Tlecture

.l .l Data-Flow Graph
Model

ECE 2168B

Prof. Dejan Markovi¢
ee2l6b@gmail.com

Agenda

e DFG modeling

e Architecture transformations
= Retiming example

e Optimization methods

= Scheduling
= Retiming

11.2

Iteration

e |terative nature of DSP algorithms
= Executes a set of operations in a defined sequence
= One round of these operations constitutes an iteration
= Algorithm output computed from result of these operations

e Graphical representations of iterations [1]
= Block diagram (BD)

- Signal-flow graph (SFG) [1] K.K. Parhi, VLSI Digital Signal Processing
i, Systems: Design and Implementation, John
Data-flow graph (DFG) Wiley & Sons Inc., 1999.

= Dependence graph (DG)

e Example: 3-tap filter iteration
= y(n) =a-x(n) + b-x(n-1) + cx(n-2), n={0,1, ..., o=}
= lteration: 3 multipliers, 2 adders, 1 output y(n)

11.3

Block Diagram Representation

y(n) = a-x(n) + b-x(n-1) + c-x(n-2),

/
& @

mult ad

e Block diagram of 3-tap FIR filter

\

zl

delay/reg

x(n)

>

{? b—:i

>

n={0,1,..., o

y(n)

11.4

Signal-Flow Graph Representation

e Network of nodes and edges
= Edges are signal flows or paths with non-negative # of regs

* Linear transforms, multiplications or registers shown on edges
= Nodes represent computations, sources, sinks
e Adds (> 1 input), sources (no input), sinks (no output)

edge
@, —0 constant multiplication (a)
J a/z k or register (z~) on edges
x(n) 7-1 -1

3-tap FIR filter signal-flow graph
a b C source node: x(n)
sink node: y(n)
>O y(n)

11.5

Transposition of a SFG

e Transposed SFG functionally equivalent
= Reverse direction of signal flow edges
= Exchange input and output nodes
e Commonly used to reduce critical path in design

x(n)
Original SFG
crlt =2t add + tmult
y(n)
yin) U

Transposed SFG
crlt = tadd + tmult
x(n)

11.6

Different Representations

x(n)

BD

e Block Diagram (BD)

a z_l

> y(n)
= Close to hardware

= Computations, delays shown

through blocks

e Signal-flow Graph (SFG)

x(n) O—>Q—>Q—>O y(n) = Multiplications, delays shown

SFG

x(n)

DFG

-+

-1
a y 4

(1)

on edges
= Source, sink, add are nodes

e Data-flow Graph (DFG)
= Computations on nodes A, B

(2)

>
y(n) = (delays) shown on edges

= Computation time in brackets
next to the nodes

11.7

Data-Flow Graphs

Graphical representation of signal flow in an algorithm

Iterative input ---> X,(n) X,(n)

_Nodes (v;) - operations

(+/=/x/+)

v, v, €=

Node-to-node
. . ,¢’7 el
communication, -
edges (€)

Registered edge, _.> e;| z71 | D <-- Registers - Delay (D)
edge-weight = # of regs

Edges define Vs
precedence constraints
b/w operations

y(n) <-- Iterative output
11.8

4

w(e)

p:u=>v

Formal Definition of DFGs

A directed DFG is denoted as G =<V, E, d, w>

Set of vertices (nodes) of G. The vertices
represent operations.

Vector of logic delay of vertices. d(v) is
the logic delay of vertex v.

Set of directed edges of G. A directed
edge e from vertex u to vertex v is
denoted as e:u = v.

Number of sequential delays (registers)
on the edge e, also referred to as the
weight of the edge.

Path starting from vertex u, ending in
vertex v.

Denotes register on an edge.

y(n)

e, : Intra-iteration edge
e;: Inter-iteration edge
w(e,) =0, w(e;) =1

11.9

DFGs for a 3-tap FIR Filter

Direct form
X(n) l D D
Vi ® (2) v, 2) v, (2)
V4 (1) V5 (1)
+ y(n)
Transposed form (logic delay)
x(n) l l of the nodes
Vs ® (2) v, (2) v, (2)
V4 (1) V5 (1)
+ y(n)

D D

11.10

Matrix Representation

e DFG matrix A, dimension |V |X|E]| x,(n) X,(n)

" a;=1, ifedge e, starts from node v,
" a;=-1, [fedge e; ends in node v,
" a;=0, if edge e, neither starts, nor

ends in node v,

edges
()
1 O 0
o[0 1 0
©
o1 -1 -1 |
c
0 0 -1
. Y,

Matrix A for graph G

o

Data-flow graph G

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,

University of California, Los Angeles, June 2008.

