
Data-Flow Graph 
Model

Prof. Dejan Marković
ee216b@gmail.com

ECE 216B



D. Markovic  /  Slide 2

Agenda

• DFG modeling

• Architecture transformations

▪ Retiming example

• Optimization methods

▪ Scheduling

▪ Retiming

11.2



D. Markovic  /  Slide 3

Iteration 

• Iterative nature of DSP algorithms

▪ Executes a set of operations in a defined sequence 

▪ One round of these operations constitutes an iteration

▪ Algorithm output computed from result of these operations

• Graphical representations of iterations [1]

▪ Block diagram (BD)

▪ Signal-flow graph (SFG)

▪ Data-flow graph (DFG)

▪ Dependence graph (DG)

• Example: 3-tap filter iteration

▪ y(n) = a·x(n) + b·x(n−1) + c·x(n−2),      n = {0, 1, …, ∞}

▪ Iteration: 3 multipliers, 2 adders, 1 output y(n)

[1] K.K. Parhi, VLSI Digital Signal Processing 
Systems: Design and Implementation, John 
Wiley & Sons Inc., 1999. 

11.3



D. Markovic  /  Slide 4

Block Diagram Representation 

mult add delay/reg

y(n) = a·x(n) + b·x(n−1) + c·x(n−2),      n = {0, 1, …, ∞}

x(n)

a b c

y(n)

• Block diagram of 3-tap FIR filter

+ z−1

z−1 z−1

++

11.4



D. Markovic  /  Slide 5

Signal-Flow Graph Representation 

constant multiplication (a)
or register (z−1) on edges

edge

j k

• Network of nodes and edges

▪ Edges are signal flows or paths with non-negative # of regs
• Linear transforms, multiplications or registers shown on edges  

▪ Nodes represent computations, sources, sinks
• Adds (> 1 input), sources (no input), sinks (no output)

a / z−1

3-tap FIR filter signal-flow graph 
z−1 z−1

a b c

y(n)

x(n)

source node: x(n)
sink node: y(n)

11.5



D. Markovic  /  Slide 6

• Transposed SFG functionally equivalent

▪ Reverse direction of signal flow edges  

▪ Exchange input and output nodes

• Commonly used to reduce critical path in design

z−1 z−1

a b c

y(n)

x(n)

Transposition of a SFG

z−1 z−1

a b c

x(n)

y(n)

Original SFG

Transposed SFG

tcrit = 2tadd + tmult

tcrit = tadd + tmult

11.6



D. Markovic  /  Slide 7

Different Representations

z−1
a

y(n)x(n)

SFG

x(n) y(n)

a
BD

A

B

(1)

(2)

x(n) y(n)

DFG

• Block Diagram (BD)

▪ Close to hardware

▪ Computations, delays shown 
through blocks

• Signal-flow Graph (SFG)

▪ Multiplications, delays shown 
on edges

▪ Source, sink, add are nodes

• Data-flow Graph (DFG)

▪ Computations on nodes A, B

▪ (delays) shown on edges

▪ Computation time in brackets 
next to the nodes

D

+

z−1

+

11.7



D. Markovic  /  Slide 8

Data-Flow Graphs

Graphical representation of signal flow in an algorithm

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3 Z-1 D

Nodes (vi) → operations
(+/−/×/÷)

Registers → Delay (D)

Node-to-node 
communication,

edges (ei)

Iterative input

Iterative output

Registered edge,
edge-weight = # of regs

Edges define  
precedence constraints

b/w operations

+

z−1

11.8



D. Markovic  /  Slide 9

Formal Definition of DFGs 

V Set of vertices (nodes) of G. The vertices 
represent operations. 

d Vector of logic delay of vertices. d(v) is 
the logic delay of vertex v.

E Set of directed edges of G. A directed 
edge e from vertex u to vertex v is 
denoted as e:u → v. 

w(e) Number of sequential delays (registers) 
on the edge e, also referred to as the 
weight of the edge.

p:u→ v Path starting from vertex u, ending in 
vertex v.

