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Class Presentations next Tue (5/21/24)

Modules / Week 6

Campus students (up 

to 5 students / paper)

Paper Name Name Name Name Name

24S-R1 Umair Siddique

24S-R2 Dennis Chiu Shengyi Wei Yanan Li Yang-Ho Wu Wesley Weng

24S-R3 Keith Chen Cennet Tugce Turan

24S-R4 Egor Glukhov Qinghua Gu Jiyu Zhou Jinyuan Piao Hugh Lin

24S-R5a+R5b Selasi Etchey Rafael Guerrafuentes Revati Kulkarni Frank Sheng

1.2

Aim for about 5 minutes per person



The Quest for 
Artificial Intelligence
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• Biology and 
technology operate 
differently

• Airplanes are tech-
like, not bird-like

Biologically Inspired Flying Machines?

1.4
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• There yet?

• Singularity 
point gets 
delayed
▪ In 1998: 2020

▪ In 2016: 2045

• The meaning 
of AI is also 
redefined
▪ 1997: chess / IBM

▪ Wide range of 
disembodied & 
embodied stuff

Mixing Biology and Technology (with AI Spin)

1.5
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• These “comparisons” aren’t very useful…

Brain vs Computer?

1.6
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Neural Networks Outpace Moore’s Law

1.7



Insights from Biology
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Human Vision Model

• Hierarchical Temporal Memory  (HTM)

• Bayesian Theory

• Particle Filtering

• Visual Cortex

3.9
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What is HTM?

• Theory championed by Jeff Hawkins 

(creator of the Palm Pilot)

He noticed that in brain anatomy:

▪ All layers look similar

▪ Must have common underlying algorithm

• Brain processes patterns

• Builds model of the world based on patterns

• Make predictions based on models

• Prediction is the foundation of intelligence

3.10
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Example in Vision

• Everyone has 2 Blind Spots

(one in each eye)

• Even when one eye is closed, 

you will not notice your blind spot

• The brain fills in the blind spot by 

making predictions about what 

the image in the blind spot should 

look like based on prior 

knowledge

3.11
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The Hierarchy

• At each level or node

▪ Learns common spatial and 

temporal patterns

▪ Learns common sequences

▪ Forms representations

• Each node sends 

representation up to the 

next node

• Higher nodes are more 

stable

3.12
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HTM

• Hierarchy is important because it 

allows the reuse of components

• Makes learning and storing 

information efficient

• Not a one-way feed-forward system

• Lower nodes have a lot of noise and 

ambiguity

• Stable representation is picked using 

Bayesian Belief Propagation

3.13
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Bayesian Theory

• Use knowledge of prior events to predict future events

• Find Probability of A, given B

• Probability of events are updated as more detail is given

3.14
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Uses

• Google Search

• Google Gmail and Priority inbox

• Microsoft Notifications on Windows Phone

• Voice Recognition Technology

• Used in medicine to correlate symptoms with diseases

3.15
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Particle Filtering

• In HTM, each node sends representation of 

highest probability up to the next

• What happens when two competing 

interpretations both have high probabilities (the 

input is ambiguous)?

• Particle Filtering approach is to allow time for 

longer feedback loops to have an influence

3.16
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Examples of Particle Filtering

• What do you see in these images?

3.17
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Organization of the Retina

Adapted from: webvision.med.utah.edu

• Retina converts light into 
neural signals and sends 
these neural signals to the 
brain for visual recognition

• Rods enable vision in poor 
light, cones enable color

• Horizontal cells regulate 
signals from rods and cones

• Bipolar cells Tx signals from 
photoreceptors to ganglion

• Pigment: a protective layer

3.18
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Visual Cortex

• Retina

• LGN (Lateral 

Geniculate 

Nucleus)

• V1 , V2, V3, 

V4, V5/MT, IT

3.19
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Visual Cortex

• Retina

• LGN (Lateral 

Geniculate 

Nucleus)

• V1 , V2, V3, 

V4, V5/MT, IT

3.20
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Visual Cortex (1/2)

