
Coarse-Grained Reconfigurable
Architectures

Architecture, Applications and Challenges

Bharathwaj Suresh, Chandrakanth, Mark Kubiak,

Sreya Banerjee, Utkarsh Sharma, Yuchong Luo

Agenda

● CGRA introduction
○ CGRA concept
○ CGRA vs. FPGA

● CGRA Architectures
○ SRP
○ Plasticine
○ Multi-CGRA

● CGRA Tools
○ OpenCGRA
○ Stanford AHA

2

CGRA Introduction

3

Background
● Algorithmic and technological innovations placed

great demands on computing systems

● ASICs have high performance but no flexibility.

● General purpose processors have good flexibility

but low power efficiency

● FPGAs suffer from programming inefficiencies

 -> Therefore, new architecture is needed

4

Coarse-grained Reconfigurable Architectures(CGRA)

● The architecture was first introduced in 1990s

● Before being classified as CGRA, they were

treated as optimized FPGA

● Around 2000, the terminology ‘CGRA’ appeared,

and it is widely used since then

5

CGRA Feature

● Domain-Specific Flexibility

● Capability of performing data-intensive

computation

● Short reconfigured time (High programmability)

● Data-driven architecture

6

Reconfigurable computing
● We are trying to bridge the gap between general purpose

CPUs and accelerators.

● Basic Idea: A spatial array of processing elements(PE) and

memories with a configurable network.

● We map the computation spatially onto the array.

● Goal is to strike a balance between performance and

programmability.

7

FPGA: Predecessor to CGRA
● Routing is super expensive. ~50% area.

● Each CLB includes LUTs and registers.

● LUTs implement arbitrary logic.

● Smaller LUTs are faster but need multiple LUTs for wide logic(more

routing).

● Big LUTs may involve wastage of HW if unused.

Limitations/Reasons to move to CGRA:

● Low level coding in hardware(Verilog, VHDL).

● Synthesis can take many hours. For eg: In emulation, when a peripheral IP is

being given for build, it takes 3hrs, while its sub-system takes at-least 12 hrs.

● Do you need per bit control? In FPGAs you literally need control signals for

individual bits to be routed.

● Have a specific application on mind? All bits of word operations are routed

from same source to same destination.

● Application specific operations such as frequent additions, multiplications

etc can be much more efficiently implemented directly than LUTs.

● Compilation can be easier with CGRAs.

● Lower operating frequencies.

● Also certain logic and pin interfaces may not map well onto an FPGA

8

Generic CGRA Architecture
● Increased native word size from 1 bit → multibit.

● Clearly a tradeoff exists between word size and

configurability.

● Reduces compilation and reconfiguration times

substantially.

● By increasing the granularity larger, specialized

units can be built thus operating on higher

frequencies.

● Coarser nature helps map complex operations

and timing related issues can be resolved.

9

CGRA vs ASIC, FPGA, CPUs

● ASIC has highest efficiency with least flexibility and highest performance.

● CPUs have least efficiency with high level of flexibility and low performance.

● FPGAs and CGRAs try to bridge this gap, with CGRAs being closer to ASIC in terms of efficiency and performance.

10

CGRA and other fabrics

● Combining spatial and temporal computations gives CGRAs high energy/area efficiency

11

Modern FPGAs:
● FPGAs getting coarser.

● Hardened logic in LUTs.

● DSP blocks available to implement ops efficiently.

Speedster:

● 7nm chip.

● 2.6M 6-input LUT

● 2D NOC which supports > 20Tbps. à Blending FPGA programmability

with ASIC like routing and compute engines.

● Contain machine learning processor blocks(MLP).

● MLPS are configurable, contain 32-bit MAC operators, integer and

floating point support.

● MLPS have integrated memory blocks to ensure ML algorithms run at

maximum performance.