11.11

Matrix Representation

e Weight vector w
= dimension |E|%|1]|
" w;=w(e)), weight of edge e,
e Pipeline vector du
= dimension |E|x|1]
" du; = pipeline depth of source

node u of edge e, @
S S
0 0
0 0
| 1]
— —

Vector w Vector du Data-flow graph G

11.12

Simulink DFG Modeling

L1 Simulink Library Browser '7 1 Drag'and'drop Simu“nk fIOW
File Edit Yiew Help
D& 4| e Allows easy modeling

Communications: syndspliby?/Communications
B Simulink Control Design A~ 7 Lo A . . . o
W ik Extras 27| * Predefined libraries contain
W Simulink Parameter Estimation
B Simulink Response Optimization Cantrol Logic DS P m a C rOS
W Simulink Yerification and Yalidation
W Stateflow A coroic = Xilinx XSG
W Synplify DSP Blockset £2] W

| Communications va DSP Basics m Sy N p I ify DS P

o s B R S

A
0
-

#| Control Logic & @-

>+ CORDIC Uﬂﬂﬂﬂ g

*+| DSP Basics & l’g"g 1 e . I. k b d
= i g~ e Simulink goes a step beyon
#| Math Functions JEVQI) Math Functions

5] emorios cle— modeling macros
- Ports & Subsystems . . .
=~ i e = Functional simulation of
complex systems possible
Sinnal Nneralinne 8

| Sources
| Transforms v &

i = On-the-fly RTL generation

Synplify DSP block library through Synplify DSP

Memories
=

Ports & Subsystems

S i b

11.13

DFG Example

e QAM modulation and demodulation
e Combination of Simulink and Synplify DSP blocks

e~ I
5
Random >
zZ
Integer L>TxError Rate
‘ 7
Random Integer Integer Delay1 MWV riCalculation ’
Generator | Rectangular Out1
QAM Error Rate
Calculation
Rectangular QAM
Demodulator
Baseband1 nu
Discrete-Time
Scatter Plot
§ Scope1
Discrete-Time
Eye Diagram
Scope2 7
E-—y t4 plint outt —*@ AWGN -—§E—-p In1 out1 —-’EI—
Port In Port Out Port In2 Port Out4
Upsample
L AWGN
j-Re - - - -
| Rectangular |, Raised cosine Channel1 Raised cosine3
QAM
Complex to §§ N
Rectangular QAM Real-Imag »> Re} o 2 - l, |
Modulator P{Im ¥l z g
Baseband Discrete-Time Real-magto | eqerDelay2 Downsample2
Eye Diagram Complex
Scope3
*E——p t4 +pplint outt -—-»EI AWGN —»E——p In1 Outt —-»EI——
Port In1 Port Out1 Port In3 Port Out3
Upsample2
AWGN
Raised cosine Channel2 Raised cosine4

11.14

Summary

e Graphical representations of DSP algorithms
= Block diagrams
= Signal-flow graphs
= Data-flow graphs

e Matrix abstraction of data-flow graph properties
= Useful for modeling architectural transformations

e Simulink DSP modeling
= Construction of block diagrams in Simulink
= Functional simulation, RTL generation
= Data-flow property extraction

11.15

Architecture
Transformations

DFG Realizations

e DFGs can be realized with several architectures
= Change graph structure without changing functionality
= Observe transformations in energy-area-delay space

e DFG Transformations

= Retiming A
« Pipelining Scheduling
= Time-multiplexing/folding & retiming
= Parallelism 2

e Choice of the architecture
= Dictated by system specifications

11.17

Retiming (u

e Registers in a flow graph can be moved across edges
e Movement should not alter DFG functionality

e Benefits

Higher speed

Lower power through V,, scaling

Not very significant area increase

Efficient automation using polynomial-time CAD algorithms [2]

[1] C. Leiserson and J. Saxe, "Optimizing synchronous circuitry using retiming,” Algorithmica, vol. 2,
no. 3, pp. 211-216, 1991.

