

Digital Filters

Prof. Dejan Marković ee216b@gmail.com

Agenda

Example: radio systems [1]

- Band-select filters
- Adaptive equalization
- Decimation/interpolation

Filter types:

- Direct
- Recursive
- Multi-rate

Impl

Implementation

- Conventional
- Distributed arithmetic
- [1] J. Proakis, Digital Communications, (3rd Ed), McGraw Hill, 2000.
- [2] A.V. Oppenheim and R.W. Schafer, Discrete Time Signal Processing, (3rd Ed), Prentice Hall, 2009.
- [3] J.G. Proakis and D.K. Manolakis, Digital Signal Processing, (4th Ed), Prentice Hall, 2006.
- [4] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley, 1999.

Filter Design for Digital Radios

Radio Transmitter

Radio Receiver

Design Procedure

Assume: Modulation, T_s (symbol period), bandwidth

- Algorithm design
 - Transmit / receive filters
 - Modulator
 - Demodulator
 - Detector
 - Timing correction
 - Adaptive equalizer
- Implementation architecture
- Wordlength optimization
- Hardware mapping

Signal Bandwidth Limitation

- Modulation generates pulse train of zeros and ones
 - Its frequency response is not band-limited
 - Filter before Tx to restrict bandwidth of symbols

Ideal Filter

Sample rate = f_s Baseband BW = $f_s/2$ (pass band BW = f_s)

• If we band-limit to the minimum possible amount $1/2T_s$,

Practical Transmit / Receive Filters

- Tx: restrict the Tx signal BW to a specified value
- Rx: extract the signal from a specified BW of interest

Ideal filter has infinitely long impulse response. Raised-cosine filter is a practical realization.

Raised-Cosine Filter: Frequency Response

$$H_{RC}(f) = \begin{cases} 1 \Leftrightarrow |f| \leq \frac{1-\alpha}{2T_s} \\ \frac{T_s}{2} \left[1 + \cos \frac{\pi T_s}{\alpha} \left(|f| - \frac{1-\alpha}{2T_s} \right) \right] \Leftrightarrow \frac{1-\alpha}{2T_s} < |f_s| < \frac{1+\alpha}{2T_s} \\ 0 \Leftrightarrow |f| > \frac{1+\alpha}{2T_s} \end{cases}$$

Raised-Cosine Filter: Time Response

- Time-domain pulse shaping with raised-cosine filters
- No contribution of adjacent symbols at the $k \cdot T_s$ instants
 - No inter-symbol interference with this pulse shaping

Square-Root Raised-Cosine Filter

Split the filter $H_{RC}(f) = H_{Tx}(f) \cdot H_{Rx}(f)$ between Tx & Rx $H_{Tx}(f) = H_{Rx}(f) = \sqrt{H_{RC}(f)}$

- Choose sample rate for the filter:
 - f_{sample} equal to D/A frequency on the Tx side and A/D frequency on the Rx side

• If
$$f_{D/A} = f_{A/D} = 4 \cdot (1/T_{symbol})$$
,

$$\Rightarrow h_{T_x}(n) = \sum \sqrt{H_{RC}(4m / NT_s)} \cdot e^{j(2\pi m n)/N}$$

for $-(N-1)/2 \le n \le (N-1)/2$

Impulse response is finite: implement as FIR filter

Direct (FIR) Filters

Implementing the Filter

 $y(n) = h_0 x(n) + h_1 x(n-1) + h_2 x(n-2) + \dots + h_{N-1} x(n-N+1)$

• An N-tap filter is a series of multiply and add operations

Direct-Form FIR Filter: Critical Path

Critical path = $t_{mult} + (N-1) \cdot t_{add}$

- Critical-path delay proportional to filter order
 - Suitable for small number of taps

Multi-Operand Addition

instead of N-1

Use an adder tree instead of a chain

Multiplier-less FIR Filter Implementation

- Low-complexity power-of-two based multiplications
 - Obtained for free by simply shifting data buses
 - Round off multiplier coefficients to nearest power of 2
 - Small performance degradation in most cases

H. Samueli, "An Improved Search Algorithm for the Design of Multiplierless FIR Filters with Powersof-Two Coefficients," *IEEE Trans. Circuits and Systems,* vol. 36, no. 7, pp. 1044-1047, July 1989.