Speedster

12

CGRA Architectures

13

Samsung Reconfigurable Processor (SRP)
● H.264/AVC decoder for UHD applications

● Hybrid parallelization (DLP + TLP)

[S. Lee, ICIP 2011]

14

SRP’s Architecture & Performance
● Two modes:

○ VLIW mode: 2 Scalar, 2 Vector FUs

○ CGRA mode: 8 Scalar , 8Vector FUs (127GOPS)

○ 650 MHz @ 28nm Samsung Tech.

○ 16 Channel DMA controller

[S. Lee 2011]

15

Plasticine
● Co-design the Architecture with high-level programming abstractions.

● Efficiently execute Parallel Patterns

● Reconfigurable Units:

○ PCUs

○ PMUs

○ AGs and CUs

[R. Prabhakar, Micro. 2018]

16

Plasticine’s Control Flow & Performance

[R. Prabhakar, Micro. 2018]

17

18

Multi-CGRA
● CGRA based multi core architecture

○ Speed up entire application by running several kernels at the

same time - KLP - Kernel-Level Parallelism

○ Parallel kernels may be independent or interdependent

● Limitations

○ Traditional single CGRA core is optimized for parallelized

computations in one kernel at a time

○ Multi-CGRA architecture involves linear aggregation of single

CGRAs

○ Existing multi-CGRA does not adapt quickly or efficiently to

support diverse KLP

○ Multi-core architecture with dynamically reconfigurable array

processors is more flexible than industry implemented CGRAs

because shared data-memory banks are connected to all

processing cores through crossbar switches

○ In Multi-CGRA communication is restricted to the on-chip bus

○ Causes performance bottleneck and high power consumption

when number of cores increase.
Base Architecture

Consists of General Purpose Processors (GPPS), Direct Memory Access

(DMA), 4 CGRA and On chip communication bus.

Each CGRA consists of PE array, data buffer, configuration memory,

execution controller.

Kim, Yoonjin. IET 2016

19

CCF (Ideal)

● Flexible connection with adjacent resources as required by applications

● Keeping within system capacity but efficiently using components

● Figure shows a CCF that can enable any combination of mapping between

all of the components.

● Limitations

○ full connectivity causes significant area and power overhead with

increasing number of CGRAs

Completely Connected Fabric

- Reconfigurable multi CGRA

20

RSF
Ring Based Sharing Fabric

- Component Sharing

between adjacent PA

- Trivial Overhead

- Easily expanded

21

RSF -
Reconfigureable
- Pipelined kernel stream for 50

iterations

- CGRA configuration

- PA1 utilizes D1 and D2 and D3

and D4 for 40 iterations

- D5 for remaining 10 iterations

- Shifting the configurations of PAs

from ‘PA1 to PA2 to PA3’ to ‘PA4 to

PA1 to PA2’.

- PA1 and PA2 reconfigured

twice

22

Metrics

● Tables show % increased compared to BASE for 4 (left) and 16 (right) core
implementation

● RSF shows performance improvement upto 88.8% compared with BASE and
11.1% compared with CCF

● RSF shows reduction in energy consumption of upto 87.5% compared with
BASE and 48.2% with CCF

CGRA CCF RSF

Area 10% 8%

Delay 14.1% 10%

Power 11 % 5%

CGRA CCF RSF

Area 42% 19%

Delay 25.3% 10%

Power 92% 22%

CGRA Tools

23

OpenCGRA - https://github.com/pnnl/OpenCGRA
● Open-source, unified framework for modelling, testing, and evaluating

domain-specific customized CGRA designs

● Helps non-hardware experts design application specific CGRA designs

○ Conventional CGRA design entails a significant amount of HW/SW engineering effort.