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008.

11.18

Retiming

e Register movement in the flow graph without functional change

Original Retimed

» *Retiming
moves

y(n) y(n)
w(n) = a-y(n-1) + b-y(n - 3) v(n) =a-y(n-2) + b-y(n - 4)
y(n) =x(n) + w(n - 1) y(n) =x(n) + v(n)

y(n) =x(n) + a-y(n-2) + b-y(n - 4) y(n) =x(n) + a-y(n - 2) + b-y(n - 4)
11.19

Retiming for Higher Throughput

Register movement can shorten the critical path of the circuit

Original Retimed

(logic delay)

y(n) of the nodes y(n)

Critical path reduced from 3 time units to 2 time units

11.20

Retiming for Lower Power

Desired throughput:

Timing slack =0 Timing slack =1

Yin) original V) Retimed

Exploit additional combinational slack for voltage scaling

11.21

Retiming Cut-sets

e Make cut-sets which divide the DFG in two disconnected halves
= Add K delays to each edge from G; to G,
= Remove K delays from each edge from G, to G,

11.22

Mathematical Modeling 12

e Assign retiming weight r(v) to every node in the DFG
e Define edge-weight w(e) = number of registers on the edge
e Retiming changes w(e) into w,(e), the retimed weight

Retiming equation

e, w,(e) =w(e) +r(v)—r(u)

y(n)

[2] R. Nanda, DSP Architecture Optimization in MATLAB/Simulink Environment, M.S. Thesis,
University of California, Los Angeles, 2008. 11.23

Path Retiming

e # of registers inserted in a path p: v,- v, given by r(v,) - r(v,)
* If r(v,) = r(v,) > 0, registers added to the path
= If r(v,) = r(v,) <0, registers removed from the path

Path p:1->4

y(n) Original y(n) Retimed
w,(p) = w(p) + r(4) - r(1) =4 - 1 (one register removed from path p)

11.24

Optimization Methods:
Scheduling & Retiming

Mathematical Modeling

 Feasible retiming solution for r(v;) must ensure
= Non-negative edge weights w (e)
= Integer values of r(v) and w (e)

Feasibility constraints

w(e;) =wl(e,) +r(2)—r(1)20
w,(e,) = w(e,) +r(3)—r(2) 20
w(e;) = w(es) +r(4)—r(2)20
w(e,) = wle,) +r(1)—r(3)20
w(es) = w(eg) +r(1)—r(4) 20

Integer solutions to feasibility
constraints constitute a
retiming solution

11.26

Retiming with Timing Constraints

e Find retiming solution which guarantees critical pathin DFG<T
= Paths with logic delay > T must have at least one register

e Define

= W(u,v): minimum number of registers over all paths b/w
nodesu and v, min{w(p) | p: u - v}

= If no path exists between the vertices, then W(u,v) =0
= Ld(u,v): maximum logic delay over all paths b/w nodes u and v
= If no path exists between vertices u and v then Ld(u,v) = -1

e Constraints
* Non-negative weights for all edges, W (v;, v;) 20, Vi,j
= Look for nodes (u,v) with Ld(u,v) > T
= Define inequality constraint W (u,v) 2 1 for such nodes

11.27

Leiserson-Saxe Algorithm 1

Algorithm for feasible retiming solution with timing constraints

Algorithm {r(v;), flag} < Retime(G,d,T)
k<1

foru=1to|V|
forv=1to|V| do
if Ld(u,v)>T then

Defineinequality I, : W(u,v)+r(v)—r(u) =1
elseif Ld(u,v)>—1 then
Defineinequality I, : W(u,v)+r(v)—r(u)=0
endif
k< k+1
endfor
endfor

[1]

[2]

C. Leiserson and J.
Saxe, "Optimizing
synchronous circuitry
using retiming,"
Algorithmica,

vol. 2, no. 3,
pp.211-216, 1991.
R. Nanda, DSP
Architecture
Optimization in
MATLAB/Simulink
Environment, M.S.
Thesis, University of
California, Los
Angeles, 2008.

