

Brief Intro to CGRAs

Prof. Dejan Marković

ee216a@gmail.com

Coarse-Grained Reconfigurable Array (CGRA)

Classification of CGRAs

Xputer [8] 1991 D SCSD SSE PADDI [9] 1992 I SCSD SSE PADDI [9] 1992 I SCMD DSD RAW [68] 1997 I MCMD DSD More like a multicore processor FipeRench [69] 1998 D SCMD SSE Wavescalar [62,70] 2003 I MCMD DSD PACT:XPP [13] 2003 I/C SCSD DSD PACT:XPP [13] 2004 I SCSD SSE PACT:XPP [13] 2004 I SCSD SSE ASH [57] 2004 D SCSD SSE TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Forpymorbr	Architecture	Year	Programming model*	Computation model	Execution model**	Specifications
PADD-12 [67] 1993 D SCMD DSD RAW [68] 1997 I MCMD DSD More like a multicore processor PipeRench [69] 1998 D SCMD SSE Morphosys [11] 2000 I SCMD SSE Marescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA PACT-XPP [13] 2003 I/C SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSD SSE TRIPS [12] 2004 I SCSD SSD Trans for any controller ASH [57] 2004 I MCMD DSD Dataflow-driven ISA TCCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [51] 2009	Xputer [8]	1991	D	SCSD	SSE	
RAW [68] 1997 I MCMD DSD More like a multicore processor PipeRench [69] 1998 D SCMD SSE Morphosys [11] 2000 I SCMD SSE Wavescalar [62,70] 2003 I MCMD DDD Dataflow-driven ISA PACT-XPP [13] 2003 I/C SCSD DSD DRP [26] 2004 I SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSE Null W controller ASH [57] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012	PADDI [9]	1992	I	SCSD	SSE	
PipeRench [69] 1998 D SCMD SSE Morphosys [11] 2000 I SCMD SSE Wavescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA PACT-XPP [13] 2003 I/C SCSD DSD Dataflow-driven ISA DRP [26] 2004 I SCSD SSE programmable FSM controller ASH [57] 2004 D SCSD SSE VLW controller ASH [57] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 I MCMD DSD Dataflow-driven ISA Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47]	PADDI-2 [67]	1993	D	SCMD	DSD	
Amorphosys [1] 2000 I SCMD SSE Wavescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA PACT-XPP [13] 2003 I/C SCSD DSD DRP [26] 2004 I SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSE VLIW controller ASH [57] 2004 D SCSD SSE Wull work of the interpretation interpretation interpretation interpretations Tartan [60] 2004 I MCMD DSD Dataflow-driven ISA TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE SSE C-Cores [73] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like	RAW [68]	1997	Ι	MCMD	DSD	More like a multicore processor
Wavescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA PACT-XPP [13] 2003 I/C SCSD DSD programmable FSM controller ADRES [10] 2004 I SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSE VLIW controller ASH [57] 2004 D SCSD SSD TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 I MCMD DSD Dataflow-driven ISA SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I	PipeRench [69]	1998	D	SCMD	SSE	
PACT-XPP [13] 2003 I/C SCSD DSD DRP [26] 2004 I SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSE VLIW controller ASH [57] 2004 D SCSD SSD TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted faconfigurability, ASIC-like	Morphosys [11]	2000	Ι	SCMD	SSE	
DRP [26] 2004 I SCSD SSE programmable FSM controller ADRES [10] 2004 I SCSD SSE VLIW controller ASH [57] 2004 D SCSD SSD TRPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 I MCMD DSD Asynchronous circuit Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted neconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted neconfigurability, ASIC-like <td>Wavescalar [62, 70]</td> <td>2003</td> <td>I</td> <td>MCMD</td> <td>DDD</td> <td>Dataflow-driven ISA</td>	Wavescalar [62, 70]	2003	I	MCMD	DDD	Dataflow-driven ISA
ADRE [10] 2004 I SCSD SSE VLW controller ASH [57] 2004 D SCSD SSD VLW controller ASH [57] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Dataflow-driven ISA TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE C-Cores [73] 2010 I SCSD SSE Triggered Inst. [61] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I/C MCMD DSD Trageted reconfigurability, ASIC-like DySER [47]	PACT-XPP [13]	2003	I/C	SCSD	DSD	-
ASH [57] 2004 D SCSD SSD D TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Asynchronous circuit TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TFlex [71] 2009 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSD Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I/C MCMD DSD Dataflow-driven ISA TS[74] 2013 I/C MCMD DSD	DRP [26]	2004	Ι	SCSD	SSE	programmable FSM controller