D Denotes register on an edge.  

e1 : Intra-iteration edge
e3 : Inter-iteration edge

w(e1) = 0, w(e3) = 1

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

A directed DFG is denoted as G = <V, E, d, w>

11.9



D. Markovic  /  Slide 10

Example 11.1: DFGs for a 3-tap FIR Filter

Direct form

Transposed form

x(n)

v1

y(n)

v2 v3
(2) (2) (2)

v4 (1) (1)v5

D D

x(n)

v3

y(n)

v2 v1
(2) (2) (2)

v4 (1) (1)v5

D D

++

++

11.10

(logic delay) 
of the nodes



D. Markovic  /  Slide 11

Matrix Representation 

• DFG matrix A, dimension |V|×|E|

▪ aij = 1, if edge ej starts from node vi

▪ aij = −1, if edge ej ends in node vi

▪ aij = 0, if edge ej neither starts, nor 
ends in node vi



1 0 0

0 1 0

1 1 1

0 0 1



















Matrix A for graph G Data-flow graph G

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
University of California, Los Angeles, June 2008.

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+e d g e s

n
 o

 d
 e

 s

11.11



D. Markovic  /  Slide 12

Matrix Representation 

• Weight vector w

▪ dimension |E|×|1|

▪ wj = w(ej), weight of edge ej

• Pipeline vector du

▪ dimension |E|×|1|

▪ duj = pipeline depth of source 
node u of edge ej



0

0

1

















Vector w Data-flow graph G



0

0

1

















Vector du

w(e1) = 0
w(e2) = 0
w(e3) = 1

x1(n) x2(n)

y(n)

v1 v2

v3

v4

e1 e2

e3

Z-1

D

+

11.12



D. Markovic  /  Slide 13

Simulink DFG Modeling

• Drag-and-drop Simulink flow

• Allows easy modeling

• Predefined libraries contain 
DSP macros

▪ Xilinx XSG

▪ Synplify DSP

• Simulink goes a step beyond 
modeling macros

▪ Functional simulation of 
complex systems possible

▪ On-the-fly RTL generation 
through Synplify DSPSynplify DSP block library

11.13



D. Markovic  /  Slide 14

DFG Example

• QAM modulation and demodulation

• Combination of Simulink and Synplify DSP blocks

11.14



D. Markovic  /  Slide 15

Summary

• Graphical representations of DSP algorithms

▪ Block diagrams

▪ Signal-flow graphs

▪ Data-flow graphs

• Matrix abstraction of data-flow graph properties

▪ Useful for modeling architectural transformations

• Simulink DSP modeling

▪ Construction of block diagrams in Simulink

▪ Functional simulation, RTL generation

▪ Data-flow property extraction

11.15



Architecture 
Transformations



D. Markovic  /  Slide 17

DFG Realizations

• DFGs can be realized with several architectures
▪ Change graph structure without changing functionality

▪ Observe transformations in energy-area-delay space

• DFG Transformations
▪ Retiming

▪ Pipelining

▪ Time-multiplexing/folding

▪ Parallelism

• Choice of the architecture 
▪ Dictated by system specifications

Scheduling 
& retiming

11.17



D. Markovic  /  Slide 18

Retiming

• Registers in a flow graph can be moved across edges

• Movement should not alter DFG functionality

• Benefits 
▪ Higher speed

▪ Lower power through VDD scaling

▪ Not very significant area increase

▪ Efficient automation using polynomial-time CAD algorithms [2]

[1] C. Leiserson and J. Saxe, "Optimizing synchronous circuitry using retiming,“ Algorithmica, vol. 2, 
no. 3, pp. 211–216, 1991. 

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
University of California, Los Angeles, 2008.

[1]

11.18



D. Markovic  /  Slide 19

Retiming

• Register movement in the flow graph without functional change 

w(n) = a∙y(n − 1) + b∙y(n − 3)
y(n)  = x(n) + w(n − 1)
y(n)  = x(n) + a∙y(n − 2) + b∙y(n − 4)

x(n)

y(n)

D

3D

D

w(n − 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D*Retiming 
moves

RetimedOriginal

×

+

×

+

×

+

×

+

v(n) = a∙y(n − 2) + b∙y(n − 4)
y(n)  = x(n) + v(n)
y(n)  = x(n) + a∙y(n − 2) + b∙y(n − 4)

11.19



D. Markovic  /  Slide 20

Retiming for Higher Throughput

Register movement can shorten the critical path of the circuit

x(n)

y(n)