FIR Filter: Simplified Notation

A more abstract 🕂 and efficient notation

Pipelining

- Direct-form architecture is throughput-limited
 - Pipelining can be used to increase throughput
- Pipelining: adding the same number of delay elements in each forward cut-set
 - Cut-set: set of edges in a graph that if removed, graph becomes disjoint
 - Forward cut-set: all edges in the cut-set are in the same direction
- Increases latency
- Register overhead (power, area)

• Calculate initial critical path

Critical path = $t_{mult} + 2 \cdot t_{add}$

• Find forward cut-set

- Insert pipeline registers
 - I/O latency increases

• Calculate new critical path

Critical path = $t_{mult} + t_{add}$

High-Level Retiming

- Optimal placement of existing data-path registers
 - Register movement does not alter functionality
- **Objective:** balance t_{critical} for maximum throughput

• **Step 1:** move output register inside

- Output register splits into two input registers after the first step
 - Total number of registers increases

• Step 2: move internal register further inside

- Internal register splits into two input registers after the second step
 - Total number of registers increases

• Step 2+: continue moving internal registers until you reach input

- Each out/in split added an extra register
 - 4 filter stages: 3 additional registers

- Each out/in split added an extra register
 - 4 filter stages: 3 additional registers

High-Level Retiming

Number of registers increased, I/O latency unchanged

Pipelining vs. Retiming

• Pipelining

- Inserts registers into cut-sets
- I/O latency increases

• Retiming

- Moves existing registers
- I/O latency unchanged

Transposing FIR

- Reverse the direction of edges in a signal-flow graph
- Interchange the input and output ports
- Functionality unchanged

Transposed + Parallel FIR

FIR Summary

Main features:

- Easy to design, always stable
- Feed-forward: can be pipelined, parallelized
- Linear phase response

Realize narrow band, steep roll-off?

- FIR filters require large number of taps
- Area and power cost can make FIR unsuitable

Recursive (IIR) Filters

IIR Filters for Narrow Band, Steep Roll-Off

Infinite impulse response (IIR) filters are more suited to achieve such a frequency response with low area, power

Generalized IIR Transfer Function

Direct-Form IIR Architecture

$$H(z) = k \frac{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{N-1} z^{-(N-1)}}{1 - b_1 z^{-1} - b_2 z^{-2} - \dots - b_{M-1} z^{-(M-1)}}$$

IIR Architecture Optimization

Swap the order of execution

IIR Architecture Optimized

- *H*₁, *H*₂ can share the central register bank
 - If $M \neq N$, the central bank will have max(M,N) registers

Cascaded IIR

$$H(z) = k_1 \frac{1 + a_{11} z^{-1} + a_{21} z^{-2}}{1 - b_{11} z^{-1} - b_{21} z^{-2}} \dots k_p \frac{1 + a_{1p} z^{-1} + a_{2p} z^{-2}}{1 - b_{1p} z^{-1} - b_{2p} z^{-2}}$$

- Implement IIR as cascade of 2nd order sections
 - Shorter wordlengths in the feedback loop adders
 - More area and power efficient architecture

Recursive-Loop Bottlenecks

- Pipelining loops not possible
 - # registers in feedback loops must remain fixed

Changing the # delays in a loop alters functionality

High-Level Retiming of an IIR Filter

- IIR throughput is limited by the retiming in the feedback sections
- Optimal placement of registers in the loops leads to max speed

Unfolding: Constant Throughput

- Maximum throughput limited by iteration bound (IB)
- Unfolding does not help if IB is already achieved

IIR Summary

• Pros

- Suitable when filter response has sharp roll-off, has narrow-band, or large attenuation in the stop-band
- More area- and power-efficient compared to FIR

• Cons

- Difficult to ensure filter stability
- Sensitive to finite-precision arithmetic effects (limit cycles)
- Does not have linear phase response unlike FIR filters
- All-pass filters required if linear phase response desired
- Difficult to increase throughput
 - Pipelining not possible
 - Retiming and parallelism has limited benefits

Multi-Rate Filters

Multi-Rate Filters

- Data transfer between blocks at different sample rate
 - **Decimation:** higher rate f_{s1} to lower rate f_{s2}
 - Interpolation: lower rate f_{s2} to higher rate f_{s1}

\Rightarrow • For integer f_{s1}/f_{s2}

- Drop samples when decimating
 - Leads to aliasing in the original spectrum
- Stuff zeros when interpolating
 - Leads to images at multiples of f_{s2}

Decimation

• Frequency-domain representation

- Spectrum replicated at intervals of f_{s1} originally
- Spectrum replicated at intervals of f_{s2} after decimation
- Aliasing of spectrum lying beyond $B/W f_{s2}$ in original spectrum
- Decimation filters to remove content beyond f_{s2}

Decimation Filters

Low-pass filters used before decimation

- Usually FIR realization (IIR if linear phase is not necessary)
- Cascade integrated comb filter for hardware efficient realization
 - Much cheaper to implement than FIR or IIR realizations
 - Less attenuation, useful in heavily over-sampled systems

