

Data-Flow Graph Model

Prof. Dejan Marković ee216b@gmail.com

Agenda

- DFG modeling
- Architecture transformations
 - Retiming example
- Optimization methods
 - Scheduling
 - Retiming

Iteration

- Iterative nature of DSP algorithms
 - Executes a set of operations in a defined sequence
 - One round of these operations constitutes an iteration
 - Algorithm output computed from result of these operations
- Graphical representations of iterations [1]
 - Block diagram (BD)
 - Signal-flow graph (SFG)
 - Data-flow graph (DFG)
 - Dependence graph (DG)
- Example: 3-tap filter iteration
 - $y(n) = a \cdot x(n) + b \cdot x(n-1) + c \cdot x(n-2), \quad n = \{0, 1, ..., \infty\}$
 - Iteration: 3 multipliers, 2 adders, 1 output y(n)

[1] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons Inc., 1999.

Block Diagram Representation

• Block diagram of 3-tap FIR filter

Signal-Flow Graph Representation

- Network of nodes and edges
 - Edges are signal flows or paths with non-negative # of regs
 - Linear transforms, multiplications or registers shown on edges
 - Nodes represent computations, sources, sinks
 - Adds (> 1 input), sources (no input), sinks (no output)

constant multiplication (a) or register (z⁻¹) on edges

3-tap FIR filter signal-flow graph

source node: x(n)
sink node: y(n)

Transposition of a SFG

- Transposed SFG functionally equivalent
 - Reverse direction of signal flow edges
 - Exchange input and output nodes
- Commonly used to reduce critical path in design

Different Representations

Block Diagram (BD)

- Close to hardware
- Computations, delays shown through blocks
- Signal-flow Graph (SFG)
 - Multiplications, delays shown on edges
 - Source, sink, add are nodes
- Data-flow Graph (DFG)
 - Computations on nodes A, B
 - (delays) shown on edges
 - Computation time in brackets next to the nodes

Data-Flow Graphs

Graphical representation of signal flow in an algorithm

Formal Definition of DFGs

A directed DFG is denoted as G = <V, E, d, w>

- V Set of vertices (nodes) of **G**. The vertices represent operations.
- **d** Vector of logic delay of vertices. **d(v)** is the logic delay of vertex **v**.
- ESet of directed edges of G. A directededge e from vertex u to vertex v isdenoted as $e:u \rightarrow v$.
- w(e) Number of sequential delays (registers) on the edge e, also referred to as the weight of the edge.
- $p:u \rightarrow v$ Path starting from vertex u, ending in vertex v.
- **D** Denotes **register** on an edge.

 e_1 : Intra-iteration edge e_3 : Inter-iteration edge $w(e_1) = 0, w(e_3) = 1$

Example 11.1: DFGs for a 3-tap FIR Filter

Matrix Representation

 $x_1(n)$

 $x_2(n)$

DFG matrix A, dimension |V|×|E|

- a_{ii} = 1, if edge e_i starts from node v_i
- a_{ii} = −1, if edge e_i ends in node v_i
- a_{ii} = 0, if edge e_i neither starts, nor ends in node v_i

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, University of California, Los Angeles, June 2008.

Matrix Representation

Weight vector w

- dimension |E|×|1|
- w_j = w(e_j), weight of edge e_j
- Pipeline vector du
 - dimension |E|×|1|
 - du_j = pipeline depth of source node u of edge e_i

Data-flow graph G

Vector du

Simulink DFG Modeling

Synplify DSP block library

- Drag-and-drop Simulink flow
- Allows easy modeling
- Predefined libraries contain DSP macros
 - Xilinx XSG
 - Synplify DSP
- Simulink goes a step beyond modeling macros
 - Functional simulation of complex systems possible
 - On-the-fly RTL generation through Synplify DSP

DFG Example

- QAM modulation and demodulation
- Combination of Simulink and Synplify DSP blocks

Summary

• Graphical representations of DSP algorithms

- Block diagrams
- Signal-flow graphs
- Data-flow graphs
- Matrix abstraction of data-flow graph properties
 - Useful for modeling architectural transformations
- Simulink DSP modeling
 - Construction of block diagrams in Simulink
 - Functional simulation, RTL generation
 - Data-flow property extraction

Architecture Transformations

DFG Realizations

• DFGs can be realized with several architectures

- Change graph structure without changing functionality
- Observe transformations in energy-area-delay space

• DFG Transformations

- Retiming
- Pipelining
- Time-multiplexing/folding
- Parallelism

Scheduling & retiming

• Choice of the architecture

Dictated by system specifications

Retiming [1]

- Registers in a flow graph can be moved across edges
- Movement should not alter DFG functionality

• Benefits

- Higher speed
- Lower power through V_{DD} scaling
- Not very significant area increase
- Efficient automation using polynomial-time CAD algorithms [2]
- [1] C. Leiserson and J. Saxe, "Optimizing synchronous circuitry using retiming," Algorithmica, vol. 2, no. 3, pp. 211–216, 1991.
- [2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, University of California, Los Angeles, 2008.