D

3D

D

w(n − 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D

×

+

×

+

×

+

×

+

RetimedOriginal

(1)(1)

(2) (2)

(1)(1)

(2) (2)

(logic delay) 
of the nodes

Critical path reduced from 3 time units to 2 time units

3

2

11.20



D. Markovic  /  Slide 21

Retiming for Lower Power

RetimedOriginal

Exploit additional combinational slack for voltage scaling

Timing slack = 0 Timing slack = 1

Desired throughput: 1/3

x(n)

y(n)

D

3D

D

w(n − 1)

a b

w(n)

x(n)

y(n)

D

3D

D

a b

v(n)

D

×

+

×

+

×

+

×

+(1)(1)

(2) (2)

(1)(1)

(2) (2)

3

2

11.21



D. Markovic  /  Slide 22

Retiming Cut-sets

• Make cut-sets which divide the DFG in two disconnected halves

▪ Add K delays to each edge from G1 to G2

▪ Remove K delays from each edge from G2 to G1

x(n)

y(n)

D

3D

D

a b x(n)

y(n)

2D

D

a b

D

××

+

×

+

×

+

G1

G2

Cut-set

G1

G2

Cut-set

e1

e2

e3 e4

e1

e2

e3 e4

K = 1

D

+

RetimedOriginal
11.22



D. Markovic  /  Slide 23

Mathematical Modeling

• Assign retiming weight r(v) to every node in the DFG

• Define edge-weight w(e) = number of registers on the edge

• Retiming changes w(e) into wr(e), the retimed weight

x(n)

y(n)

D

3D

D

a b4

1

3

2

e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3) w(e1) = 1
w(e2) = 1
w(e3) = 3
w(e4) = 0
w(e5) = 0

wr (e) = w(e) + r (v) – r (u)

Retiming equation

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis, 
University of California, Los Angeles, 2008.

[2]

11.23



D. Markovic  /  Slide 24

Path Retiming

• # of registers inserted in a path p: v1→ v2 given by r(v2) − r(v1)

▪ If r(v2) − r(v1) > 0, registers added to the path
▪ If r(v2) − r(v1) < 0, registers removed from the path

x(n)

y(n)

D

3D

D

a b x(n)

y(n)

2D

D

a b

D

4

1

3

2

4

1

3

2

D

wr(p) = w(p) + r(4) − r(1) = 4 − 1 (one register removed from path p)

r(1) = 1r(2) = 1

r(4) = 0

r(3) = 0

Path p:1→4 Path p:1→4

RetimedOriginal

11.24



Optimization Methods: 
Scheduling & Retiming



D. Markovic  /  Slide 26

Mathematical Modeling

• Feasible retiming solution for r(vi) must ensure

▪ Non-negative edge weights wr(e)

▪ Integer values of r(v) and wr(e)

wr(e1) = w(e1) + r(2) – r(1) ≥ 0 
wr(e2) = w(e2) + r(3) – r(2) ≥ 0 
wr(e3) = w(e3) + r(4) – r(2) ≥ 0
wr(e4) = w(e4) + r(1) – r(3) ≥ 0
wr(e5) = w(e5) + r(1) – r(4) ≥ 0

Feasibility constraints

Integer solutions to feasibility 
constraints constitute a 

retiming solution 

x(n)

y(n)

D

3D

D

a b4

1

3

2

e2
e3

e4 e5

e1

r (1)r (2)

r (4)r (3)

11.26



D. Markovic  /  Slide 27

Retiming with Timing Constraints

• Find retiming solution which guarantees critical path in DFG ≤ T

▪ Paths with logic delay > T must have at least one register

• Define

▪ W(u,v): minimum number of registers over all paths b/w 
nodes u and v, min {w(p) | p : u → v}

▪ If no path exists between the vertices, then W(u,v) = 0 

▪ Ld(u,v): maximum logic delay over all paths b/w nodes u and v

▪ If no path exists between vertices u and v then Ld(u,v) = −1

• Constraints

▪ Non-negative weights for all edges, Wr(vi , vj) ≥ 0, ∀ i,j

▪ Look for nodes (u,v) with Ld(u,v) > T

▪ Define inequality constraint Wr(u,v) ≥ 1 for such nodes

11.27



D. Markovic  /  Slide 28

Leiserson-Saxe Algorithm

Algorithm for feasible retiming solution with timing constraints

Use Bellman-Ford algorithm to solve the inequalities Ik [2]



