Coarse-Grained Reconfigurable
Architectures

Architecture, Applications and Challenges

Bharathwaj Suresh, Chandrakanth, Mark Kubiak,
Sreya Banerjee, Utkarsh Sharma, Yuchong Luo

Agenda

e CGRA introduction
O CGRA concept
O CGRA vs. FPGA

e (CGRA Architectures
o SRP
o Plasticine
o Multi-CGRA

e CGRA Tools
O OpenCGRA
O Stanford AHA

CGRA Introduction

Background fexibiliy

micro-
processor

e Algorithmic and technological innovations placed

: reconfigurable
great demands on computing systems compsutmg

e ASICs have high performance but no flexibility.

e General purpose processors have good flexibility
but low power efficiency

e FPGAs suffer from programming inefficiencies

ML Arxiv Papers
Relative Number of ML Arxiv Papers to 2009

-> Therefore, new architecture is needed

Coarse-grained Reconfigurable Architectures(CGRA)

e The architecture was first introduced in 1990s ot | pnisy | |

[2Darray |1 & 4 bi, mult-granular [rhomogenous rouing chanrels| s
i
<

S

BERREER

global & semi-global lines

. . |~ ebt]
e Before being classified as CGRA, they were
= _

S i : L]
treated as optimized FPGA -

{not disclosed)
16 bit multi-granular (not disclosed)

4 bit multi-granular (not disclosed)
16 bit segmented buses
128 bit (sophisticated)

e Around 2000, the terminology ‘CGRA’ appeared, R e —— -
8 [Pleades —[[1697 | {30] Jmeshcsbar]_ mli-ranilar | il segmeried crossbar |

Fig. 1: Summary of the technical details of the different|coarse-grained reconfigurable architectures| §

and it is widely used since then

1530-1591/01 $10.00 ©2001 IEEE

CGRA Feature

e Domain-Specific Flexibility

e (Capability of performing data-intensive
computation

e Short reconfigured time (High programmability)

e Data-driven architecture

Shared Shared Shared 3 B
Memory 1 || Memory 2 || Memory 3 =5
(16-kB) || (16-kB) || (16-KB) [}]=
C

5
EE
g

k]
Se
gL
= =4

Reconfigurable computing

Mem Mem Mem Mem
L

NOC = NOC = NOC s NOC
e wie I 1 ot el

e We are trying to bridge the gap between general purpose
CPUs and accelerators.

e Basic Idea: A spatial array of processing elements(PE) and PE PE PET PE
memories with a configurable network: ; | - |

NOC == NOC == NOC = NOoC

e We map the computation spatially onto the array.

e Goal is to strike a balance between performance and ’ S B === m—
programmability. NOC e NOC w NOC s NOC
[s nenEEs. =

PE PE PE PE

FPGA: Predecessor to CGRA

Routing is super expensive. ~50% area.

Each CLB includes LUTs and registers.

LUTs implement arbitrary logic.

Smaller LUTs are faster but need multiple LUTs for wide logic(more
routing).

Big LUTs may involve wastage of HW if unused.

Limitations/Reasons to move to CGRA:

Low level coding in hardware(Verilog, VHDL).

Synthesis can take many hours. For eg: In emulation, when a peripheral IP is
being given for build, it takes 3hrs, while its sub-system takes at-least 12 hrs.
Do you need per bit control? In FPGAs you literally need control signals for
individual bits to be routed.

Have a specific application on mind? All bits of word operations are routed
from same source to same destination.

Application specific operations such as frequent additions, multiplications
etc can be much more efficiently implemented directly than LUTs.
Compilation can be easier with CGRAs.

Lower operating frequencies.

Also certain logic and pin interfaces may not map well onto an FPGA

Coooooooo

OO0000O0O0CET
Lo OOOO000c

OO00000000

LOO0000 000
LOO0000000

0000000000 -4
0000000000

programma e routing

S

I BN

programmable lookup tables
(LUT) and flip-flops (FF)

aka

-
o
o
c
c
<]
b
=
[
-]
=

“soft logic” or “fabric”

Generic CGRA Architecture

(c) Configuration

A Generic CGRA design

14-bit Configuration Register

o Increased native word size from 1 bit — multibit.

Incoming data-paths
Outgoing data-paths

e (learly a tradeoff exists between word size and
configurability. T

e Reduces compilation and reconfiguration times
substantially.

e By increasing the granularity larger, specialized
units can be built thus operating on higher
frequencies.

e Coarser nature helps map complex operations
and timing related issues can be resolved.

