
Digital Filters

Prof. Dejan Marković
ee216b@gmail.com

ECE216B

D. Markovic / Slide 2

Agenda

Filter types:

• Direct

• Recursive

• Multi-rate

[1]

[1] J. Proakis, Digital Communications, (3rd Ed), McGraw Hill, 2000.
[2] A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice Hall, 2009.
[3] J.G. Proakis and D.K. Manolakis, Digital Signal Processing, (4th Ed), Prentice Hall, 2006.
[4] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley, 1999.

Implementation

• Conventional

• Distributed
arithmetic

Example: radio systems

• Band-select filters

• Adaptive equalization

• Decimation/interpolation

8.2

Filter Design
for Digital Radios

D. Markovic / Slide 4

Radio Transmitter

Baseband
Modulation

Transmit
Filter

I

Q

Input
Bits

I

Q

AM, PSK, FSK, QAM Pulse Shaping

MODEM

Antenna

LO

RF filter PA

Q

I

DAC

DAC

LPF

LPF

0
90

D
S
P

8.4

D. Markovic / Slide 5

Radio Receiver

Receive
Filter

Timing
Correction

Adaptive
Equalizer

Demod/
Detector

I

Q

I

Q

Received
Bits

MODEM

D
S
P

ADC

Antenna

LO0
90

Pre-selection
filter

LPF

LPF

LNA

ADC

8.5

D. Markovic / Slide 6

Design Procedure

• Algorithm design
▪ Transmit / receive filters

▪ Modulator

▪ Demodulator

▪ Detector

▪ Timing correction

▪ Adaptive equalizer

• Implementation architecture

• Wordlength optimization

• Hardware mapping

Assume: Modulation, Ts (symbol period), bandwidth

8.6

D. Markovic / Slide 7

Signal Bandwidth Limitation

• Modulation generates pulse train of zeros and ones

▪ Its frequency response is not band-limited

▪ Filter before Tx to restrict bandwidth of symbols

0 1/T 2/T−1/T−2/T

13 dB
|H(f)|

f

Binary sequence
generated after

modulation

Frequency response
of a single pulseAttenuate

side-lobes

Symbol period = T

pass band

T

1 0 1 0 0 1

8.7

D. Markovic / Slide 8

Ideal Filter

1

−1/2Ts 1/2Ts then the time response
goes on forever…

0 Ts 2Ts 3Ts

Sample rate = fs

Baseband BW = fs/2 (pass band BW = fs)

• If we band-limit to the minimum possible amount 1/2Ts,

8.8

D. Markovic / Slide 9

Practical Transmit / Receive Filters

• Tx: restrict the Tx signal BW to a specified value

• Rx: extract the signal from a specified BW of interest

Usable
Bandwidth

Ideal
filter response

Practical
filter response

Ideal filter has infinitely long impulse response.
Raised-cosine filter is a practical realization.

Brick wall
sharp roll-off

8.9

D. Markovic / Slide 10

Raised-Cosine Filter: Frequency Response

HRC (f) =

α = 0
α = 0.5

α = 1

T

1/2T−1/2T 1/T−1/T

HRC (f)

1
1 | |

2 s

α
f

T

1 1 1
1 | | | |

2 2 2 2
s s

s

s s s

T πT α α α
cos f f

α T T T

1

0 | |
2 s

α
f

T

8.10

D. Markovic / Slide 11

Raised-Cosine Filter: Time Response

• Time-domain pulse shaping with raised-cosine filters

• No contribution of adjacent symbols at the k∙Ts instants

▪ No inter-symbol interference with this pulse shaping

T 2T 3T−T 0

symbol1 symbol2

8.11

D. Markovic / Slide 12

Square-Root Raised-Cosine Filter

• Choose sample rate for the filter:

▪ fsample equal to D/A frequency on the Tx side
and A/D frequency on the Rx side

▪ If fD/A = fA/D = 4·(1/Tsymbol),

for –(N – 1)/2 < n < (N – 1)/2

Impulse response is finite: implement as FIR filter

() () ()Tx Rx RCH f H f H f

(2)/() (4 /)· j πmn N
Tx RC sh n H m NT e

() () ()RC Tx RxH f H f H f Split the filter
between Tx & Rx

8.12

Direct (FIR) Filters

D. Markovic / Slide 14

Implementing the Filter

• An N-tap filter is a series of multiply and add operations

x(n)

y(n)

h0

Clock cycle
latency

(register)z−1

×

z−1 z−1

h1 ×

+ +

hN−1 ×

0 1 2 1() (1) (2(.)) . . (1)Nx n h x n h x n h x n Ny n h

Direct-form architecture

8.14

D. Markovic / Slide 15

Direct-Form FIR Filter: Critical Path

• Critical-path delay proportional to filter order

▪ Suitable for small number of taps

Critical path = tmult + (N−1) · tadd

x(n)

h0

z−1

×

z−1 z−1

h1 ×

+ +

hN−1 ×

8.15

D. Markovic / Slide 16

Multi-Operand Addition

Use an adder tree instead of a chain

+ +

D D

××

y(n)

h0 h1

x(n−1)

×h2

D

×h3

+

x(n−2) x(n−3)x(n)

log2N
adder
stages

Critical path = tmult + log2(N) · tadd

instead of N – 1

8.16

D. Markovic / Slide 17

Multiplier-less FIR Filter Implementation

• Low-complexity power-of-two based multiplications

▪ Obtained for free by simply shifting data buses

▪ Round off multiplier coefficients to nearest power of 2

▪ Small performance degradation in most cases

×

0.59375
= 19/32

In Out

+ +

2−1

In

Out

2−4 2−5

H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters with Powers-
of-Two Coefficients," IEEE Trans. Circuits and Systems, vol. 36 , no. 7, pp. 1044-1047, July 1989.

8.17

D. Markovic / Slide 18

FIR Filter: Simplified Notation

A more abstract

z−1 z−1

h0 h1 h2

Add when branches merge

Multiply
notation

+ +

z−1 z−1

×× ×

x(n)

y(n)

h0 h1 h2

x(n)

y(n)

and efficient notation

8.18

D. Markovic / Slide 19

Pipelining

• Direct-form architecture is throughput-limited

▪ Pipelining can be used to increase throughput

• Pipelining: adding the same number of delay
elements in each forward cut-set

▪ Cut-set: set of edges in a graph that if removed,
graph becomes disjoint

▪ Forward cut-set: all edges in the cut-set are in
the same direction

• Increases latency

• Register overhead (power, area)

K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley, 1999.

8.19

D. Markovic / Slide 20

Example 9.1: Pipelining FIR Filter

+ +

z−1 z−1

×× ×

x(n)

y(n)

h0 h1 h2

Critical path = tmult + 2 · tadd

• Calculate initial critical path

8.20

D. Markovic / Slide 21

Example 9.1: Pipelining FIR Filter

+ +

z−1 z−1

×× ×

x(n)

y(n)

h0 h1 h2

Cut-set

• Find forward cut-set

8.21

D. Markovic / Slide 22

Example 9.1: Pipelining FIR Filter

+ +

z−1 z−1

×× ×

x(n)

y(n−1)

z−1

z−1

h0 h1 h2

• Insert pipeline registers

▪ I/O latency increases

Extra cycle of
I/O latency

8.22

D. Markovic / Slide 23

Example 9.1: Pipelining FIR Filter

• Calculate new critical path

+ +

z−1 z−1

×× ×

x(n)

y(n−1)

z−1

z−1

h0 h1 h2

Critical path = tmult + tadd

8.23

D. Markovic / Slide 24

Example 9.1: Pipelining FIR Filter

+ +

z−1 z−1

×× ×

x(n)

y(n)

h0 h1 h2

Cut-set

+ +

z−1 z−1

×× ×

x(n)