TRPS [12] 2004 I MCMD DSD Dataflow-driven ISA CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations Tartan [60] 2006 I MCMD DSD Asynchronous circuit TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I/C MCMD DSD Targeted reconfigurability, ASIC-like TS[74] 2013 I/C<	ADRES [10]	2004	Ι	SCSD	SSE	VLIW controller
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ASH [57]	2004	D	SCSD	SSD	
Tartan [60] 2006 I MCMD DSD Asynchronous circuit TFlex [71] 2007 I MCMD DSD Dataflow-driven ISA RICA [72] 2008 I SCSD SSE PPA [54] 2009 I SCSD SSE C-Cores [73] 2010 I SCSD SSE C-Cores [73] 2010 I SCSD SSE Triggered Inst. [61] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD T3 [74] 2014 I MCMD DSD Triggered Inst. [61] 2014 I MCMD DDD FPCA [76] 2014 I MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DSD Dataflow-driven ISA DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench </td <td>TRIPS [12]</td> <td>2004</td> <td>Ι</td> <td>MCMD</td> <td>DSD</td> <td>Dataflow-driven ISA</td>	TRIPS [12]	2004	Ι	MCMD	DSD	Dataflow-driven ISA
TFICE TOP Dot Dataflow-driven ISA RICA [72] 2008 I SCSD SSE PPA [54] 2009 I SCSD SSE PPA [54] 2009 D SCSD SSE C-Cores [73] 2010 I SCSD SSE C-Cores [73] 2010 I SCSD SSE Triggered Inst. [61] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD TFICA [76] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2016 I SCMD SSD Based on DySER HARTMP [78] 2016 DI SCD / SCMD SSD Based on DySER HRE [70] 2016 D/I	CCA [52]	2004	transparent	SCSD	SSE	Runtime-generated configurations
RiCA [72] 2008 I SCSD SSE Polymorphic configurations PPA [54] 2009 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSD SSD REMUS [30] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I CCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DSD Marcenthy MPA [77] 2015 ransparent SCMD SSD Based on PipeRench NDA [77] 2016	Tartan [60]	2006	I	MCMD	DSD	Asynchronous circuit
PPA [54] 2009 I SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Polymorphic configurations TCPA [50] 2009 D SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD Ts [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2016 I SCMD DSD DORA [51] 2016 DI SCSD <td>TFlex [71]</td> <td>2007</td> <td>Ι</td> <td>MCMD</td> <td>DSD</td> <td>Dataflow-driven ISA</td>	TFlex [71]	2007	Ι	MCMD	DSD	Dataflow-driven ISA
TCPA [50] 2009 D SCSD SSE Trageted reconfigurability, ASIC-like DySER [47] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSE REMUS [30] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD Based on DySER DORA [51] 2016 D/I SCSD SSE Process-in-memory, mix-grained HRL [79] 2016 D/I SCSD SSD General-purpose	RICA [72]	2008	I	SCSD	SSE	
C-Cores [73] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like DySER [47] 2012 I SCSD SSD REMUS [30] 2013 I SCSD SSE Triggered Inst. [01] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCMD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD Dataflow-driven ISA DORA [51] 2016 I SCMD SSD Based on PipeRench HRL [79] 2016 DA SCSD SSE Process-in-memory.mix-grained HRAC [16] 2017 I SCSD SSD General-purpose Plast	PPA [54]	2009	Ι	SCSD	SSE	Polymorphic configurations
DysR [47] 2012 I SCSD SSD REMUS [30] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD SSD Based on DySER HRL [79] 2016 D/I SCSD SSE Process-in-memory.mix-grained HReA [16] 2017 I SCSD SSD Based on DySER Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 <t< td=""><td>TCPA [50]</td><td>2009</td><td>D</td><td>SCSD</td><td>SSE</td><td></td></t<>	TCPA [50]	2009	D	SCSD	SSE	
REMUS [30] 2013 I SCSD SSE Triggered Inst. [61] 2013 I SCSD SSE Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD SSD Based on DySER DORA [51] 2016 D/I SCSD SSE Process-in-memory.mix-grained HRE [79] 2016 D/I SCSD SSE Process-in-memory.mix-grained HRAE [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming <	C-Cores [73]	2010	I	SCSD	SSE	Targeted reconfigurability, ASIC-like
Triggered Inst. [61] 2013 D MCMD DSD T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD SSD Based on DySER DORA [51] 2016 transparent SCSD SSE Process-in-memory.mix-grained HRL [79] 2016 D/I SCSD SSD Based on DySER Hasticine [19] 2017 I SCSD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD <td>DySER [47]</td> <td>2012</td> <td>I</td> <td>SCSD</td> <td>SSD</td> <td></td>	DySER [47]	2012	I	SCSD	SSD	
T3 [74] 2013 I/C MCMD DSD Dataflow-driven ISA SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD SSD Based on DySER DORA [51] 2016 transparent SCSD SSE Process-in-memory HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained HREA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCMD SSE Double-ALU/Reg. in each PE i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C <	REMUS [30]	2013	I	SCSD	SSE	