Retiming

• Register movement in the flow graph without functional change

Retiming for Higher Throughput

Register movement can shorten the critical path of the circuit

Critical path reduced from 3 time units to 2 time units

Retiming for Lower Power

Desired throughput: 1/3

Exploit additional combinational slack for voltage scaling

Retiming Cut-sets

- Make cut-sets which divide the DFG in two disconnected halves
 - Add K delays to each edge from G₁ to G₂
 - Remove K delays from each edge from G₂ to G₁

Mathematical Modeling [2]

- Assign retiming weight r(v) to every node in the DFG
- Define edge-weight w(e) = number of registers on the edge
- Retiming changes w(e) into w_r(e), the retimed weight

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, University of California, Los Angeles, 2008.

Path Retiming

- # of registers inserted in a path $p: v_1 \rightarrow v_2$ given by $r(v_2) r(v_1)$
 - If r(v₂) r(v₁) > 0, registers added to the path
 - If r(v₂) r(v₁) < 0, registers removed from the path</p>

 $w_r(p) = w(p) + r(4) - r(1) = 4 - 1$ (one register removed from path p)

Optimization Methods: Scheduling & Retiming

Mathematical Modeling

- Feasible retiming solution for $r(v_i)$ must ensure
 - Non-negative edge weights w_r(e)
 - Integer values of r(v) and w_r(e)

Feasibility constraints

$$w_r(e_1) = w(e_1) + r(2) - r(1) \ge 0$$

$$w_r(e_2) = w(e_2) + r(3) - r(2) \ge 0$$

$$w_r(e_3) = w(e_3) + r(4) - r(2) \ge 0$$

$$w_r(e_4) = w(e_4) + r(1) - r(3) \ge 0$$

$$w_r(e_5) = w(e_5) + r(1) - r(4) \ge 0$$

Integer solutions to feasibility constraints constitute a retiming solution

Retiming with Timing Constraints

- Find retiming solution which guarantees critical path in DFG $\leq T$
 - Paths with logic delay > T must have at least one register
- Define
 - W(u,v): minimum number of registers over all paths b/w nodes u and v, min {w(p) | p : u → v}
 - If no path exists between the vertices, then W(u,v) = 0
 - Ld(u,v): maximum logic delay over all paths b/w nodes u and v
 - If no path exists between vertices u and v then Ld(u,v) = −1
- Constraints
 - Non-negative weights for all edges, $W_r(v_i, v_j) \ge 0, \forall i, j$
 - Look for nodes (u,v) with Ld(u,v) > T
 - Define inequality constraint $W_r(u,v) \ge 1$ for such nodes

Leiserson-Saxe Algorithm [1]

Algorithm for feasible retiming solution with timing constraints

```
A lg orithm \{r(v_i), flag\} \leftarrow \text{Retime}(G, d, T)
k \leftarrow 1
for u = 1 to |V|
    for v = 1 to |V| do
          if Ld(u,v) > T then
             Define inequality I_k: W(u,v) + r(v) - r(u) \ge 1
          else if Ld(u,v) > -1 then
             Define inequality I_k: W(u,v) + r(v) - r(u) \ge 0
          endif
          k \leftarrow k+1
     endfor
endfor
```

- [1] C. Leiserson and J. Saxe, "Optimizing synchronous circuitry using retiming," *Algorithmica*, vol. 2, no. 3, pp. 211-216, 1991.
 [2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S.
 - Thesis, University of California, Los Angeles, 2008.

Use Bellman-Ford algorithm to solve the inequalities I_k [2]