Use Bellman-Ford algorithm to solve the inequalities /, [2]

11.28

Retiming with Timing Constraints

Feasibility + Timing constraints
T = 2 time units

W(1,2) +r(2)—r(1) 20, W(1,2) =1
W(2,1)+r(1)-r(2) 21, W(2,1) =1
W(4,2) +r(2)—r(4) > 1, W(4,2) =1
W(2,4) +r(4)—r(2) 21, W(2,4) =3
W(4,1) +r(1)-r(4)>1, W(4,1) =0
W(L1,4) + r(4) - r(1) > 1, W(1,4) = 4
W(3,1)+r(1)-r(3)>1, W(3,1) =0
W(1,3) +r(3)—r(1) > 1, W(1,3) =2
W(4,3) +r(3)—r(4) > 1, W(4,3) =2
W(3,4) +r(4)-r(3) =21, W(3,4) =4
W(2,3) +r(3)-r(2) 21, W(2,3) =1
W(3,2) +r(2)-r(3) 21, W(3,2) =1

y(n)

Integer solutions to these constraints constitute a retiming solution

11.29

Pipelining

e Special case of retiming
= Small functional change with additional I/O latency
= |nsert K delays at cut-sets, all cut-set edges uni-directional
= Exploits additional latency to minimize critical path

new — t
crlt muIt

x(n)
- &

old — t

crit add + tmult

K=1
I/O latency = 1 inserted

11.30

Modeling Pipelining

e Same model as retiming with timing constraints
e Additional constraints to limit the added 1/0 latency

= Latency inserted b/w input node v, and output node v, is
given by difference between retiming weights, r(v,) - r(v,)

teritical,desired = 2 time units Feasibility + Timing constraints
Max additional 1/0 latency = 1 W(1,5) = W(1,5) +r(5) —r(1) 2 1

x(n) W(1,6) = W(1,6) + r(6) —r(1) > 1

W.(4,7) = W(4,7) +r(7) —r(4) 2 1

r(7)—r(4) <1
r(7)—r(3) <1
r(7)—r(2) <1
r(7)—r(1) <1

y(n)

(logic delay) of the nodes

11.31

Recursive-Loop Bottlenecks

e Pipelining loops not possible
= # registers in feedback loops must remain fixed

w;(n) = a-(y,(n-1) + x(n)) w(n) = a-(y,(n-2) + x(n-1))
y,(n) = b-a-y,(n-1) + b-a-x(n) y,(n) = b-a-y,(n-2) + b-a-x(n-1)

y1(n) # y,(n)

Changing the # delays in a loop alters functionality

11.32

Iteration Bound = Max{Loop Bound}

e Loops limit the maximum achievable throughput

= Achieved when registers in a loop balance the logic
delay 1 {Combinational delay of Ioop}

— = Max
f all loops
max

Number of registers in loop
N Loop bound

looplL:2>4->1
LoopL,:3>1->2

Loop bound L, =% =1

Loop bound L, =% =2

E> IB = 2 time units

11.33

Fine-Grain Pipelining

e Achieving the iteration bound

= Requires finer level of granularity of operations
y(n)

t f—

critical — *mult

"%

tcritical = mult / 2 + tadd

Gate-level granularity can be achieved during logic synthesis
11.34

Parallelism [2]

e Unfolding of the operations in a flow-graph
= Parallelizes the flow-graph
= Higher speed, lower power via V,, scaling
= Larger area

e Describes multiple iterations of the DFG signal flow
= Symbolize the multiple number of iterations by P
= Unfolded DFG constructed from the following P
equations: y.=y(Pm+i),i €{0, 1, ..., P— 1}
= DFG takes the inputs x(Pm), x(Pm + 1), ..., x(Pm + P - 1)
= Qutputs are y(Pm), y(Pm + 1), ..., y(Pm + P - 1)

[2] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley & Sons
Inc., 1999. 11.35

Unfolding

e To construct P-unfolded DFG

= Draw P copies of all the nodes in the original DFG
The P input nodes take in values x(Pm), ..., x(Pm + P - 1)
Connect the nodes based on precedence constraints of DFG
Each delay in unfolded DFG is P-slow
Tap outputs x(Pm), ..., x(Pm + P - 1) from the P output nodes