SGMF [75] 2014 I MCMD DDD FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD DORA [51] 2016 I SCMD DSD DORA [51] 2016 DI SCSD / SCMD SSD Based on DySER HRL [79] 2016 DI SCSD / SCMD SSD General-purpose Plasticine [19] 2017 I SCSD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE	Triggered Inst. [61]	2013	D	MCMD	DSD	
FPCA [76] 2014 I SCSD SSE DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD DORA [51] 2016 I SCMD DSD DORA [51] 2016 DI SCSD / SCMD SSD Based on DySER HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained HRA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - <td< td=""><td>T3 [74]</td><td>2013</td><td>I/C</td><td>MCMD</td><td>DSD</td><td>Dataflow-driven ISA</td></td<>	T3 [74]	2013	I/C	MCMD	DSD	Dataflow-driven ISA
DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD DORA [51] 2016 transparent SCSD / SCMD SSD Based on DySER HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained HRA [16] 2017 I SCSD SSD Based on DySER Plasticine [19] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 I SCSD DSD Vector memory interface CGRA-ME [s0] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSE ADRES-like PX-CGRA [81] 2018 - SCMD SSE Approximate PEs i-DPS CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL	SGMF [75]	2014	I	MCMD	DDD	
NDA [77] 2015 - SCSD SSE Process-in-memory HARTMP [78] 2016 I SCMD DSD DORA [51] 2016 transparent SCSD / SCMD SSD Based on DySER HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained HReA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCMD SSE Approximate PEs i-DPS CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cik & work stealing	FPCA [76]	2014	I	SCSD	SSE	
HARTMP [78] 2016 I SCMD DSD DORA [51] 2016 transparent SCSD / SCMD SSD Based on DySER HRL [79] 2016 D/I SCSD SSD Based on DySER HRA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSE Approximate PEs i-DPs CGRA [81] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cik & work stealing	DynaSPAM [53]	2015	transparent	SCMD	SSD	Based on PipeRench
DORA [51] 2016 transparent SCSD / SCMD SSD Based on DySER HRL [79] 2016 D/1 SCSD SSE Process-in-memory, mix-grained HReA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCMD SSE Double-ALU/Reg. in each PE i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cik & work stealing	NDA [77]	2015	-	SCSD	SSE	Process-in-memory
HRL [79] 2016 D/I SCSD SSE Process-in-memory, mix-grained HReA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Double-ALU/Reg. in each PE i-DPs CGRA [82] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	HARTMP [78]	2016	I	SCMD	DSD	
HRA [16] 2017 I SCSD SSD General-purpose Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Approximate PIs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	DORA [51]	2016	transparent	SCSD / SCMD	SSD	Based on DySER
Plasticine [19] 2017 D SCMD / MCMD SSD Parallel-pattern-based programming Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Approximate PEs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	HRL [79]	2016	D/I	SCSD	SSE	Process-in-memory, mix-grained
Stream-dataflow [20] 2017 I SCSD DSD Vector memory interface CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Approximate PEs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	HReA [16]	2017	I	SCSD	SSD	General-purpose
CGRA-ME [80] 2017 I SCSD SSE ADRES-like Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Approximate PEs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	Plasticine [19]	2017	D	SCMD / MCMD	SSD	Parallel-pattern-based programming
Wave DPU [18] 2017 I/C SCSD SSD Commercial product for DNN PX-CGRA [81] 2018 - SCSD SSE Approximate PEs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	Stream-dataflow [20]	2017	I	SCSD	DSD	Vector memory interface
PX-CGRA [81] 2018 - SCSD SSE Approximate PEs i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	CGRA-ME [80]	2017	I	SCSD	SSE	ADRES-like
i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	Wave DPU [18]	2017	I/C	SCSD	SSD	Commercial product for DNN
Parallel-XL [83] 2018 I/C SCMD/MCMD DDD Intel Cilk & work stealing	PX-CGRA [81]	2018	-	SCSD	SSE	Approximate PEs
	i-DPs CGRA [82]	2018	-	SCMD	SSE	Double-ALU/Reg. in each PE
dMT_CCRA [84] 2018 UC MCMD DDD Based on SCME	Parallel-XL [83]	2018	I/C	SCMD/MCMD	DDD	Intel Cilk & work stealing
unif-contrion 2010 inc memb DDD based on Some	dMT-CGRA [84]	2018	I/C	MCMD	DDD	Based on SGMF