Retiming with Timing Constraints

Feasibility + Timing constraints T = 2 time units

$$W(1,2) + r(2) - r(1) \ge 0, W(1,2) = 1$$

$$W(2,1) + r(1) - r(2) \ge 1, W(2,1) = 1$$

$$W(4,2) + r(2) - r(4) \ge 1, W(4,2) = 1$$

$$W(2,4) + r(4) - r(2) \ge 1, W(2,4) = 3$$

$$W(4,1) + r(1) - r(4) \ge 1, W(4,1) = 0$$

$$W(1,4) + r(4) - r(1) \ge 1, W(1,4) = 4$$

$$W(3,1) + r(1) - r(3) \ge 1, W(3,1) = 0$$

$$W(1,3) + r(3) - r(1) \ge 1, W(1,3) = 2$$

$$W(4,3) + r(3) - r(4) \ge 1, W(4,3) = 2$$

$$W(4,3) + r(3) - r(2) \ge 1, W(3,4) = 4$$

$$W(2,3) + r(3) - r(2) \ge 1, W(2,3) = 1$$

$$W(3,2) + r(2) - r(3) \ge 1, W(3,2) = 1$$

Integer solutions to these constraints constitute a retiming solution

Pipelining

Special case of retiming

- Small functional change with additional I/O latency
- Insert K delays at cut-sets, all cut-set edges uni-directional
- Exploits additional latency to minimize critical path

Modeling Pipelining

- Same model as retiming with timing constraints
- Additional constraints to limit the added I/O latency
 - Latency inserted b/w input node v₁ and output node v₂ is given by difference between retiming weights, r(v₂) - r(v₁)

(logic delay) of the nodes

Recursive-Loop Bottlenecks

- Pipelining loops not possible
 - # registers in feedback loops must remain fixed

Changing the # delays in a loop alters functionality

Iteration Bound = Max{Loop Bound}

- Loops limit the maximum achievable throughput
 - Achieved when registers in a loop balance the logic $\frac{1}{f_{max}} = \max_{\text{all loops}} \left\{ \frac{\text{Combinational delay of loop}}{\text{Number of registers in loop}} \right\}$ delay 1 $= \max \left\{ \right\}$ Loop bound **3D** Loop $L_1: 2 \rightarrow 4 \rightarrow 1$ 2 $\operatorname{Loop} L_2: 3 \rightarrow 1 \rightarrow 2$ x(n) - **a** Δ Loop bound $L_1 = \frac{4}{4} = 1$ L_2 Loop bound $L_2 = \frac{4}{2} = 2$ **IB = 2 time units**

Fine-Grain Pipelining

- Achieving the iteration bound
 - Requires finer level of granularity of operations

Gate-level granularity can be achieved during logic synthesis

Parallelism

- Unfolding of the operations in a flow-graph
 - Parallelizes the flow-graph
 - Higher speed, lower power via V_{DD} scaling
 - Larger area
- Describes multiple iterations of the DFG signal flow
 - Symbolize the multiple number of iterations by P
 - Unfolded DFG constructed from the following P equations: y_i = y(Pm + i), i ∈ {0, 1, ..., P − 1}
 - DFG takes the inputs x(Pm), x(Pm + 1), ..., x(Pm + P 1)
 - Outputs are y(Pm), y(Pm + 1), ..., y(Pm + P 1)

[2]

 ^[2] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons Inc., 1999.

Unfolding

To construct P-unfolded DFG

- Draw P copies of all the nodes in the original DFG
- The P input nodes take in values x(Pm), ..., x(Pm + P 1)
- Connect the nodes based on precedence constraints of DFG
- Each delay in unfolded DFG is **P-slow**
- Tap outputs x(Pm), ..., x(Pm + P 1) from the P output nodes

Original

Unfolded with **P** = 2

Unfolding IIR for Constant Throughput

- Maximum throughput limited by iteration bound (IB)
- Unfolding does not help if IB is already achieved

Unfolding FIR for Higher Throughput

Introduction to Scheduling

• Dictionary definition

- The coordination of multiple related tasks into a time sequence
- To solve the problem of satisfying time and resource constraints between a number of tasks

Data-flow-graph scheduling

- Data-flow-graph iteration
 - Execute all operations in a sequence
 - Sequence defined by the signal flow in the graph
- One iteration has a finite time of execution T_{iter}
- Constraints on T_{iter} given by throughput requirement
- If required *T_{iter}* is long
 - *T_{iter}* can be split into several smaller clock cycles
 - Operations can be executed in these cycles
 - Operations executing in different cycles can share hardware

Area-Throughput Tradeoff

- Scheduling provides a means to tradeoff throughput for area
 - If T_{iter} = T_{clk} all operations required dedicated hardware units
 - If T_{iter} = N·T_{clk}, N > 1, operations can share hardware units

Schedule Assignment

- Available: hardware units H and N clock cycles for execution
 - For each operation, schedule table records
 - Assignment of hardware unit for execution, H(v_i)
 - Assignment of time of execution, p(v_i)