• Lower levels have higher spatial and temporal resolution

• V1 neurons respond to precise small areas from the retina

• IT neurons respond to larger areas, loses resolution

• Low levels (V1) generally process from a fine to a 

coarse manner

• Higher levels (IT) does the opposite: coarse to fine

(and there is a dense feedback network to lower levels)

3.21
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Visual Cortex (2/2)

• Visual system has generally been thought of as a 

feed-forward system

• Lower levels send information up and the information 

converges to form a representation of something

• In order for HTM to work, there must also be a feedback loop

• Higher levels must send information down that influences the 

activity of the lower levels

3.22
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• Kosslyn et al. showed with fMRI studies that V1 region 
responds differently when patients were asked to close their 
eyes and imagine different objects

• Objects with more fine details activated the V1 region more

• Shows that even when process is begun on a higher level, the 
lower level V1 will still be activated

• V1 will only be activated if scene is ambiguous without high 
resolution information

3.23
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Interaction Between Levels

• When input is received, higher levels 

are sensitive to global context

• Lower levels process on a local scale

• As the levels interact, the lower levels 

become sensitive to global context 

while the higher level become 

sensitive to more precise detailed 

information

3.24



D. Markovic  /  Slide 25

Edge Detection

• Studies show that V1 neurons are involved in edge (contour) 

detection

• V2 neurons are involved in illusory contour

V1 = V2 =

3.25
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Contour Test

• Monkeys are shown 
series of 4 dots

• “Pac-man” dots are arranged so 
that there seems to be an 
illusionary square in the middle

• Electrodes measure response 
activity of the monkey’s V1 and 
V2 regions

Edge Detection

3.26
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Results

Amodal        Rotated        Contrast         Normal

3.27
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What Does This Mean?

• V1 was able to respond to illusory contours but at latency of 

~35ms after V2

• V2 detects existence of illusory contour by integrating 

information from spatially more global context

• V2 then feedback to V1 and modulates V1 to become 

sensitive to illusory contours

• This is an example of particle filtering: V1 has to wait for 

feedback from V2

3.28
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Conclusions from the Study

• Thus it is possible that visual cortex fits in a HTM model and 

is governed by Bayesian principles and particle filtering

• Low levels form “representations” or hypotheses about input

• Higher levels modulates the probability distribution of 

competing hypotheses using prior knowledge

• There are both feedforward and feedback signals relaying 

between higher and lower levels

3.29
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Further Reading

• Dileep George & Jeff Hawkins. Towards a Mathematical 
Theory of Cortical Micro-circuits. PLoS Computational 
Biology, October 2009, Vol. 5, Issue 10.

• Lee TS, Mumford D. Hierarchical Bayesian inference in 
the visual cortex. Journal of the Optical Society of 
America. 2003;2:1434–1448. 

• S. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert. 
Topographical representations of mental images in 
primary visual cortex. Nature 378, 496–498 (1995)

• D. George, J. Hawkins. A Hierarchical Bayesian Model of 
Invariant Pattern Recognition in the Visual Cortex. IEEE 
Int. Joint Conf. on Neural Networks, 2005.

• Hawkins J, Blakeslee S. On Intelligence. New York: Henry 
Holt and Company; 2004.

Great book | download PDF

3.30

https://papers.harvie.cz/unsorted/Jeff%20Hawkins%20-%20On%20Intelligence.pdf


Towards AI/ML Hardware



Deep Learning Revolution

• Introduction

• Deep Learning Hardware

• Current Research

• Future: Self-Supervised Learning

• Neuromorphic Computing and Chips



What is Deep Learning?

● Deep Learning is a neural 

network with multiple layers 

and tries to mimic how the 

human brain processes 

information and learns.