y(n−1)

z−1

z−1

tcritical = tmult + 2tadd

tcritical = tmult + tadd

h0 h1 h2

registers2
I/O latency: 0

registers4
I/O latency: 1

Pipelined

Reference

8.24

D. Markovic / Slide 25

High-Level Retiming

• Optimal placement of existing data-path registers

▪ Register movement does not alter functionality

• Objective: balance tcritical for maximum throughput

D D Out

In

× × × ×

++ +D D

registers4

8.25

D. Markovic / Slide 26

Example 9.2: Retiming of FIR Filter

• Step 1: move output register inside

D D Out

In

× × × ×

++ +D D

registers4

8.26

D. Markovic / Slide 27

D D Out

In

× × × ×

++ +

D

D D

registers5

Example 9.2: Retiming of FIR Filter

• Output register splits into two input
registers after the first step

▪ Total number of registers increases

8.27

D. Markovic / Slide 28

D D Out

In

× × × ×

++ +

D

D D

registers5

Example 9.2: Retiming of FIR Filter

• Step 2: move internal register further inside

8.28

D. Markovic / Slide 29

D D Out

In

× × × ×

++ +

DD
D D

registers6

Example 9.2: Retiming of FIR Filter

• Internal register splits into two input
registers after the second step

▪ Total number of registers increases

8.29

D. Markovic / Slide 30

D D Out

In

× × × ×

++ +

DD
D D

registers6

• Step 2+: continue moving internal registers
until you reach input

Example 9.2: Retiming of FIR Filter

8.30

D. Markovic / Slide 31

D Out

In

× × × ×

++ +

DDD

D DD

registers7

Example 9.2: Retiming of FIR Filter

• Each out/in split added an extra register

▪ 4 filter stages: 3 additional registers

8.31

D. Markovic / Slide 32

D Out

In

× × × ×

++ +

DDD

DD

D

registers7

Example 9.2: Retiming of FIR Filter

• Each out/in split added an extra register

▪ 4 filter stages: 3 additional registers

8.32

D. Markovic / Slide 33

High-Level Retiming

Number of registers increased, I/O latency unchanged

D D Out

In

× × × ×

++ +D D

registers4

D Out

In

× × × ×

++ +

DDD

DD

D

registers7

I/O latency: 4

I/O latency: 4

8.33

D. Markovic / Slide 34

Pipelining vs. Retiming

• Pipelining

▪ Inserts registers into cut-sets

▪ I/O latency increases

• Retiming

▪ Moves existing registers

▪ I/O latency unchanged

8.34

D. Markovic / Slide 35

Transposing FIR

• Reverse the direction of edges in a signal-flow graph

• Interchange the input and output ports

• Functionality unchanged

tcritical = tmult + tadd

(decreased)

Input
loading

(increased)

y(n)

x(n)

× × ×

+ +

h2 h1 h0

D D

x(n) D D

h2h1h0 h0 h1 h2

D D

y(n)

y(n)

x(n)

8.35

D. Markovic / Slide 36

Transposed + Parallel FIR

x(n)

y(n) = a·x(n) + b·x(n−1) + c·x(n−2) + d·x(n−3)

D D D

y(2m) = a·x(2m) + b·x(2m−1)
+ c·x(2m−2) + d·x(2m−3)

y(2m+1) = a·x(2m+1) + b·x(2m)
+ c·x(2m−1) + d·x(2m−2)

Critical path = 2tadd + tmult

Per iteration: tadd + tmult / 2

d

+

c b a

+ +

x(2m+1)

D

d

+

c b a

+ +

D D

d

+

c b a

+ +

x(2m)