^{*}I-imperative programming model, D-declarative programming model, C-parallel/concurrent (imperative) programming model, "*transparent*" means that CGRA-related programming is not required, "-" means that programming is not mentioned in that work.

Required model features

- Programming: I/C (Imperative, concurrent)
- Computation: MCMD (multi-config, multi-data)
- Execution: DDD (dynamic-scheduling, dynamic-dataflow)

Only recent designs have the desired features

- [83] is an FPGA prototype and simulations based
- [84] focuses on the narrow aspect of inter-thread communication (point-to-point), extensions to CUDA

Great need, many open challenges

- No efficient programming paradigm for CGRAs
- More complicated Hw than CPU due to 2D scheduling
- High-level abstraction provides coarse-grain parallelism, which is insufficient to fulfill the hardware potential
- Performance depends on applications; the need for application oriented extensions to the programming model
- Reconfig. speed down to pipeline level (10's of cycles)

L. Liu, et al., "A Survey of Coarse-Grained Reconfigurable Architecture and Design: Taxonomy, Challenges, and Applications," ACM Computing Surveys, Oct. 2019.

^{**}SSE-static-scheduling sequential-execution, SSD-static-scheduling static-dataflow-execution, DSD-dynamicscheduling static-dataflow-execution, DDD-dynamic-scheduling dynamic-dataflow-execution.

Partial FPGA Reconfig. Small-Size & Very Slow

• FPGA time to dynamic partial reconfigure depends on [1]:

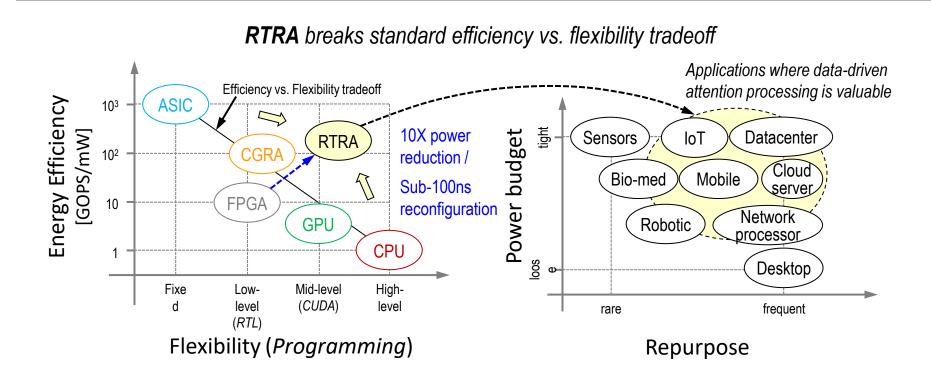
- The size of the config. bit-stream (BitStr_{size}) usually in KB
- The reconfig. path throughput (RP_{throughput}) usually in MB/s

$$T_{dyn-rec} = \frac{BitStr_{size}}{RP_{throughput}}$$

- Dynamic partial reconfiguration controllers go up to 400MB/s [2]
- Usually, a large number of Clk cycles is required for a small amount of logic
 - 130k Clk cycles to reconfigure 1.5k slices of logic [3] | 0.4ms @ 300MHz Clk

• An SDR pipeline on a Zynq FPGA uses 3.2k slices of logic, 4-region partition

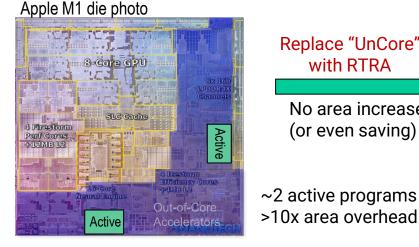
- Largest partial bit-stream size for a region is 324 KB [4]
- Worst execution time for dynamic partial reconfig. of this region is 1.08ms

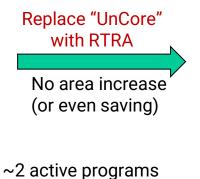

^[1] G. Valente et al., "Dynamic partial reconfiguration profitability for realtime systems," IEEE Embedded Systems Letters, pp. 1–1, 2020.

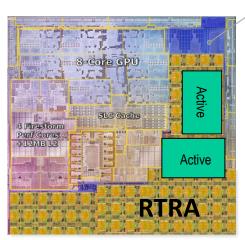
^[2] S. D. Carlo, P. Prinetto, P. Trotta, and J. Andersson, "A portable open-source controller for safe dynamic partial reconfiguration on Xilinx FPGAs," in Proc. of the 25th International Conference on Field Programmable Logic and Applications (FPL), 2015, pp. 1–4.

^[3] L. Pezzarossa, A. T. Kristensen, M. Schoeberl and J. Sparso, "Can real-time systems benefit from dynamic partial reconfiguration?," 2017 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), Linkoping, 2017, pp. 1-6, doi: 10.1109/NORCHIP.2017.8124984.

^[4] A. Kamaleldin et al., "A reconfigurable hardware platform implementation for software defined radio using dynamic partial reconfiguration on Xilinx Zynq FPGA," 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 1540-1543, doi: 10.1109/MWSCAS.2017.8053229.


Runtime Reconfig. for Data-Driven Processing




- Opportunistically repurpose unutilized processor arrays
 - Multi-step compilation (Sw + Hw) avoids complete program recompile
 - Requires array's network symmetry (for polygon translation/rotation/flip)
 - Support for Sw compilation from Python/C++ base

An Alternative to Accelerators?

- ~7% of *entire* SoC area is active, TSMC 45nm node [*]
- Depending on domain specialization, RTRA can be within 2x-10x in area and power vs accelerator
 - **Note:** system/platform power will not be 2-10x higher; much less (~30-50%)
 - e.g. iPad battery life with H.264 on CPU (3 hours) vs accelerator (10 hours), a 3x system impact with a 1,000x accelerator gain
- Feasible for new and/or evolving architectures, SDR, etc.

potentially saved area

~2 active programs Can accommodate more

Algorithm updates w/o chip respin

[*] G. Venkatesh, et al., ACM SIGARCH Computer Architecture News, Volume 38Issue 1 March 2010 pp 205–218 https://doi.org/10.1145/1735970.1736044