A lgorithm {r(vi ), flag} Re time(G,d,T)

k 1

for u 1 to |V |

for v 1 to |V | do

if Ld(u,v) T then

Define inequality Ik :W (u,v)  r(v)  r(u) 1

else if Ld(u,v)  1 then

Define inequality Ik :W (u,v)  r(v)  r(u)  0

endif

k k 1

endfor

endfor

[1] C. Leiserson and J. 
Saxe, "Optimizing 
synchronous circuitry 
using retiming," 
Algorithmica,
vol. 2, no. 3, 
pp. 211-216, 1991. 

[2] R. Nanda, DSP 
Architecture 
Optimization in 
MATLAB/Simulink
Environment, M.S. 
Thesis, University of 
California, Los 
Angeles, 2008.

[1]

11.28



D. Markovic  /  Slide 29

Retiming with Timing Constraints

x(n)

y(n)

D

3D

D

a b4

1

3

2 (1)(1)

(2) (2)

e2
e3

e4 e5

e1

W(1,2) + r(2) – r(1) ≥ 0, W(1,2) = 1
W(2,1) + r(1) – r(2) ≥ 1, W(2,1) = 1
W(4,2) + r(2) – r(4) ≥ 1, W(4,2) = 1
W(2,4) + r(4) – r(2) ≥ 1, W(2,4) = 3
W(4,1) + r(1) – r(4) ≥ 1, W(4,1) = 0
W(1,4) + r(4) – r(1) ≥ 1, W(1,4) = 4
W(3,1) + r(1) – r(3) ≥ 1, W(3,1) = 0
W(1,3) + r(3) – r(1) ≥ 1, W(1,3) = 2
W(4,3) + r(3) – r(4) ≥ 1, W(4,3) = 2
W(3,4) + r(4) – r(3) ≥ 1, W(3,4) = 4
W(2,3) + r(3) – r(2) ≥ 1, W(2,3) = 1
W(3,2) + r(2) – r(3) ≥ 1, W(3,2) = 1

Feasibility + Timing constraints
T = 2 time units

Integer solutions to these constraints constitute a retiming solution 
11.29



D. Markovic  /  Slide 30

Pipelining

• Special case of retiming
▪ Small functional change with additional I/O latency

▪ Insert K delays at cut-sets, all cut-set edges uni-directional

▪ Exploits additional latency to minimize critical path

y(n)

x(n)

× × × ×

++ +

DDDD

a b c d

DDD

Pipelining cut-set

K = 1
I/O latency = 1 inserted

tcrit
new = tmult tcrit

old = tadd + tmult

G1

G2

11.30



D. Markovic  /  Slide 31

Modeling Pipelining

• Same model as retiming with timing constraints

• Additional constraints to limit the added I/O latency

▪ Latency inserted b/w input node v1 and output node v2 is 
given by difference between retiming weights, r(v2) − r(v1) 

y(n)

x(n)

× × × ×

++ +
DDD

a b c d

e1 e2 e3 e4

e5 e6

(2) (2) (2) (2)

(1) (1) (1)

Wr(1,5) = W(1,5) + r(5) – r(1) ≥ 1  
Wr(1,6) = W(1,6) + r(6) – r(1) ≥ 1   

Wr(4,7) = W(4,7) + r(7) – r(4) ≥ 1

Feasibility + Timing constraints

r(7) – r(4) ≤ 1   
r(7) – r(3) ≤ 1   
r(7) – r(2) ≤ 1   
r(7) – r(1) ≤ 1   

tcritical,desired = 2 time units

Max additional I/0 latency = 1 

. . .