Schedule Table

Schedule	Add 1	Mult 1	Mult 2
Cycle 1	х	v ₁	<i>v</i> ₂
Cycle 2	V ₃	x	х
Cycle 3	Х	X	v ₄

$$H(v_1) = Multiplier 1$$

$$H(v_2) = Multiplier 2$$

$$H(v_3) = Adder 1$$

$$H(v_4) = Multiplier 1$$

$$p(v_1) = 1$$

 $p(v_2) = 1$
 $p(v_3) = 2$
 $p(v_4) = 3$

Problem Statement

- Given a data-flow graph G, T_{iter} and T_{clk}
 - Find a schedule assignment H(v_i), p(v_i) which:
 - Executes all DFG operations in N clock cycles
 - Sequence of execution should not alter DFG functionality
 - Minimizes the area **A** of the hardware resources required for execution

 $\min A = N_a \cdot Area_{adder} + N_m \cdot Area_{multiplier}$

Schedule	Add 1	Mult 1	Mult 2	
Cycle 1	х	<i>v</i> ₁	<i>V</i> ₂	
Cycle 2	V ₃	х	х	
Cycle 3	х	х	V ₄	

Number of adders: N_a Number of multipliers: N_m

> v_1 , v_2 , v_3 executed in N = 3 cycles

 $A = 1 \cdot Area_{adder} + 2 \cdot Area_{multiplier}$

ASAP: As Soon As Possible Scheduling [4]

Algorithm $\{H(v_i), p(v_i)\} \leftarrow ASAP(G)$

$$\begin{split} u &\leftarrow v_i \qquad // v_i \text{ is any "ready" operation, operation is "ready"} \\ // if all its preceding operations have been scheduled \\ q_i &\in V \leftarrow \text{operations immediately preceding } u \\ e_i &\leftarrow \text{operation of } q_i \text{ ends in this cycle} \\ S_{\min} &\leftarrow \text{first available cycle for execution of } u = \max\{e_i + 1\} \\ S &\leftarrow \text{first available cycle} \geq S_{\min} \text{ with} \\ available hardware resource } H_i \\ H(u) &\leftarrow H_i \\ p(u) &\leftarrow S \end{split}$$

[4] C. Tseng and
D.P. Siewiorek,
"Automated
synthesis of
datapaths in
digital systems," *IEEE Trans. Computer-Aided Design*, vol. CAD5, no. 3, pp. 379395, July 1986.

- Schedules the operations top-down from input to output nodes
- Available hardware resource units specified by the user
- Operation scheduled in the first available cycle

Example 11.2a: ASAP Scheduling

Graph G

 $x_1(n)$

 $x_2(n)$

V₂

Assumptions:

- $T_{iter} = 4 \cdot T_{clk}$, N = 4
- Multiplier pipeline: 1
- Adder pipeline: 1
- Available hardware
 - 1 multiplier *M*₁
 - 1 adder A₁

ASAP scheduling steps

Sched.	u	q	е	S _{min}	S	p(u)	H(u)
Step 1	<i>v</i> ₁	null	0	1	1	1	<i>M</i> ₁
Step 2	V ₂	null	0	1	2	2	<i>M</i> ₁
Step 3	V ₃	<i>v</i> ₁ , <i>v</i> ₂	1	3	3	3	<i>A</i> ₁
Step 4	<i>V</i> ₄	V ₃	3	4	4	4	<i>M</i> ₁

(n)

Example 11.2b: ASAP Scheduling

• Schedules "ready" operations in the first cycle with available resource

Graph G

Schedule Table					
Schedule	<i>M</i> ₁	A ₁			
Cycle 1	<i>v</i> ₁	х			
Cycle 2	<i>v</i> ₂	x			
Cycle 3	x	<i>V</i> ₃			
Cycle 4	<i>V</i> ₄	x			

Final ASAP schedule

Scheduling Algorithms

More heuristics

- Heuristics vary in their selection of next operation to scheduled
- This selection strongly determines the quality of the schedule
- ALAP: As Late As Possible scheduling
 - Similar to ASAP except operations scheduled from output to input
 - Operation "ready" if all its succeeding operations scheduled
- ASAP, ALAP do not give preference to timing-critical operations
 - Can result in timing violations for fixed set of resources
 - More resource/area required to meet the T_{iter} timing constraint

List scheduling

- Selects the next operation to be scheduled from a list
- The list orders the operations according to timing criticality

List Scheduling

- Assign precedence height $P_H(v_i)$ to each operation
 - P_H(v_i) = length of longest combinational path rooted by v_i
 - Schedule operations in descending order of precedence height

 [5] S. Davidson *et. al.*, "Some experiments in local microcode compaction for horizontal machines," *IEEE Trans. Computers*, vol. C-30, no. 7, pp. 460-477, July 1981.