Critical path = tadd + tmult

8.36

D. Markovic / Slide 37

FIR Summary

Main features:
• Easy to design, always stable

• Feed-forward: can be pipelined, parallelized

• Linear phase response

Realize narrow band, steep roll-off?
• FIR filters require large number of taps

• Area and power cost can make FIR unsuitable

8.37

Recursive (IIR) Filters

D. Markovic / Slide 39

IIR Filters for Narrow Band, Steep Roll-Off

Infinite impulse response (IIR) filters are more suited to
achieve such a frequency response with low area, power

steep roll-offnarrow band

+π+π/10−π/10−π

8.39

D. Markovic / Slide 40

Generalized IIR Transfer Function

Feed-forwardFeedback

Response up to +∞Response up to −∞

1 0

() ())(
N N

m p
m p

b y n mn ay x n p

8.40

D. Markovic / Slide 41

Direct-Form IIR Architecture

z−1

z−1

+

+

x(n)

a1

aN−1

z−1

z−1

+

+
b1

bM−1

y(n)
k

1 2 (1)
1 2 1

1 2 (1)
1 2 1

1 ...

1 ...
()

N
N

M
M

a z a z a z

b z b z b z
H z k

8.41

D. Markovic / Slide 42

IIR Architecture Optimization

H1(z) H2(z)

Swap the order of execution

Functionality unchanged if H1, H2 are swapped

z−1

z−1

x(n)

a1

aN−1

z−1

z−1
b1

y(n)
k

bM−1

+

+

+

+

8.42

D. Markovic / Slide 43

IIR Architecture Optimized

• H1, H2 can share the central register bank

▪ If M ≠ N, the central bank will have max(M,N) registers

y(n)x(n)

z−1

z−1b1

bM−1

kH2(z)

a1

aN−1

H1(z)
+

+

+

+

8.43

D. Markovic / Slide 44

Cascaded IIR

• Implement IIR as cascade of 2nd order sections

▪ Shorter wordlengths in the feedback loop adders

▪ More area and power efficient architecture

1 21 2
1 211 21

1 1 2 1 2
11 21 1 2

1
()

1
...

1 1

p p

p

p p

a z a za z a z
k

b z b z b z
k

z
z

b
H

z−1

z−1b11

b21

k1

a11

a21

+

+

+

+

z−1

z−1b1P

b2P

kP

a1P

a2P

+

+

+

+

8.44

D. Markovic / Slide 45

Recursive-Loop Bottlenecks

• Pipelining loops not possible

▪ # registers in feedback loops must remain fixed

w1(n) = a·(y1(n−1) + x(n))
y1(n) = b·a·y1(n−1) + b·a·x(n)

x(n)

y1(n)

D

a

w1(n)

b

Changing the # delays in a loop alters functionality

y1(n) ≠ y2(n)

×+

×

w(n) = a·(y2(n−2) + x(n−1))
y2(n) = b·a·y2(n−2) + b·a·x(n−1)

x(n)

y2(n)

D

a

w2(n)

b

×+

×

D

8.45

D. Markovic / Slide 46

High-Level Retiming of an IIR Filter

• IIR throughput is limited by the retiming in the feedback sections

• Optimal placement of registers in the loops leads to max speed

Retiming moves

tcritical = 2tmult tcritical = tadd + tmult

x(n)

y(n)

D

a

b

×+

×

D
x(n)

y(n−1)

D

a

b

×+

×

D

8.46

D. Markovic / Slide 47

Unfolding: Constant Throughput

• Maximum throughput limited by iteration bound (IB)

• Unfolding does not help if IB is already achieved

y(n) = x(n) + ay(n−1)

y(2m) = x(2m) + ay(2m−1)

y(2m+1) = x(2m+1) + ay(2m)

x(n) a×+
D

x(2m) a

D* = 2D

x(2m+1) a

×+

×+

Critical path = 2tadd + 2tmult

Per iteration: tadd + tmult

Critical path = tadd + tmult

8.47

D. Markovic / Slide 48

IIR Summary

• Pros

▪ Suitable when filter response has sharp roll-off, has
narrow-band, or large attenuation in the stop-band

▪ More area- and power-efficient compared to FIR

• Cons

▪ Difficult to ensure filter stability

▪ Sensitive to finite-precision arithmetic effects (limit cycles)