(logic delay) of the nodes

11.31



D. Markovic  /  Slide 32

Recursive-Loop Bottlenecks

• Pipelining loops not possible 

▪ # registers in feedback loops must remain fixed 

w1(n) = a·(y1(n−1) + x(n))
y1(n) = b·a·y1(n−1) + b·a·x(n)

x(n)

y1(n)

D

a

w1(n)

b

Changing the # delays in a loop alters functionality 

y1(n) ≠ y2(n)

×+

×

w(n) = a·(y2(n−2) + x(n−1))
y2(n) = b·a·y2(n−2) + b·a·x(n−1)

x(n)

y2(n)

D

a

w2(n)

b

×+

×

D

11.32



D. Markovic  /  Slide 33

Iteration Bound = Max{Loop Bound}

• Loops limit the maximum achievable throughput

▪ Achieved when registers in a loop balance the logic 
delay

Loop L1: 2 → 4 → 1
Loop L2: 3→ 1 → 2

IB = 2 time units

x(n)

y(n)

D

3D

D

a b4

1

3

2
(1)

(1)

(2) (2)

L1

L2

Loop bound L1 =      = 1
4
4

Loop bound L2 =      = 2
4
2

all loops

1 Combinational delay of loop
max

Number of registers in loopmaxf





 
 

Loop bound

11.33



D. Markovic  /  Slide 34

Fine-Grain Pipelining

• Achieving the iteration bound 

▪ Requires finer level of granularity of operations

Gate-level granularity can be achieved during logic synthesis

tcritical = tmult

tcritical = tmult /2 + tadd

x(n)

D

a

y(n)

D

D

c

×+

+

x(n)

D

a

y(n)

D

D

c

+

+

11.34



D. Markovic  /  Slide 35

Parallelism

• Unfolding of the operations in a flow-graph

▪ Parallelizes the flow-graph

▪ Higher speed, lower power via VDD scaling

▪ Larger area

• Describes multiple iterations of the DFG signal flow

▪ Symbolize the multiple number of iterations by P

▪ Unfolded DFG constructed from the following P
equations: yi = y(Pm + i), i ∈ {0, 1, …, P – 1}

▪ DFG takes the inputs x(Pm), x(Pm + 1), …, x(Pm + P − 1)

▪ Outputs are y(Pm), y(Pm + 1), …, y(Pm + P − 1)

[2] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons 
Inc., 1999. 

[2]

11.35



D. Markovic  /  Slide 36

Unfolding

• To construct P-unfolded DFG

▪ Draw P copies of all the nodes in the original DFG

▪ The P input nodes take in values x(Pm), …, x(Pm + P − 1)

▪ Connect the nodes based on precedence constraints of DFG

▪ Each delay in unfolded DFG is P-slow

▪ Tap outputs x(Pm), …, x(Pm + P − 1) from the P output nodes

x(n)

y(n)

D

a
y(2m)

y(2m + 1)

D* = 2D

Original Unfolded with P = 2

u u1v

u2

v1

v2 a

ax(2m)

x(2m + 1)y(2m) = a∙y(2m − 1) + x(2m)
y(2m + 1) = a∙y(2m) + x(2m + 1)

11.36



D. Markovic  /  Slide 37

Unfolding IIR for Constant Throughput

• Maximum throughput limited by iteration bound (IB)

• Unfolding does not help if IB is already achieved

y(n) = x(n) + ay(n−1)

y(2m) = x(2m) + ay(2m−1)

y(2m+1) = x(2m+1) + ay(2m)

x(n) a×+
D

x(2m) a

D* = 2D

x(2m+1) a

×+

×+

Critical path = 2tadd + 2tmult

Per iteration: tadd + tmult

Critical path = tadd + tmult

11.37



D. Markovic  /  Slide 38

Unfolding FIR for Higher Throughput

• Throughput can be increased with effective pipelining

y(n)

x(n)

d c b a

++ +
DDD

y(2m − 1)

x(2m + 1)

d c b a

++ +
D

y(2m − 2)

d c b a

++ +
DD

x(2m)

y(n) = a∙x(n) + b∙x(n − 1) 
+ c∙x(n − 2) + d∙x(n − 3) 

y(2m − 2) = a∙x(2m − 2) + b∙x(2m − 3)
+ c∙x(2m − 4) + d∙x(2m − 5) 

y(2m − 1) = a∙x(2m − 1) + b∙x(2m − 2)
+ c∙x(2m − 3) + d∙x(2m − 4) 

tcritical = tadd + tmult

tcritical = tadd + tmult

tcritical/iter = tcritical /2

Throughput 
doubles!!