CGRA vs ASIC, FPGA, CPUs

Energy-efficiency Energy-efficiency
(MOPS/mW) (MOPS/mW)

. '/
{ (e

100

‘ —(DSP
Qspu

(=

Low-level High-level
programming programming Flexibility
(Programming)

Near-Fixed Performance

(GOPS)

e ASIC has highest efficiency with least flexibility and highest performance.
CPUs have least efficiency with high level of flexibility and low performance.

e FPGAs and CGRAs try to bridge this gap, with CGRAs being closer to ASIC in terms of efficiency and performance.

10

CGRA and other fabrics

Table 1. Comparisons Between CGRAs and Important Computing Fabrics

Execution mechanism

Architecture Flexibili
) T 1 Reconfiguration | Configuration- | Dataflow- | Instruction-
RO time(® driven driven driven

¥
FPGA --_—_

: Fixed -—
In-Order
Processor/ VLIW
Out-of-Order
General
Processor

Multicore Genera 1l

e Combining spatial and temporal computations gives CGRAs high energy/area efficiency

11

Modern FPGASs:

e FPGAs getting coarser.

e Hardened logic in LUTs.

e DSP blocks available to implement ops efficiently.

Speedster:

e 7nm chip.

e 26M 6-input LUT

e 2D NOC which supports > 20Tbps. a Blending FPGA programmability
with ASIC like routing and compute engines.

e Contain machine learning processor blocks(MLP).

e MLPS are configurable, contain 32-bit MAC operators, integer and
floating point support.

e MLPS have integrated memory blocks to ensure ML algorithms run at

maximum performance.

SerDes (1-112 Gbps)
400 Gbps Ethernet PCle Gen5

ﬂaﬂ-------

i DN GSS N NN N EE

s 2 1 1 1 1 1I'=

ChE U ONN NN NN NEN WEN e G

' i
! !

Speedster

12

CGRA Architectures

Samsung Reconfigurable Processor (SRP)

® H.264/AVC decoder for UHD applications
® Hybrid parallelization (DLP + TLP)

[S. Lee, ICIP 2011]

14

SRP’s Architecture & Performance

® Two modes:
O VLIW mode: 2 Scalar, 2 Vector FUs
O CGRA mode: 8 Scalar , 8Vector FUs (127GOPS)
O 650 MHz @ 28nm Samsung Tech.
O 16 Channel DMA controller

[S. Lee 2011]

15

Plasticine
® Co-design the Architecture with high-level programming abstractions.
® Efficiently execute Parallel Patterns

® Reconfigurable Units:
O PCUs [R. Prabhakar, Micro. 2018]
O PMUs e —y
O AGs and CUs :Jﬁ

Coalescing
Usit

lg

FlatMap

16

17

Plasticine’s Control Flow & Performance

Sequential

Controller Cracht buffer wih
il v of 3

—p Tokm
o Cradl

Fra [R. Prabhakar, Micro. 2018]

Enqueun
= FIFO Nt Ml

- Utilization (%) Plasticine / FPGA
Plast Pl
ti e

Multi-CGRA

e CGRA based multi core architecture

o

(@]

Speed up entire application by running several kernels at the
same time - KLP - Kernel-Level Parallelism
Parallel kernels may be independent or interdependent

° Limitations

o

Traditional single CGRA core is optimized for parallelized
computations in one kernel at a time

Multi-CGRA architecture involves linear aggregation of single
CGRAs

Existing multi-CGRA does not adapt quickly or efficiently to
support diverse KLP

Multi-core architecture with dynamically reconfigurable array
processors is more flexible than industry implemented CGRAs
because shared data-memory banks are connected to all
processing cores through crossbar switches

In Multi-CGRA communication is restricted to the on-chip bus
Causes performance bottleneck and high power consumption
when number of cores increase.

Kim, Yoonjin. IET 2016

i Configuration
i Element (CE)

Processing
ent (PE

PE Array (PA) Data Buffer (DB)

Base Architecture

Consists of General Purpose Processors (GPPS), Direct Memory Access
(DMA), 4 CGRA and On chip communication bus.

Each CGRA consists of PE array, data buffer, configuration memory,
execution controller.