Original Unfolded with P =2
y(n) D* = 2D
x(n) x(2m)
y(Zm)
> y(Zm +1)

y(2m) = a-y(2m - 1) +x(2m) | x(2m + 1)
y(2m + 1) = a-y(2m) + x(2m + 1)

11.36

Unfolding IIR for Constant Throughput

e Maximum throughput limited by iteration bound (IB)
e Unfolding does not help if IB is already achieved

----- > y(n) = x(n) + ay(n-1)

O (O
u Critical path=1t_,,+t_ .

"%

Critical path = 2t ,, + 2t

mult
a

______ > y(2m) = x(2m) + ay(2m-1)
-===> y(2m+1) = x(2m+1) + ay(2m)

Per iteration: t, ,,+t_ .

11.37

Unfolding FIR for Higher Throughput

e Throughput can be increased with effective pipelining

x(n) y(n) = a-x(n) + b-x(n - 1)
G% 2 0 o +cx(n-2)+dx(n-3)
O OO

tcritical = add + tmult

y(n)

x(2m) — : y(2m -1)=a-x(2m -1) + b-x(2m - 2)
x(2m + 1) — i +cx(2m - 3) + d-x(2m - 4)
y(2m -2)=a-x(2m - 2) + b-x(2m - 3)
+cx(2m -4) + d-x(2m - 5)

tcritical = add + tmult

tcritical/iter = criticaI/ 2

VeI ¥}l Throughput
doubles!!

11.38

* Register
retiming moves

Introduction to Scheduling

e Dictionary definition
= The coordination of multiple related tasks into a time sequence

= To solve the problem of satisfying time and resource constraints
between a number of tasks

e Data-flow-graph scheduling

= Data-flow-graph iteration

* Execute all operations in a sequence
* Sequence defined by the signal flow in the graph

= One iteration has a finite time of execution T:

iter
= Constraints on T, given by throughput requirement
= |f required T;

rer 1S lONE
* T,., can be split into several smaller clock cycles
* Operations can be executed in these cycles
* Operations executing in different cycles can share hardware

11.39

Area-Throughput Tradeoff

e Scheduling provides a means to tradeoff throughput for area
= If T, = T all operations required dedicated hardware units

iter —

= If T,

iter

X,(n) X,(n)

No hw

T sharing

iter —

Tclk

y(n)
3 multipliers and 1 adder

=N-T_,,N > 1, operations can share hardware units

x,(n) x,(n)

vV, ITclk

Shared
hardware

y(n)

2 multipliers and 1 adder
11.40

Schedule Assighment

e Available: hardware units H and N clock cycles for execution

= For each operation, schedule table records

e Assignment of hardware unit for execution, H(v,)
* Assignment of time of execution, p(v;)

x,(n
x,(n) 2(n) Schedule Table

Schedule | Add1 | Multl | Mult2
@ Vo | o Cycle 1 X vy v,

Cycle 2 Vs X X

Shared

Cycle 3 X X V,

H(v,) = Multiplier 1 p(vy) =1
H(v,) = Multiplier 2 p(v,) =1
H(v;) = Adder 1 p(vs) =2
H(v,) = Multiplier 1 p(v,) =3

11.41

Problem Statement

e Given a data-flow graph G, T;,,,and T,

= Find a schedule assignment H(v,), p(v;) which:
* Executes all DFG operations in N clock cycles
» Sequence of execution should not alter DFG functionality
* Minimizes the area A of the hardware resources required for execution

min A = N-Ared, ., + N, -Area,, .jier

Number of adders: N,

Schedule | Add1 | Multl | Mult 2 Number of multipliers: N,
Cycle1 X V1 V2 vy, V,, V3 executed
Cycle 2 A X X in N =3 cycles
Cycle 3 X X V,

A =1-Area,,,. + 2-Area

multiplier

11.42

ASAP: As Soon As Possible Scheduling i

Algorithm {H(v,), p(v,)} < ASAP(G)