D

D

*

* Register 
retiming moves

11.38



D. Markovic  /  Slide 39

Introduction to Scheduling

• Dictionary definition

▪ The coordination of multiple related tasks into a time sequence

▪ To solve the problem of satisfying time and resource constraints 
between a number of tasks

• Data-flow-graph scheduling

▪ Data-flow-graph iteration 
• Execute all operations in a sequence 

• Sequence defined by the signal flow in the graph

▪ One iteration has a finite time of execution Titer

▪ Constraints on Titer given by throughput requirement

▪ If required Titer is long 
• Titer can be split into several smaller clock cycles

• Operations can be executed in these cycles 

• Operations executing in different cycles can share hardware

11.39



D. Markovic  /  Slide 40

Area-Throughput Tradeoff

• Scheduling provides a means to tradeoff throughput for area

▪ If Titer = Tclk all operations required dedicated hardware units 

▪ If Titer = N∙Tclk , N > 1, operations can share hardware units

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer = Tclk

Tclk

No hw 
sharing

3 multipliers and 1 adder 2 multipliers and 1 adder

×

+

×

×

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

11.40



D. Markovic  /  Slide 41

Schedule Assignment

• Available: hardware units H and N clock cycles for execution

▪ For each operation, schedule table records 
• Assignment of hardware unit for execution, H(vi)

• Assignment of time of execution, p(vi) 

Tclk

x1(n) x2(n)

y(n)

v1 v2

v3

v4

Titer
Shared

hardware

×

+

×

×

Schedule Add 1 Mult 1 Mult 2

Cycle 1 x v1 v2

Cycle 2 v3 x x

Cycle 3 x x v4

Schedule Table

H(v1) = Multiplier 1
H(v2) = Multiplier 2  
H(v3) = Adder 1         
H(v4) = Multiplier 1 

p(v1) = 1
p(v2) = 1  
p(v3) = 2         
p(v4) = 3 

11.41



D. Markovic  /  Slide 42

Problem Statement

• Given a data-flow graph G, Titer and Tclk

▪ Find a schedule assignment H(vi), p(vi) which:
• Executes all DFG operations in N clock cycles

• Sequence of execution should not alter DFG functionality

• Minimizes the area A of the hardware resources required for execution

Number of adders: Na

Number of multipliers: Nm

A = 1∙Areaadder + 2∙Areamultiplier

v1 , v2 , v3 executed 
in N = 3 cycles

Schedule Add 1 Mult 1 Mult 2

Cycle 1 x v1 v2

Cycle 2 v3 x x

Cycle 3 x x v4

min A = Na∙Areaadder + Nm∙Areamultiplier

11.42



D. Markovic  /  Slide 43

ASAP: As Soon As Possible Scheduling

• Schedules the operations top-down from input to output nodes

• Available hardware resource units specified by the user    

• Operation scheduled in the first available cycle



A lgorithm {H(v i), p(v i)} ASAP(G)

u v i // v i is any "ready" operation, operation is "ready"

// if all its preceding operations have been scheduled

qi  V  operations immediately preceding u

ei  execution of qi ends in this cycle

Smin  first available cycle for execution of u max{ei 1}

S first available cycle  Smin with

available hardware resource Hi

H(u) Hi

p(u) S

[4] C. Tseng and 
D.P. Siewiorek, 
"Automated 
synthesis of 
datapaths in 
digital systems," 
IEEE Trans. 
Computer-Aided 
Design, vol. CAD-
5, no. 3, pp. 379-
395, July 1986.

[4]

11.43



D. Markovic  /  Slide 44

Example 11.2a: ASAP Scheduling

• Assumptions:

▪ Titer = 4∙Tclk , N = 4

▪ Multiplier pipeline: 1

▪ Adder pipeline: 1

▪ Available hardware
• 1 multiplier M1

• 1 adder A1

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G

Sched. u q e Smin S p(u) H(u)