[5]

Comparing Scheduling Heuristics: ASAP

$$T_{iter} = 5 \cdot T_{clk}, N = 5$$

Pipeline depth

- Multiplier: 2
- Adder: 1

Available hardware

- 2 mult: *M*₁, *M*₂
- 1 add: A₁
- ASAP schedule infeasible, more resources required to satisfy timing

Comparing Scheduling Heuristics: LIST

$$T_{iter} = 5 \cdot T_{clk}, N = 5$$

Pipeline depth

- Multiplier: 2
- Adder: 1

Available hardware

- 2 mult: *M*₁, *M*₂
- 1 add: A₁
- LIST scheduling feasible, with 1 adder and 2 multipliers in 5 time steps

Inter-Iteration Edges: Timing Constraints

- Edge $e: v_1 \rightarrow v_2$ with zero delay forces precedence constraints
 - Result of operation v_1 is input to operation v_2 in an iteration
 - Execution of v_1 must precede the execution of v_2
- Edge $e: v_1 \rightarrow v_2$ with delays represent relaxed timing constraints
 - If *R* delays present on edge *e*
 - Output of v_1 in I^{th} iteration is input to v_2 in $(I + R)^{\text{th}}$ iteration
 - v_1 not constrained to execute before v_2 in the I^{th} iteration
- Delay insertion after scheduling
 - Use folding equations to compute the number of delays/registers to be inserted on the edges after scheduling

Inter-Iteration Edges

 v_6 is not constrained to execute after v_5 in an iteration

Folding

- Maintain precedence constraints and functionality of DFG
 - Route signals to hardware units at the correct time instances
 - Insert the correct number of registers on edges after scheduling

Original Edge

Scheduled Edge

Compute value of **f** which maintains precedence

Folding Equation

- Number of registers on edges after folding depends on
 - Original number of delays w, pipeline depth of source node
 - Relative time difference between execution of v_1 and v_2

$$f = N \cdot w - d(v_1) + p(v_2) - p(v_1)$$

Example 11.3: Scheduling

• Edge scheduled using folding equations

$$x(n) \longrightarrow v_1 \longrightarrow v_2 \xrightarrow{2D} y(n)$$

Π

(a) Original edge

- Folding factor (N) = 2
- Pipeline depth

$$x(n) \rightarrow \underbrace{v_1}_{e_1} \xrightarrow{e_1} \underbrace{v_2}_{e_2} \xrightarrow{e_1} y(n)$$

• $d(v_1) = 2$

(b) Retimed edge

- $d(v_2) = 2$ $f = N \cdot w d(v_1) + p(v_2) p(v_1)$ $f = 2 \cdot 1 2 + 2 1 = 1$
- Schedule
 - $p(v_1) = 1$
 - $p(v_2) = 2$

(c) Retimed edge after scheduling

Efficient Retiming & Scheduling

- Retiming with scheduling
 - Additional degree of freedom associated with register movement results in less area or higher throughput schedules
- Challenge: Retiming with scheduling
 - Time complexity increases if retiming done with scheduling
- Approach: Low-complexity retiming solution
 - Pre-process data flow graph (DFG) prior to scheduling
 - Retiming algorithm converges quickly (polynomial time)
 - Time-multiplexed DSP designs can achieve faster throughput
 - Min-period retiming can result in reduced area as well
- Result: Performance improvement
 - An order of magnitude reduction in the worst-case timecomplexity
 - Near-optimal solutions in most cases

Results: Area and Runtime

DSP Design	Ν	Scheduling (no retiming)		Scheduling (ILP) w/ BF retiming		Scheduling with pre-processed retiming	
		Area	CPU(s)	Area	CPU(s)	Area	CPU(s)
Wave filter	16	NA	NA	8	264	14	0.39
	17	13	0.20	7	777	8	0.73
Lattice filter	2	NA	NA	41	0.26	41	0.20
	4	NA	NA	23	0.30	23	0.28
8-point DCT	3	NA	NA	41	0.26	41	0.21
	4	NA	NA	28	0.40	28	0.39

NA – scheduling infeasible without retiming

Near-optimal solutions, significantly reduced runtime

Scheduling Comparison

- Scheduling with pre-retiming outperforms scheduling
 - Retiming before scheduling enables higher throughput
 - Lower power with V_{DD} scaling for same speed

Summary

- DFG automation algorithms
 - Retiming, pipelining
 - Scheduling
- Simulink-based design optimization flow
 - Parameterized architectural transformations
 - Optimized architecture available in Simulink
- Energy, area, performance tradeoffs with
 - Architectural optimizations
 - Carry-save arithmetic
 - Voltage scaling