UV,

/l'v. is any "ready" operation, operation is "ready"
/1'if all its preceding operations have been scheduled
q, € V < operations immediately preceding u

e, <— execution of q;ends in this cycle

S .. < first available cycle for execution of u=max{e, +1}
S « first available cycle > S_. with
available hardware resource H,
H(u)<« H.
p(u)« S

[4] C. Tseng and
D.P. Siewiorek,
"Automated
synthesis of
datapaths in
digital systems,"
IEEE Trans.
Computer-Aided
Design, vol. CAD-
5, no. 3, pp. 379-
395, July 1986.

e Schedules the operations top-down from input to output nodes
e Available hardware resource units specified by the user

e Operation scheduled in the first available cycle

11.43

ASAP Scheduling

e Assumptions:
* Tier=4Ty, N=4
Multiplier pipeline: 1
Adder pipeline: 1
Available hardware

* 1 multiplier M,

X

* 1adder A,

ASAP scheduling steps
Sched. | u q e Sin S | p(u) | H(u)
Stepl| v, null 0 1 1 1 M,
Step2 | v, null 0 1 2 2 M,
Step3 | v; |v,v, | 1 3 3 3 A,
Stepd | v, V3 3 4 4 4 M,

11.44

ASAP Scheduling

e Schedules “ready” operations in the first cycle with
available resource

Graph G X4(n) X,(n)
X;(n) X,(n) Schedule Table
Schedule | M, | A,
Cycle 1 A X
Cycle 2 V, X
Cycle 3 X A
Cycle 4 V, X

Final ASAP schedule

11.45

Scheduling Algorithms

e More heuristics
Heuristics vary in their selection of next operation to scheduled
This selection strongly determines the quality of the schedule

ALAP: As Late As Possible scheduling

* Similar to ASAP except operations scheduled from output to input
* Operation “ready” if all its succeeding operations scheduled

ASAP, ALAP do not give preference to timing-critical operations

* Canresult in timing violations for fixed set of resources
e More resource/area required to meet the T, timing constraint

List scheduling

» Selects the next operation to be scheduled from a list
* The list orders the operations according to timing criticality

11.46

List Scheduling 5]

e Assign precedence height P, (v;) to each operation
= P,(v;) = length of longest combinational path rooted by v;
= Schedule operations in descending order of precedence height

X4(n) X,(n) X5(n) t =1t ,.=2

P (vy) =T(v,) =1

P.(v,) = T(vs) + T(v) = 3
P.(v3) = T(vs) + T(ve) = 3
P (vs) = T(vg) = 2

P.(v,) =0, P,lvg) =0

Possible scheduling sequence
ASAP | V2 V2 V32 V2 Ve Vg
y1(n) y,(n) UST | v, v, v v v v,

[5] S. Davidson et. al., "Some experiments in local microcode compaction for horizontal machines,"
IEEE Trans. Computers, vol. C-30, no. 7, pp. 460-477, July 1981. 11.47

Comparing Scheduling Heuristics: ASAP

x4(n) X,(n) x3(n)
Titer =3 Tey» N =5 A
Pipeline depth
= Multiplier: 2
= Adder: 1
Titer
Available hardware
"2 mult: M; M,
=] add: A,
v
e ASAP schedule infeasible, 1 Timing
violation

more resources required to v
satisfy timing y,(n) y,(n)

11.48

Comparing Scheduling Heuristics: LIST

xn) xn) xln)

T

iter

- 5.TC”(’ N - 5

Pipeline depth
= Multiplier: 2
= Adder: 1

Available hardware
= 2 mult: M, M,
=] add: A,

e LIST scheduling feasible,
with 1 adder and 2 multipliers y,(n) y,(n)
in 5 time steps

11.49

Inter-Iteration Edges: Timing Constraints

e Edge e: v, 2 v,with zero delay forces precedence constraints
= Result of operation v, is input to operation v, in an iteration
= Execution of v, must precede the execution of v,

* Edge e : v, > v, with delays represent relaxed timing constraints
= |f R delays present on edge e
= Output of v, in It jteration is input to v, in (I + R)t" iteration
= v, not constrained to execute before v, in the I*" iteration

e Delay insertion after scheduling

= Use folding equations to compute the number of delays/registers
to be inserted on the edges after scheduling