Step 1 v1 null 0 1 1 1 M1

Step 2 v2 null 0 1 2 2 M1

Step 3 v3 v1 , v2 1 3 3 3 A1

Step 4 v4 v3 3 4 4 4 M1

ASAP scheduling steps

11.44



D. Markovic  /  Slide 45

x1(n) x2(n)

y(n)

v1 v2

v3

v4

×

+

×

×

Graph G x1(n) x2(n)

y(n)

v1

v2

v3

v4

Tclk

Titer

Final ASAP schedule

Schedule M1 A1

Cycle 1 v1 x

Cycle 2 v2 x

Cycle 3 x v3

Cycle 4 v4 x

Schedule Table
M1

M1

A1

M1

• Schedules “ready” operations in the first cycle with 
available resource

Example 11.2b: ASAP Scheduling

11.45



D. Markovic  /  Slide 46

Scheduling Algorithms

• More heuristics

▪ Heuristics vary in their selection of next operation to scheduled

▪ This selection strongly determines the quality of the schedule

▪ ALAP: As Late As Possible scheduling
• Similar to ASAP except operations scheduled from output to input 

• Operation “ready” if all its succeeding operations scheduled

▪ ASAP, ALAP do not give preference to timing-critical operations
• Can result in timing violations for fixed set of resources  

• More resource/area required to meet the Titer timing constraint

▪ List scheduling
• Selects the next operation to be scheduled from a list 

• The list orders the operations according to timing criticality

11.46



D. Markovic  /  Slide 47

List Scheduling

• Assign precedence height PH(vi) to each operation

▪ PH(vi) = length of longest combinational path rooted by vi

▪ Schedule operations in descending order of precedence height

x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6× Possible scheduling sequence

ASAP v1→ v2→ v3 → v4→ v5→ v6

LIST v3→ v2→ v5 → v1→ v4→ v6 

PH(v1) = T(v4) = 1
PH(v2) = T(v5) + T(v6) = 3
PH(v3) = T(v5) + T(v6) = 3 
PH(v5) = T(v6) = 2
PH(v4) = 0, PH(v6) = 0 

tadd = 1, tmult = 2

[5] S. Davidson et. al., "Some experiments in local microcode compaction for horizontal machines," 
IEEE Trans. Computers, vol. C-30, no. 7, pp. 460-477, July 1981. 

[5]

11.47



D. Markovic  /  Slide 48

Comparing Scheduling Heuristics: ASAP

x1(n) x2(n)

y1(n)

v1 v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1

Timing
violation

Titer

• ASAP schedule infeasible, 
more resources required to 
satisfy timing

Titer = 5∙Tclk , N = 5 

Pipeline depth
 Multiplier: 2
 Adder: 1

Available hardware 
 2 mult: M1, M2

1 add: A1

11.48



D. Markovic  /  Slide 49

Comparing Scheduling Heuristics: LIST

• LIST scheduling feasible, 
with 1 adder and 2 multipliers
in 5 time steps

Titer = 5∙Tclk , N = 5 

Pipeline depth
 Multiplier: 2
 Adder: 1

Available hardware 
 2 mult: M1, M2

1 add: A1

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6
M1

Titer

11.49



D. Markovic  /  Slide 50

Inter-Iteration Edges: Timing Constraints

• Edge e : v1 → v2 with zero delay forces precedence constraints

▪ Result of operation v1 is input to operation v2 in an iteration

▪ Execution of v1 must precede the execution of v2

• Edge e : v1 → v2 with delays represent relaxed timing constraints

▪ If R delays present on edge e

▪ Output of v1 in I th iteration is input to v2 in (I + R)th iteration

▪ v1 not constrained to execute before v2 in the I th iteration

• Delay insertion after scheduling

▪ Use folding equations to compute the number of delays/registers 
to be inserted on the edges after scheduling

11.50



D. Markovic  /  Slide 51

Inter-Iteration Edges

x1(n) x2(n)

y1(n)

v1 v2

v4

×

+

×

y2(n)

+

x3(n)