24

https://github.com/pnnl/OpenCGRA

Design Space Exploration (DSE)
● A generic architectural

template is used

○ This can be synthesized to

different targets based on design

space exploration

■ Communication direction

■ Type of tile

■ Topology

● DSE Steps:

○ Applying loop transformations

○ Specializing the PE

○ Refining the network topology

○ Deciding data memory size

25

Modelling, Testing and Evaluation
● Uses PyMTL3 backend to generate Verilog

● Multilevel modelling

○ Functional level

■ Used for verification too

○ Cycle level

■ Cycle level accuracy

○ Register transfer level

■ Most accurate, synthesizable code

● Users only need to specify top level parameters through a python interface

○ Tile count

○ Functionality of tiles (for heterogeneous designs)

● hypothesis is an open source python package that is used for testing

○ Includes automatic input case generation

● Evaluation – area, power, timing report (mflowgen used)

○ Script to invoke open source / commercial EDA tools for synthesis

26

OpenCGRA - Summary
● The goal is to democratise the CGRA domain

○ Software designers can implement reconfigurable hardware solutions quickly

● OpenCGRA combines Design Space Exploration with model generation and

evaluation to provide an end-to-end solution to design CGRA

27

Stanford AHA - Agile Hardware Project
● Stanford research group broadly focused on “agile”

hardware development

○ Seeks to develop tools and SoCs in dramatically less time than

current hardware processes

○ “Agile” phrasing borrowed from software world. Agile flows

seek frequent design iterations.

● Tool development spans FPGAs, CGRAs, and ASICs

● Focused on image processing and computer vision

applications with plans to expand

● Most designs assume hard ARM CPU on-chip

28

AHA - Algorithm Definition
● Algorithm Definition

○ Halide DSL frequently used across projects

○ See: Halide-To-Hardware flow

● Algorithms mapped to AHA’s CoreIR

○ “LLVM for hardware” - standardized

intermediate representation of hardware

○ Passed to commercial FPGA/ASIC tools or

AHA’s CGRA tooling

○ Example primitives: reg, shl, eq, gle, mux,

concat

● Designs assume availability of a CPU

to control FPGA/CGRA/ASIC

29

AHA - CGRA Hardware Generation
● Set of high-level domain-specific languages (DSLs)

○ All are written by AHA members

○ Outputs of all tools are CoreIR representations

○ CoreIR representations are converted to Verilog modules

● PEak: DSL for Processing Element (PE) specification

○ Discussed thoroughly in reading of Homework 1

● Lake: DSL that maps memory model to SRAM architecture

and control

● Canal: DSL to define interconnect switch blocks/routing

● Hardware is finally generated by passing these products to

cgra_pnr and providing CGRA grid dimensions

From the AHA webpage

What does it mean??

30

AHA - CGRA Configuration Generation
● Can begin generating configuration after algorithm mapped to CoreIR and

PE/Mem/Interconnect generated

● Map CoreIR graph to equivalent graph using PE/Mem/Interconnect blocks

● Graph passed (back) to DSLs to generate configurations

○ PE specs passed back to PEak, Mem specs passed back to Lake

○ Graph connections passed to Canal for routing definitions

● Configurations merged to generate configuration bitstream

31

AHA - Putting it All Together

32

Limitation

● Sparse connectivity put a huge burden on the compiler

● The immaturity of CGRA technology and the diversity of
application fields makes it difficult to formulate standards

33

References
● https://dl.acm.org/doi/10.1145/3357375

● Prabhakar R., Zhang Y., Olukotun K. (2020) Coarse-Grained Reconfigurable
Architectures. In: Murmann B., Hoefflinger B. (eds) NANO-CHIPS 2030. The
Frontiers Collection. Springer, Cham.

● Kim, Yoonjin, Hyejin Joo, and Sohyun Yoon. “Inter-Coarse-Grained
Reconfigurable Architecture Reconfiguration Technique for Efficient
Pipelining of Kernel-Stream on Coarse-Grained Reconfigurable
Architecture-Based Multi-Core Architecture.” IET circuits, devices &
systems 10.4 (2016): 251–265. Web.

34

https://dl.acm.org/doi/10.1145/3357375

Thank you
Question?

Wave DPU
● Data Flow Computing

● Local Synchronization circuits

● 32x32 clusters

[C. Nicol, WC WhiteP 2017]