● Deep Learning is a machine 

learning algorithm that uses 

multiple layers to extract 

higher-level features from the 

raw input. 
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Machine Learning and Deep Learning

● Machine Learning requires more preprocessing to allow the 

algorithms to work

● Deep Learning can use unstructured data for its algorithms and uses 

more layers typically

34



Supervised, Unsupervised and Reinforcement Learning

● Supervised Learning
○ The most common one

○ Trains and tests on a labelled datasets

● Unsupervised Learning
○ Uses unlabeled datasets

○ It “discovers” hidden features and patterns without human processing

● Reinforcement Learning
○ Focus on finding a balance between 

exploration and exploitation

○ Taking an action to get maximum 

reward

35



Types of Neural Networks

● Feedfoward Neural Network

● Recurrent Neural Network (RNN)

● Convolutional Neural Network (CNN)

36



Feedforward Neural Network

● Most basic neural network

● Information flows from one 

layer to the next

● Takes a long time to train 

for large datasets

37



Recurrent Neural Network

● Adds a feedback 

component 
○ Gives the network a time 

dependence

● Used in speech and 

handwriting recognition

38



Convolutional Neural Network

● Takes advantage of convolution 

to reduce computations

● Used in image recognition

Video tutorial: https://youtu.be/pj9-rr1wDhM?si=W8nkK_yVLrOXgWzg
39

https://youtu.be/pj9-rr1wDhM?si=W8nkK_yVLrOXgWzg


History of Deep Learning and Hardware

Limitations

● hardware

● open source software

● datasets

40



Timeline ● 1957 
○ Perceptron ~ motorized potentiometers

○ Adaline ~ electrochemical memistors

● 1980s 
○ Back Propagation

○ Neural Network Chips

○ CNN development ~ shift registers

● 2000s
○ rebranded domain as Deep Learning

○ ReLU

○ applications in speech recognition

○ further use of CNN

41



Deep Learning Revolution

• Introduction

• Deep Learning Hardware

• Current Research

• Future: Self-Supervised Learning

• Neuromorphic Computing and Chips



Perceptrons

● Invented by Frank Rosenblatt in 1957

● Analog computer with 400 photocells 

as input, with weights that were 

variable resistance potentiometers 

adjusted by motors

● Early precursor of deep learning 

networks, able to classify 

patterns/images

○ Single Layer Neural Network - 

classifies input into two possible 

categories

● Discovers a set of weights 

automatically through training 

examples

○ Makes a prediction, then tweaks itself 

to make a more informed prediction 

next time

● Limitation: Could only separate 

categories that are linearly separable

Source: The Deep Learning Revolution - 

Machine Intelligence Meets Human 

Intelligence

43



Hybrid Digital/Analog Chips

54 neuron mixed analog-digital chip (1987)

● Resistor array implements vector-

matrix multiplication

● Issues with I/O bandwidth

Net32k, 256 neurons (1991)

Source: H.P. Graf, R. Janow, D. Henderson, R. Lee, 

“Reconfigurable Neural Net chip with 32K Connections”, 

Advances in Neural Information Processing Systems, 

pp. 1032-1038, 1991.

Source: H. Graf, P. de Vegvar, “A CMOS Associative Memory 

Chip Based on Neural Networks”, ISSCC, pp. 304- 305, 1987.

● Used shift registers to enable 

convolutional neural networks

● Used for image processing 

applications

44



Computational Power

Saif M. Khan and Alexander Mann, "AI Chips: What They Are and Why They Matter" (Center for Security and Emerging 

Technology, April 2020), cset.georgetown.edu/research/ai-chips-what-they-are-and-why-they-matter/.

● Not until the 2000’s that computers became powerful enough to train large 

neural networks on realistic, real-world problems  

● Development of chips for deep learning:

○ Computations consist of dense linear algebra calculations

○ Highly parallelizable
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Computational Capacity for Learning

Dean, Jeffrey. "1.1 the deep learning revolution and its implications for computer architecture and chip design." 

2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2020.
46



Computational Power

47



Deep Learning Hardware Industry

● Many startups that began in the 

past decade

● Focused on different areas such 

as low power mobile SoCs and 

data centers

● Other Technology
○ Silicon Photonics (Lightelligence) 

○ Neuromorphic Hardware (Rain 

Neuromorphics)

○ Wafer Scale Integration (Cerebras)

Source: https://basicmi.github.io/AI-Chip

48
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Deep Learning Revolution

• Introduction

• Deep Learning Hardware

• Current Research

• Future: Self-Supervised Learning

• Neuromorphic Computing and Chips



Edge Computing and Deep Learning

● Why?
○ Lower Latency

○ Bandwidth and energy cost of communication to the cloud

○ Security and Privacy

● Metrics to be Optimized
○ Latency

○ Energy consumption

○ Accuracy

○ Cost/Area

50



CPUs and GPUs

● Traditionally used for ML applications

● Perform multiply-accumulates (MACs) using highly parallelized SIMD 

architectures.