Interpolation

- Frequency domain representation
 - Spectrum spans bandwidth of f_{s2} originally
 - Spectrum spans bandwidth of f_{s1} after interpolation
 - Images of spectrum at intervals of f_{s2} after interpolation
- Interpolation filters to remove images at multiples of f_{s2}

Interpolation Filters

Low-pass filter used after interpolation

- Suppress spectrum images at multiples of f_{s2}
- Usually FIR realizations (IIR if linear phase not necessary)
- Cascade integrated comb filter for hardware efficient realization
 - Much cheaper to implement than FIR or IIR realizations
 - Less attenuation, useful for large interpolation factors (U)

Adaptive Filters: Equalization

Inter-Symbol Interference (ISI)

- Channel response causes delay spread in Tx symbols
- Adjacent symbols contribute at sampling instants

• ISI and adaptive noise modeling

$$r(t_0 + kT) = x_k h(t_0) + \sum_{j \neq k} x_j h(t_0 + kT - jT) + n(t_0 + kT)$$

Zero-Forcing Equalizer

- Basic equalization techniques
 - Zero-forcing (ZF)
 - Causes noise enhancement

- Adaptive equalization
 - Least-mean squares (LMS) algorithm
 - More robust

Adaptive Equalization

• Achieve minimum mean-square error (MMSE)

- Equalized signal: \mathbf{z}_k , transmitted signal: \mathbf{x}_k
- Error: $e_k = z_k x_k$
- **Objective:** Minimize expected error, min $E[e_k^2]$
- Equalizer coefficients at time instant $k: c_n(k), n \in \{0, 1, ..., N\}$
- For real optimality: set

$$\frac{\partial E[e_k^2]}{\partial c_n(k)} = 0$$

• Equalized signal *z_k* given by:

$$z_k = c_0 r_k + c_1 r_{k-1} + c_2 r_{k-2} + \dots + c_{n-1} r_{k-n+1}$$

• z_k is convolution of received signal r_k w/ tap coefficients

LMS Adaptive Equalization

Approximate Calculation of MMSE

- For computational optimality
 - Set: $\partial E[e_k^2]/\partial c_n(k) = 2e_kr_{k-n} = 0$
- Tap update equation: $e_k = z_k x_k$
- Step size: Δ
- Good approximation if using:
 - $c_n(k+1) = c_n(k) \Delta e_k r(k-n), n = 0, 1, ..., N-1$
 - Small step size
 - Large number of iterations
- Error-signal power comparison: $\sigma_{LMS}^2 \le \sigma_{ZF}^2$

Decision-Feedback Equalizers

Cancel the interference from previously detected symbols

Feed-forward equalizer

- Remove the pre-crs ISI
- FIR (linear)

Feedback equalizer

- Remove the post-crs ISI
- Like a ZF equalizer

 $\boldsymbol{b}_{m+1}(k+1) = \boldsymbol{b}_m(k) - \Delta \boldsymbol{e}_k \boldsymbol{d}_{k-m}$

DFE Architecture

Feedback equalizer: b₁, b₂, ..., b_M

DFE Properties

- Less noise enhancement compared with ZF or LMS
- More freedom in selecting feed-forward coefficients
 Feed-forward equalizer need not fully invert channel response
- Symbol decision may be incorrect
 - Error propagation (slight)

Fractionally-Spaced Equalizers

- Sampling at symbol period
 - Equalizes the aliased response
 - Sensitive to sampling phase
- Can over-sample (e.g. 2x higher rate)
 - Avoid spectral aliasing at the equalizer input
 - Sample the Rx input at higher rate (e.g. 2x faster)
 - Produce equalizer output signal at symbol rate
 - Can update coefficients at symbol rate
 - Less sensitive to sampling phase

$$c_n(k+1) = c_n(k) - \Delta e_k \cdot r(t_0 + kT - NT/2)$$

Equalizers Summary

- Use equalizers to reduce ISI and achieve high data rate
- Use adaptive equalizers to track time-varying channel
- LMS-based equalization prevails in MODEM design
- DFE uses previous decisions to estimate current symbol
- Fractionally spaced equalizers resilient to sampling phase variation
- Properly select step size for convergence

S. Qureshi, "Adaptive Equalization," Proceedings of the IEEE, vol. 73, no. 9, pp. 1349-1387, Sep. 1985.

Digital Filters Summary

- Digital filters are key building elements in DSP systems
- FIR filters can be realized in direct or transposed form
 - Direct form has long critical-path delay
 - Transposed form has large input loading
 - Multiplications can be simplified by using coefficients that can be derived as sum of power-of-two numbers
- Performance of IIR filters is limited by the longest loop delay (iteration bound)
 - IIR filters are suitable for sharp roll-off characteristics
 - More power and area efficient than FIR
- Multi-rate filters for decimation and interpolation