× v3

v5

v6×

D

Inter-iteration edge
e : v5 → v6

v6 is not constrained to 
execute after v5 in an iteration

Insert registers on edge e
for correct operation

x1(n) x2(n)

y1(n)

v1

v2

v4

y2(n)

x3(n)

v5

M1

A1

M2

v3
M1

A1

v6

M1

Titer

11.51



D. Markovic  /  Slide 52

Folding

• Maintain precedence constraints and functionality of DFG 

▪ Route signals to hardware units at the correct time instances 

▪ Insert the correct number of registers on edges after scheduling

v1 mapped to unit H1

v2 mapped to unit H2

2 pipeline stages in H1

1 pipeline stage in H2

v1 v2

w

Original Edge Scheduled Edge

H1 H2

f
v11 v12 v2

d(v1) = 2 
2 pipeline stages

d(v2) = 1 
1 pipeline stage

Compute value of f which maintains precedence

11.52



D. Markovic  /  Slide 53

Folding Equation

• Number of registers on edges after folding depends on

▪ Original number of delays w, pipeline depth of source node

▪ Relative time difference between execution of v1 and v2

v1 v2

w

H1 H2

f
v11 v12 v2

M1

A1

p(v1) = 1

p(v2) = 3

d(v1) = 2

N clock cycles per iteration
w delays → N∙w delay in schedule

f = N∙w – d(v1) + p(v2) – p(v1)

Legend d: delay, p: schedule

11.53



D. Markovic  /  Slide 54

Example 11.3: Scheduling

v1 v2
e1

y(n)x(n)
2D

v1 v2
e1

y(n)x(n)
DD

z−1

z−2v y(n)
x(n)

(a) Original edge

(b) Retimed edge

(c) Retimed edge after scheduling

• Edge scheduled using 
folding equations

• Folding factor (N) = 2

• Pipeline depth

▪ d(v1) = 2

▪ d(v2) = 2

• Schedule

▪ p(v1) = 1

▪ p(v2) = 2

11.54

f = 2∙1 – 2 + 2 – 1 = 1f = N∙w – d(v1) + p(v2) – p(v1)



D. Markovic  /  Slide 55

Efficient Retiming & Scheduling

• Retiming with scheduling

▪ Additional degree of freedom associated with register 
movement results in less area or higher throughput schedules

• Challenge: Retiming with scheduling

▪ Time complexity increases if retiming done with scheduling

• Approach: Low-complexity retiming solution

▪ Pre-process data flow graph (DFG) prior to scheduling

▪ Retiming algorithm converges quickly (polynomial time)

▪ Time-multiplexed DSP designs can achieve faster throughput

▪ Min-period retiming can result in reduced area as well

• Result: Performance improvement

▪ An order of magnitude reduction in the worst-case time-
complexity

▪ Near-optimal solutions in most cases
11.55



D. Markovic  /  Slide 56

DSP 
Design

N

Scheduling
(no retiming)

Scheduling (ILP) 
w/ BF retiming

Scheduling with 
pre-processed retiming

Area CPU(s) Area CPU(s) Area CPU(s)

Wave 
filter

16 NA NA 8 264 14 0.39

17 13 0.20 7 777 8 0.73

Lattice 
filter

2 NA NA 41 0.26 41 0.20

4 NA NA 23 0.30 23 0.28

8-point 
DCT

3 NA NA 41 0.26 41 0.21

4 NA NA 28 0.40 28 0.39

NA – scheduling infeasible without retiming

Near-optimal solutions, significantly reduced runtime

Results: Area and Runtime

11.56



D. Markovic  /  Slide 57

Scheduling Comparison

• Scheduling with pre-retiming outperforms scheduling

▪ Retiming before scheduling enables higher throughput  

▪ Lower power with VDD scaling for same speed

(1.0)
(1.0)

(0.9)

(0.84)

LIST + VDD scaling

(0.78)

(0.75)

(0.71)

(1.0)
(1.0)

(1.0)

(1.0)

(0.81)

(0.78)

(0.71)

Second-order IIR 16-tap FIR (transposed)

LIST + pre-retiming + VDD scaling

Throughput (MS/s)
80 114 148 182 216 250

0.1

1

0.1

1

100 150 200 250 300 350

P
o

w
e

r

Throughput (MS/s)

(n
o

rm
al

iz
e

d
)

(VDD) (VDD)

(0.81)
(0.88)

11.57



D. Markovic  /  Slide 58

Summary

• DFG  automation algorithms

▪ Retiming, pipelining

▪ Scheduling

• Simulink-based design optimization flow

▪ Parameterized architectural transformations

▪ Optimized architecture available in Simulink

• Energy, area, performance tradeoffs with

▪ Architectural optimizations

▪ Carry-save arithmetic

▪ Voltage scaling

11.58