▪ Does not have linear phase response unlike FIR filters

▪ All-pass filters required if linear phase response desired

▪ Difficult to increase throughput

• Pipelining not possible

• Retiming and parallelism has limited benefits

8.48

Multi-Rate Filters

D. Markovic / Slide 50

Multi-Rate Filters

• Data transfer between blocks at different sample rate

▪ Decimation: higher rate fs1 to lower rate fs2

▪ Interpolation: lower rate fs2 to higher rate fs1

• For integer fs1/fs2

▪ Drop samples when decimating
• Leads to aliasing in the original spectrum

▪ Stuff zeros when interpolating
• Leads to images at multiples of fs2

8.50

D. Markovic / Slide 51

↓D

Decimation

• Frequency-domain representation
▪ Spectrum replicated at intervals of fs1 originally

▪ Spectrum replicated at intervals of fs2 after decimation

▪ Aliasing of spectrum lying beyond B/W fs2 in original spectrum

• Decimation filters to remove content beyond fs2

−3fs1/2 +3fs1/2−fs1/2 +fs1/2 −3fs2/2 +3fs2/2−fs2/2 +fs2/2

Original spectrum After decimation

Decimate

8.51

D. Markovic / Slide 52

Decimation Filters

• Low-pass filters used before decimation
▪ Usually FIR realization (IIR if linear phase is not necessary)

▪ Cascade integrated comb filter for hardware efficient realization

• Much cheaper to implement than FIR or IIR realizations

• Less attenuation, useful in heavily over-sampled systems

−3fs1/2 +3fs1/2−fs1/2 +fs1/2 −3fs2/2 +3fs2/2−fs2/2 +fs2/2

Decimate

↓D

Original spectrum After decimation
8.52

D. Markovic / Slide 53

Interpolation

• Frequency domain representation

▪ Spectrum spans bandwidth of fs2 originally

▪ Spectrum spans bandwidth of fs1 after interpolation

▪ Images of spectrum at intervals of fs2 after interpolation

• Interpolation filters to remove images at multiples of fs2

−fs1/2 fs1/2−fs2/2 +fs2/2−fs2/2 +fs2/2

Zero-stuff

↑U
Drawing

not to scale

Original spectrum After interpolation
8.53

D. Markovic / Slide 54

Interpolation Filters

• Low-pass filter used after interpolation
▪ Suppress spectrum images at multiples of fs2

▪ Usually FIR realizations (IIR if linear phase not necessary)

▪ Cascade integrated comb filter for hardware efficient realization

• Much cheaper to implement than FIR or IIR realizations

• Less attenuation, useful for large interpolation factors (U)

−fs1/2 fs1/2−fs2/2 +fs2/2−fs2/2 +fs2/2

Zero-stuff

↑U
Drawing

not to scale

Original spectrum After interpolation
8.54

Adaptive Filters:
Equalization

D. Markovic / Slide 56

Inter-Symbol Interference (ISI)

ISI noise

ISI

• Channel response causes delay spread in Tx symbols

• Adjacent symbols contribute at sampling instants

0 0 0 0() () () ()k j
j k

r t kT x h t x h t kT jT n t kT

t0 – 2T

t0 – T
t0

t0 + T

t0 + 2T

t0 + 3T

t0 + 4T

h(t)

time

• ISI and adaptive noise modeling

8.56

D. Markovic / Slide 57

Zero-Forcing Equalizer

Q(e−jωT)

0

WZFE(e−jωT)

0

Noise enhancement

• Basic equalization techniques

▪ Zero-forcing (ZF)
• Causes noise enhancement

π
T

π
T

• Adaptive equalization

▪ Least-mean squares (LMS) algorithm
• More robust

8.57

D. Markovic / Slide 58

Adaptive Equalization

2[]
0

()
k

n

E e

c k

• Achieve minimum mean-square error (MMSE)
▪ Equalized signal: zk, transmitted signal: xk

