lecture

9 Brief Intro
to CGRAS

ECE M216A

Prof. Dejan Markovic
ee2l6a@gmail.com

Coarse-Grained Reconfigurable Array (CGRA)

Classification of CGRAs

Architecture Year Pmﬁ:‘g:;;l‘nng Cnr:;t;u;ea]hon E:::':du:;?." Specifications
Xputer [8] 1991 D SCSD SSE
PADDI [9] 1992 I SCSD SSE
PADDI-2 [67] 1993 D SCMD DSD
RAW [68] 1997 I MCMD DSD More like a multicore processor
PipeRench [69] 1998 D SCMD SSE
Morphosys [11] 2000 | SCMD SSE
Wavescalar [62, 70] 2003 I MCMD DDD Dataflow-driven ISA
PACT-XPP [13] 2003 Ic SCSD DSD
DRP [26] 2004 I SCSD SSE programmable FSM controller
ADRES [10] 2004 I SCSD SSE VLIW controller
ASH [57] 2004 D SCSD SSD
TRIPS [12] 2004 I MCMD DSD Dataflow-driven ISA
CCA [52] 2004 transparent SCSD SSE Runtime-generated configurations
Tartan [60] 2006 I MCMD DSD Asynchronous circuit
TFlex [71] 2007 | MCMD DSD Dataflow-driven ISA
RICA [72] 2008 I SCSD SSE
PPA [54] 2009 I SCSD SSE Polymorphic configurations
TCPA [50] 2009 D SCSD SSE
C-Cores [73] 2010 I SCSD SSE Targeted reconfigurability, ASIC-like
DySER [47] 2012 I SCSD SSD
REMUS [30] 2013 I SCsD SSE
Triggered Inst. [61] | 2013 D MCMD DSD
T3 [74] 2013 Ic MCMD DSD Dataflow-driven ISA
SGMF [75] 2014 1 MCMD DDD
FPCA [76] 2014 1 SCSD SSE
DynaSPAM [53] 2015 transparent SCMD SSD Based on PipeRench
NDA [77] 2015 SCSD SSE Process-in-memory
HARTMP [78] 2016 I SCMD DSD
DORA [51] 2016 transparent | SCSD / SCMD SSD Based on DySER
HRL [79] 2016 DI SCSD SSE Process-in-memory, mix-grained
HReA [16] 2017 I SCSD SSD | General-purpose
Plasticine [19] 2017 D SCMD /MCMD| SSD | Parallel-pattern-based programming
Stream-dataflow [20] [2017 1 SCSD DSD Vector memory interface
CGRA-ME [80] 2017 1 SCSD SSE ADRES-like
Wave DPU [18] 2017 vc SCSD SSD Commercial product for DNN
PX-CGRA [81] 2018 SCSD SSE Appraximate PEs
i-DPs CGRA [82] 2018 - SCMD SSE Double-ALU/Reg. in each PE
Parallel-XL [83] 2018 c SCMD/MCMD DDD Intel Cilk & work stealing
dMT-CGRA [84] 2018 Ic MCMD DDD Based on SGMF

*I-imperative programming model, D-declarative programming model, C-parallel/concurrent (imperative) program-

ming model, “transparent” means that CGRA-related programming is not required, “=’

mentioned in that work.

**SSE-static-scheduling sequential-execution, SSD-static-scheduling static-dataflow-execution, DSD-dynamic

scheduling static-dataflow-execution, DDD-dynamic-scheduling dynamic-dataflow-execution.

means that programming is not

Required model features

Programming: 1/C (Imperative, concurrent)
Computation: MCMD (multi-config, multi-data)
Execution: DDD (dynamic-scheduling, dynamic-dataflow)

Only recent designs have the desired features

[83] is an FPGA prototype and simulations based

[84] focuses on the narrow aspect of inter-thread
communication (point-to-point), extensions to CUDA

Great need, many open challenges

No efficient programming paradigm for CGRAs
More complicated Hw than CPU due to 2D scheduling

High-level abstraction provides coarse-grain parallelism,
which is insufficient to fulfill the hardware potential

Performance depends on applications; the need for
application oriented extensions to the programming model

Reconfig. speed down to pipeline level (10’s of cycles)

