. Nikolić, Digital Integrated Circuits: A Design Perspective, (2nd Ed), Prentice Hall, 2003.

Binary Multiplication: Example

• Multi-bit multiply

= bit-wise multiplies (partial products) + final adder

Array Multiplier

M-by-N Array Multiplier: Critical Path

<u>Note</u>: number of horizontal adder slices = N - 1

$$t_{mult} = [(M-1) + (N-2)] \cdot t_{carry} + (N-1) \cdot t_{sum} + t_{and}$$

Carry-Save Multiplier

$$t_{mult} = (N-1) \cdot t_{carry} + t_{and} + t_{merge}$$

Multiplier Floorplan

HA: half adder FA: full adder VM: vector-merging cell

X and Y signals are broadcasted through the complete array

Wallace-Tree Multiplier

Second stage

Final adder

🔵 Sum

Carry (from previous bit position)

Wallace-Tree Multiplier

Multipliers: Summary

- Optimization goals different than in binary adder
- Once again: Identify critical path
- Other possible techniques
 - Logarithmic versus linear (Wallace-Tree multiplier)
 - Data encoding (Booth)
 - Pipelining

Time-Multiplexed Architectures

Time sharing de-correlates I/Q and increases switching activity

Optimizing Multiplications

Number Representation

Sign-extension activity is significantly reduced using sign-magnitude representation

A. Chandrakasan, Low Power Digital CMOS Design, Ph.D. Thesis, UC Berkeley, 1994.

Reducing Activity by Reordering Inputs

30% reduction in switching energy

Memory Architecture

• Pipelining and voltage scaling

Efficiency: Single vs. Double Precision FPU

Diminishing efficiency gains with scaling at constant

W/GFlop

Efficiency: Memory Hierarchies

- A study based on dual-socket 2.6GHz Xeon E5520
 - Throughput: 4 instructions per clock cycle * 4 cores
 - Memory: 8M/256K/32K L3/L2/L1 cache + 12GB DDR3
- Operational intensity [Byte/Arithmetic ratio]

I. Manousakis, D.S. Nikolopoulos, IEEE Int. Symp. Computer Arch & HP Computing, 2012, pp 139-146.

Application Example: Cognitive Radio Spectrum Sensing

T.-H. Yu, et al., "A 7.4mW 200MS/s Wideband Spectrum Sensing Digital Baseband Processor for Cognitive Radios," IEEE JSSC, vol. 47, no. 9, pp. 2235-2245, Sep. 2012.

Mini Floating-Point

When large-dynamic-range samples can be partition into several small-dynamic-range operations, mini floating-point is area efficient

Fixed-Point to Floating-Point Converter

Mini Floating-Point Operation

Mini-Float Example: PSD Estimation

- Large-dynamic-range spectrum is channelized into independent small-dynamic range channels
 - Mini floating point for area saving

→ Complex → Real → Mantissa --> Exponent

T.-H. Yu, et al., IEEE JSSC, pp. 2235-2245, Sep. 2012.

Optimal Multiplier Wordlength

Impact on Core Power/Area

Summary

- Algorithm design: algebraic form, floating-point verification
- Fixed-point degrades performance due to quantization noise
 - Quantization (round, trunc.) and overflow (sat., wrap-around)
 - Rounding has zero-mean error: suitable for recursive systems
 - **Saturation:** typically used in feedback systems
- Data correlation impacts power consumption
 - Time-shared buses increase activity (reduce correlation)
 - 2's complement has higher switching than sign-magnitude
- Memory access (esp. DRAM) dominates energy in CPUs
- Mini-floating point suitable for some dedicated chips
 - Reduced memory, lower compute energy