● Classification represented by Matrix multiplications.

● Have efficient memory caches to minimize access to RAM.

● Consume more energy than optimized hardware.

51



Accelerators - FPGAs and ASICs

● Low Power consumption

● Computational throughput comparable 

or higher than CPU/GPUs

● Must access external DRAM for data 

and weights - require data-reuse based 

design.

● FPGAs:
○ Highly reprogrammable

○ Low Memory - crucial for DNNs

○ Sacrifice Performance for Flexibility

● ASICs:
○ Highest performance

○ Low cost and energy

○ Require off-chip memory

○ Low generality 
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Algorithmic Improvements

● Quantization:
○ 8-bit and 16-bit fixed point operations are sufficient in many 

Deep Neural Networks and can lead to up to 2-3x improvement 

in energy usage or throughput.

○ Tolerable drops in accuracy.

○ Novel architectures use binary weights (+1/-1) for large energy and 

performance efficiency gains.

● Sparsity and Pruning:
○ Removing energy consuming weights with a relatively 

low impact on classification.

○ Transformations of weights to increase sparsity to reduce 

the number of MACs.

53



Deep Learning Revolution

• Introduction

• Deep Learning Hardware

• Current Research

• Future: Self-Supervised Learning

• Neuromorphic Computing and Chips



Self-Supervised Learning

Dog

Dog

Dog
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Self-Supervised Learning

56



Self-Supervised Learning
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Deep Learning Revolution

• Introduction

• Deep Learning Hardware

• Current Research

• Future: Self-Supervised Learning

• Neuromorphic Computing and Chips



Neuromorphic Computing

Drawing of neuron connections 

in brain

Spike train of a single neuron in the 

absence and presence of stimuli

59



Neuromorphic Chips

Intel’s Loihi 2

“We can expect AIs to have operating 

systems comparable to the one in our 

brain by 2050.” - J. Seijnowski, 

Terrence. The Deep Learning 

Revolution. MIT Press, 2018 

60



Deep Learning / References

http://yann.lecun.com/exdb/publis/pdf/lecun-isscc-19.pdf

https://www.ibm.com/cloud/learn/deep-learning

https://eyeriss.mit.edu/

Talib, M.A., Majzoub, S., Nasir, Q. et al. A systematic literature review on 
hardware implementation of artificial intelligence algorithms. J Supercomput 77, 
1897–1938 (2021). https://doi.org/10.1007/s11227-020-03325-8

V. Sze, Y. -H. Chen, J. Emer, A. Suleiman and Z. Zhang, "Hardware for machine 
learning: Challenges and opportunities," 2017 IEEE Custom Integrated Circuits 
Conference (CICC), 2017, pp. 1-8, doi: 10.1109/CICC.2017.7993626.

61

http://yann.lecun.com/exdb/publis/pdf/lecun-isscc-19.pdf
https://www.ibm.com/cloud/learn/deep-learning
https://eyeriss.mit.edu/
https://doi.org/10.1007/s11227-020-03325-8


Graph Neural Networks 

(GNNs)



GNNs / Outline

1. Brief background on neural networks

2. Data as Graphs

3. Introduction and Motivation for GNNs

4. Architecture Overview

5. Applications
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Neural Networks Review

● Neural network - artificial representation of 

brain neurons
○ Typically organized in layers with weighted edges 

(weights)

○ Foundational in modern machine/deep learning

● NNs contain trainable parameters, typically 

adjusted through backpropagation
○ Output layer used to complete either regression or 

classification task

○ “Learning” typically seeks to minimize loss/error 

function

● Multiple layers allow network to learn complex 

models for increasingly complex tasks

Fig. 1: Example fully-

connected neural net
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Supervised, Semi-Supervised, Unsupervised Learning

● Supervised learning - all training data is labeled
○ Classification

■ Image classification (CIFAR), character recognition (MNIST), any task where data is 

categorical. Output is a class

○ Regression

■ Predicting a cost given trends, predicting weather, tasks where data is continuous. 