L. Liu, et al., “A Survey of Coarse-Grained Reconfigurable Architecture and Design:
Taxonomy, Challenges, and Applications,” ACM Computing Surveys, Oct. 2019,

19.2

Partial FPGA Reconfig. Small-Size & Very Slow

* FPGA time to dynamic partial reconfigure depends on [1]:

= The size of the config. bit-stream (BitStr,,.) — usually in KB
= The reconfig. path throughput (RPy, ouehpyue) — Usually in MB/s

BitStTSize

Td —
yn—rec
RPthroughput

e Dynamic partial reconfiguration controllers go up to 400MB/s [2]

e Usually, a large number of Clk cycles is required for a small amount of logic
= 130k Clk cycles to reconfigure 1.5k slices of logic [3] | 0.4ms @ 300MHz Clk

e An SDR pipeline on a Zynq FPGA uses 3.2k slices of logic, 4-region partition
= Largest partial bit-stream size for a region is 324 KB [4]
= Worst execution time for dynamic partial reconfig. of this region is 1.08ms

[1] G. Valente et al., “Dynamic partial reconfiguration profitability for realtime systems,” IEEE Embedded Systems Letters, pp. 1-1, 2020.

[2] S. D. Carlo, P. Prinetto, P. Trotta, and J. Andersson, “A portable open-source controller for safe dynamic partial reconfiguration on Xilinx FPGAs,” in Proc. of the 25th
International Conference on Field Programmable Logic and Applications (FPL), 2015, pp. 1-4.

[3] L. Pezzarossa, A. T. Kristensen, M. Schoeberl and J. Sparso, "Can real-time systems benefit from dynamic partial reconfiguration?,” 2017 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), Linkoping, 2017, pp. 1-6, doi: 10.1109/NORCHIP.2017.8124984.

[4] A. Kamaleldin et al., "A reconfigurable hardware platform implementation for software defined radio using dynamic partial reconfiguration on Xilinx Zynq FPGA," 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, 2017, pp. 1540-1543, doi: 10.1109/MWSCAS.2017.8053229.

19.3

Runtime Reconfig. for Data-Driven Processing

RTRA breaks standard efficiency vs. flexibility tradeoff

A Applications where data-driven
Efficiency vs. Flexibility tradeoff ~_ __omm====mmm T ——n attention processing is valuable
1 ASIC)/ e A *~~\ enfion processing
c = - .y
& E — reduction/ 20 1
Y T ’ '
w un P - B|o med '
- @\ | | Sub-100ns 3
a0 g R @PU reconfiguration &5
Z 3 obotic Processor
L0 1 CPU S .
: - 8 Desktop
Fixe Low- Mid-level High- >
d level (CUDA) level rare frequent
(RTL)
Flexibility (Programming) Repurpose

e Opportunistically repurpose unutilized processor arrays

= Multi-step compilation (Sw + Hw) avoids complete program recompile

= Requires array’s network symmetry (for polygon translation/rotation/flip)
= Support for Sw compilation from Python/C++ base

An Alternative to Accelerators?

e ~7% of entire SoC area is active, TSMC 45nm node [*]

e Depending on domain specialization, RTRA can be within 2x-10x
in area and power vs accelerator

= Note: system/platform power will not be 2-10x higher; much less (~¥30-50%)

* e.g. iPad battery life with H.264 on CPU (3 hours) vs accelerator (10 hours),
a 3x system impact with a 1,000x accelerator gain

* Feasible for new and/or evolving architectures, SDR, etc.

potentially saved area

Replace “UnCore”

with RTRA | ~2 active programs

8/ Can accommodate more

No area increase

(or even saving) Algorithm updates w/o

chip respin

~2 active programs
>10x area overhead

[*] G. Venkatesh, et al., ACM SIGARCH Computer Architecture News, Volume 38lssue 1 March 2010 pp 205-218

1.5

https://doi.org/10.1145/1735970.1736044

	Slide 1: Brief Intro to CGRAs
	Slide 2: Coarse-Grained Reconfigurable Array (CGRA)
	Slide 3: Partial FPGA Reconfig. Small-Size & Very Slow
	Slide 4: Runtime Reconfig. for Data-Driven Processing
	Slide 5: An Alternative to Accelerators?