11.50

Inter-lteration Edges

I‘\‘
H A
i
l
: Titer
v
y1(n) y,(n) -
Inter-iteration edge y4(n) y,(n)
e:vy Vg
Vg is not constrained to E> Insert registers on edge e
execute after v in an iteration for correct operation

11.51

Folding

e Maintain precedence constraints and functionality of DFG
= Route signals to hardware units at the correct time instances
= |Insert the correct number of registers on edges after scheduling

Original Edge Scheduled Edge
@ N

v, mapped to unit H, E>
v, mapped to unit H,

: : : <€ > —>
2 pipeline stages in H, d(v,) =2 d(v,) = 1
1 pipeline stage in H, 2 pipeline stages 1 pipeline stage

Compute value of f which maintains precedence

11.52

Folding Equation

e Number of registers on edges after folding depends on
= Original number of delays w, pipeline depth of source node
= Relative time difference between execution of v, and v,

N clock cycles per iteration

w
@ ’@ w delays -> N-w delay in schedule
H H 0) _
T —— | f i'""'Z""i dv,) =2 I plv,) =1
i Vi1 [Vo2 ﬁi_i* V2 i |
g ORLCE
Legend d: delay, p: schedule

f=N-w- d(V1) + p(Vz) — p(V1)

11.53

Scheduling

e Edge scheduled using x(n 2D .
folding equations () @ e, @ y(n)

(a) Original edge

xin) —(B)——(— in

e Folding factor (N) = 2

e Pipeline depth

= d(v,) =2 (b) Retimed edge
s d(v,)=2 fENw-dv)+ply)-pv) By f=21-2+2-1=1
771 le—
e Schedule e

¢ plvy) =1 —>Di, -
-p(v2)=2 xim) =) v | 22 i > y(n)

(c) Retimed edge after scheduling

11.54

Efficient Retiming & Scheduling

Retiming with scheduling

= Additional degree of freedom associated with register
movement results in less area or higher throughput schedules

Challenge: Retiming with scheduling

= Time complexity increases if retiming done with scheduling

Approach: Low-complexity retiming solution

= Pre-process data flow graph (DFG) prior to scheduling

= Retiming algorithm converges quickly (polynomial time)

= Time-multiplexed DSP designs can achieve faster throughput

= Min-period retiming can result in reduced area as well

Result: Performance improvement

= An order of magnitude reduction in the worst-case time-
complexity

= Near-optimal solutions in most cases

11.55

Results: Area and Runtime

Scheduling Scheduling (ILP) Scheduling with
DSP . (no retiming) | W/ BF retiming | pre-processed retiming
Design
Area | CPU(s) | Area CPU(s) Area CPU(s)
filter | 17 | 13 | 0.20 7 777 8 0.73
Lattice 2 NA NA 41 0.26 41 0.20
filter | 4 | NA | NA 23 0.30 23 0.28
8-point | 3 | NA | NA 41 0.26 a1 0.21
DCT 4 | NA NA 28 0.40 28 0.39

NA - scheduling infeasible without retiming

Near-optimal solutions, significantly reduced runtime

11.56

Scheduling Comparison

e Scheduling with pre-retiming outperforms scheduling
= Retiming before scheduling enables higher throughput
= Lower power with V,, scaling for same speed

Second-order IIR (1.0) 16-tap FIR (transposed) (1.0)
1 (1.0 0 1 (1.0) O
- - S (1.0) O O
LE (0.9) O (0.81) (1.0) - O (0-88)
25 (089 C (0.78) 9o (08
o O O (0.78)
as o (075) O

0.71

= () (Vo) 0-71) (Vo)
0.1 0.1

80 114 148 182 216 250 100 150 200 250 300 350

Throughput (MS/s) Throughput (MS/s)

< LIST + pre-retiming + V, scaling O LIST + V scaling

11.57

Summary

e DFG automation algorithms
= Retiming, pipelining
= Scheduling

e Simulink-based design optimization flow
= Parameterized architectural transformations
= Optimized architecture available in Simulink

e Energy, area, performance tradeoffs with
= Architectural optimizations
= Carry-save arithmetic
= VVoltage scaling

11.58