18

CCF (ldeal)

Completely Connected Fabric
- Reconfigurable multi CGRA

e Flexible connection with adjacent resources as required by applications
Keeping within system capacity but efficiently using components
e Figure shows a CCF that can enable any combination of mapping between
all of the components.
e Limitations
o full connectivity causes significant area and power overhead with
increasing number of CGRAs

19

RSF

Ring Based Sharing Fabric
- Component Sharing
between adjacent PA

- Trivial Overhead

- Easily expanded

Single cycle

Interconnection ; '
among PAs i ; A DB shared by
: two adjacent PAs

A CM shared by
two adjacent PAs

RSF -
Reconfigureable

Pipelined kernel stream for 50
iterations
CGRA configuration
- PA1 utilizes D1 and D2 and D3
and D4 for 40 iterations
- D5 for remaining 10 iterations
Shifting the configurations of PAs
from ‘PAl to PA2 to PA3’ to ‘PA4 to
PA1 to PA2.
- PAl and PA2 reconfigured
twice

K. T

CGRA#2 CGRA#3
a

CGRA#2

Intra/Inter-CGRA
Co-Reconfiguration

Metrics

CGRA CCF RSF CGRA CCF RSF
Area 10% 8% Area 42% 19%
Delay 14.1% 10% Delay 25.3% 10%
Power 11 % 5% Power 92% 22%

e Tables show % increased compared to BASE for 4 (left) and 16 (right) core
implementation

e RSF shows performance improvement upto 88.8% compared with BASE and
11.1% compared with CCF

e RSF shows reduction in energy consumption of upto 87.5% compared with
BASE and 48.2% with CCF 22

CGRA Tools

OpenCGRA - https://github.com/pnnl/0penCGRA

e Open-source, unified framework for modelling, testing, and evaluating
domain-specific customized CGRA designs

e Helps non-hardware experts design application specific CGRA designs
o Conventional CGRA design entails a significant amount of HW/SW engineering effort.

pnnl/OpenCGRA e

Northwest
NATIONAL

OpenCGRA is an open-source framework for LR e
Proudly Operated

modeling, testing, and evaluating CGRAs. b BaCUE: Since 1965

24

https://github.com/pnnl/OpenCGRA

Design Space Exploration (DSE)

e A generic architectural
template is used

o This can be synthesized to
Design Pruning

different targets based on design
space exploration
m Communication direction
m Typeoftile

m Topology ‘
e DSE Steps: iE T T Yo
o Applying loop transformations | - ME‘H X ﬁﬂ]ﬁ Bjm
pplying loop . R TR - A]A,[]
o Specializing the PE i) b Bl | @R
o Refining the network topology ™ ItmEhﬂu Hip— —*
O DeCIdlng data memory Size (a) A traditional CGRA. (b)A%yslnllc array accelerator. (¢) A CCA-like accelerator. (d)AMAERI llkeaccelcrntor

Modelling, Testing and Evaluation

e Uses PyMTL3 backend to generate Verilog

e Multilevel modelling
o Functional level
m Used for verification too
o Cycle level
m Cycle level accuracy
o Register transfer level
m Most accurate, synthesizable code

e Users only need to specify top level parameters through a python interface
o Tile count
o Functionality of tiles (for heterogeneous designs)
e hypothesis is an open source python package that is used for testing
o Includes automatic input case generation
e Evaluation — area, power, timing report (mflowgen used)
o Script to invoke open source / commercial EDA tools for synthesis

Evaluating

26

OpenCGRA - Summary

e The goal is to democratise the CGRA domain

o Software designers can implement reconfigurable hardware solutions quickly

e OpenCGRA combines Design Space Exploration with model generation and

evaluation to provide an end-to-end solution to design CGRA

An example of operation pattern
supported by complex FU ﬂ

g{lj ::;’::‘l‘\l < _:; ; ;: ;; ;: ; kit Functional Unit ?_‘) %*
oy e o ey s : | - ?gl
[Y

TT ¢

. - > o Tie jo e oo .., # > .
. .
Ka v Fa ~u Fa ¥
. _L L
. .
- " 4 wr w
. » » - .
DMA Unit a .
X . e e c ¢
- 'Y es
IMA Cur Data - e
- A8
R ————==,

27

Stanford AHA - Agile Hardware Project

Stanford research group broadly focused on “agile”
hardware development

o Seeks to develop tools and SoCs in dramatically less time than
current hardware processes

o “Agile” phrasing borrowed from software world. Agile flows
seek frequent design iterations.