▪ Error: ek = zk − xk

▪ Objective: Minimize expected error, min E[ek
2]

▪ Equalizer coefficients at time instant k: cn(k), n ∈ {0,1,…,N}

▪ For real optimality: set

• Equalized signal zk given by:

zk = c0rk + c1rk−1 + c2rk−2 + … + cn−1rk−n+1

• zk is convolution of received signal rk w/ tap coefficients

8.58

D. Markovic / Slide 59

LMS Adaptive Equalization

MSE = ek
2

cn(k)

reduces

{cn}r(t)

t0 + kT

∑

zk

ek

xk

+
−

equalizer decision device

error

Train

Training
sequence
generator

xk

2

()
k

n

e

c k

MMSE
8.59

D. Markovic / Slide 60

Approximate Calculation of MMSE

• For computational optimality

▪ Set: ∂E[ek
2]/∂cn(k) = 2ekrk–n = 0

• Tap update equation: ek = zk − xk

• Step size: ∆

• Good approximation if using:

cn(k+1) = cn(k) – Δekr(k – n), n = 0, 1, …, N – 1

▪ Small step size

▪ Large number of iterations

• Error-signal power comparison: σLMS
2 ≤ σZF

2

8.60

D. Markovic / Slide 61

Decision-Feedback Equalizers

Cancel the interference from previously detected symbols

bm+1(k+1) = bm(k) − Δekdk−m

x–3

x–2

x–1

x0

x1
x2

x3

Feedback equalizer

• Remove the post-crs ISI

• Like a ZF equalizer

Feed-forward equalizer

• Remove the pre-crs ISI

• FIR (linear)

8.61

D. Markovic / Slide 62

DFE Architecture

TIn

c0 c1

... T

cN−1

Σ

Σ
Decision
device

Σ

bM

T ... T

b1

T
dk dk−M dk−1

− −

+

et
Training

signal

+ −

Feedback equalizer: b1, b2, …, bM

Feed-forward equalizer: c0, c1, …, cN–1

8.62

D. Markovic / Slide 63

DFE Properties

• Less noise enhancement compared with ZF or LMS

• More freedom in selecting feed-forward coefficients

▪ Feed-forward equalizer need not fully invert
channel response

• Symbol decision may be incorrect

▪ Error propagation (slight)

8.63

D. Markovic / Slide 64

Fractionally-Spaced Equalizers

• Sampling at symbol period

▪ Equalizes the aliased response

▪ Sensitive to sampling phase

• Can over-sample (e.g. 2x higher rate)

▪ Avoid spectral aliasing at the equalizer input

▪ Sample the Rx input at higher rate (e.g. 2x faster)

▪ Produce equalizer output signal at symbol rate

▪ Can update coefficients at symbol rate

▪ Less sensitive to sampling phase

cn(k+1) = cn(k) − Δek·r(t0 + kT – NT/2)

8.64

D. Markovic / Slide 65

Equalizers Summary

• Use equalizers to reduce ISI and achieve high data rate

• Use adaptive equalizers to track time-varying channel

• LMS-based equalization prevails in MODEM design

• DFE uses previous decisions to estimate current symbol

• Fractionally spaced equalizers resilient to sampling
phase variation

• Properly select step size for convergence

S. Qureshi, “Adaptive Equalization,” Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, Sep. 1985.

8.65

D. Markovic / Slide 66

Digital Filters Summary

• Digital filters are key building elements in DSP systems

• FIR filters can be realized in direct or transposed form

▪ Direct form has long critical-path delay

▪ Transposed form has large input loading

▪ Multiplications can be simplified by using coefficients
that can be derived as sum of power-of-two numbers

• Performance of IIR filters is limited by the longest loop
delay (iteration bound)

▪ IIR filters are suitable for sharp roll-off characteristics

▪ More power and area efficient than FIR

• Multi-rate filters for decimation and interpolation
8.66