Tool development spans FPGAs, CGRAs, and ASICs
Focused on image processing and computer vision
applications with plans to expand

Most designs assume hard ARM CPU on-chip

28

AHA - Algorithm Definition

e Algorithm Definition

o Halide DSL frequently used across projects
o See: Halide-To-Hardware flow

e Algorithms mapped to AHA’s CorelR

o “LLVM for hardware” - standardized
intermediate representation of hardware

o Passed to commercial FPGA/ASIC tools or
AHA’s CGRA tooling

o Example primitives: reg, shl, eq, gle, mux,
concat

e Designs assume availability of a CPU
to control FPGA/CGRA/ASIC

Image processing DSLs: e.g.,
Halide, DNN IRs Magma/ Gensis2
X Verilog

Chisel
Dataflow / Tensor
autoscheduler l

CorelR (LLVM for HW)

Fast simufation SMT-based venficalion

Halide backend | Oplimization/Analysis Passes Technology/Mapping

I Place and Route
i | Ny

FPGA ASIC
Stanford CGRA
Host code Generator

29

AHA - CGRA Hardware Generation

~ Canal

USRS

From the AHA webpage
What does it mean??

Set of high-level domain-specific languages (DSLs)

o All are written by AHA members
o Outputs of all tools are CorelR representations
o CorelR representations are converted to Verilog modules

PEak: DSL for Processing Element (PE) specification

o Discussed thoroughly in reading of Homework 1

Lake: DSL that maps memory model to SRAM architecture
and control

Canal: DSL to define interconnect switch blocks/routing
Hardware is finally generated by passing these products to
cgra_pnr and providing CGRA grid dimensions

30

AHA - CGRA Configuration Generation

e (an begin generating configuration after algorithm mapped to CorelR and
PE/Mem/Interconnect generated
e Map CorelR graph to equivalent graph using PE/Mem/Interconnect blocks

e Graph passed (back) to DSLs to generate configurations

o PE specs passed back to PEak, Mem specs passed back to Lake
o Graph connections passed to Canal for routing definitions

e Configurations merged to generate configuration bitstream

Single Source of Truth

Functional Serves as PEak Generates | Rewrite Rules
Model Specification | Using SMT for Mapper

Using magma

Hardware
RTL Verilog

l Generates

31

AHA - Putting it All Together

PEak Program Lake Program Canal Program Halide Program
v v v

v
High-Level DSLs Software Compiler

PEak: PE Generator Rewrite
Rules

Lower
Lake: Memory Generator

CorelR
Canal:Interconnect Generator Map PE and

3 3 Memory
Fault (HVL) Magma (HDL)

Halide

4

Mapped CorelR

v Routing

Low-Level DSLs CorleIR Graph Place & Route

CGRA

v

CGRA Verilog CGRA Bitstream

Limitation
e Sparse connectivity put a huge burden on the compiler

e The immaturity of CGRA technology and the diversity of
application fields makes it difficult to formulate standards

33

References

https://dl.acm.org/doi/10.1145/3357375
Prabhakar R., Zhang Y., Olukotun K. (2020) Coarse-Grained Reconfigurable

Architectures. In: Murmann B., Hoefflinger B. (eds) NANO-CHIPS 2030. The
Frontiers Collection. Springer, Cham.

Kim, Yoonjin, Hyejin Joo, and Sohyun Yoon. “Inter-Coarse-Grained
Reconfigurable Architecture Reconfiguration Technique for Efficient
Pipelining of Kernel-Stream on Coarse-Grained Reconfigurable
Architecture-Based Multi-Core Architecture.” IET circuits, devices &
systems 10.4 (2016): 251-265. Web.

34

https://dl.acm.org/doi/10.1145/3357375

Thank you

Question?

Wave DPU

e Data Flow Computing

e Local Synchronization circuits
e 32x32 clusters [C. Nicol, WC WhiteP 2017]

* Precision optimizer

+ DF agent partitioner WaveFlow Session -
+ DF agent scheduler Manager

* Runs on Session Host

* Resource Manager

* Monitors

* Drivers

* Runs on Wave
Computers

Pipelined 256-entry 6.7GHz Instruction RAM w ECC

Instruction RAM
(Circular Buffer)

* GEMM

+ Sigmoid WaveFlow
* SoftMax, etc. Agent Library

Control out
Control out - NN S S B S e e S e S e e e M e B S .

Local
Registers

Pipelined 1KB 3.5GHz Single Port Data RAM Av BIST & ECC

* WFG Compiler
* WFG Linker

+ WFG Simulator
* WFG Debugger