Output is a single value

● Unsupervised learning - all training data is unlabeled
○ Clustering - can be used to identify patterns in data that is not overtly classified together

● Semi-supervised learning - mix of labeled and unlabeled data
○ Uses labeled examples to further correlate unlabeled data

65



Convolutional Neural Networks

● CNNs rose to prominence in 2012 (AlexNet)

● Particularly useful for data easily 

represented in 2D or 1D kernels
○ Images pixel by pixel, for example

● Convolutions identify the presence of local 

spatial features
○ Images of specific class often contain similar 

characteristics

● CNNs are superior at feature extraction with 

significantly fewer trainable parameters
○ Much more computationally efficient

Source: CNN introduction

66

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html?gclid=CjwKCAiArNOeBhAHEiwAze_nKCDzY403qP_iIE5m8vwgm-yu0h41pWzYcqDpjcdGgK57U4vBmGM1ghoCC_YQAvD_BwE&ef_id=CjwKCAiArNOeBhAHEiwAze_nKCDzY403qP_iIE5m8vwgm-yu0h41pWzYcqDpjcdGgK57U4vBmGM1ghoCC_YQAvD_BwE:G:s&s_kwcid=AL!8664!3!591866074057!b!!g!!%2Bconvolutional%20%2Bneural%20%2Bnetwork&s_eid=psn_57384017272&q=+convolutional%20+neural%20+network


Data as Graphs

● Graphs, consisting of nodes and edges, 

represent data items and their relationships

● Ex: social network example

● Unlike images, graphs lack spacial localities
○ Two graphs representing identical information and 

relationships can be visualized and arranged in 

numerous ways

● Traditional CNNs thus struggle to generalize 

for inference tasks based on graph data

Source: link

67

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications


Graph-based Learning Motivations

● Why might graph-based learning be 

desirable?
○ Inference tasks on large, complex sets of 

related data points. Example applications:

■ Molecular-level structures and 

interactions

■ Social networks

■ Knowledge graphs

■ Physical systems

■ Graph generation

■ Relationship extraction

■ Graph signal processing

■ …and more
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Graph Neural Networks

● GNNs represent a class of learning algorithms/architectures capable of 

performing supervised, semi-supervised, and unsupervised learning and 

inference on graph-represented data

● GNNs, as a generalization, extend CNN architectures - convolution, fully-

connected, pooling layers

● Challenge: How do we structure GNNs to extract features, despite lack of 

spatial localities?

69



GNN Design Pipeline

Determine Graph Structure

Graph Type and Scale

Building the Model

Loss Function/Training

70



Graph Structure

● Structural
○ Data has inherent graph-like 

structure (e.g. molecules and 

social networks)

● Non-structural
○ Data does not have an explicitly 

graph-like structure and must be 

first translated into graphs 

before a GNN can be applied 

(e.g. text or images for image-

recognition)
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Graph Type and Scale

● Directed vs Undirected
○ Directionality of graph edges

○ Directed edges generally contain 

more information

● Homogeneous/Heterogeneous
○ Homogenous

■ Edges and Nodes are of the 

same type

○ Heterogeneous

■ Edges and Nodes can be of 

varying types (example right)
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Graph Type and Scale

● Dynamic/Static
○ Topology/Input variance over 

time

● Graph Scale
○ Graphs may be too large to 

compute node representations 

for every layer

GNN predicting a new edge at a future timepoint
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Building the Model

● Propagation
○ Passing messages between 

nodes, aggregating information 

from node neighborhood 

between levels of the GNN

● Sampling
○ Used for large graphs or deeper 

GNNs where “neighbor 

explosion” is an issue

● Pooling
○ Pulling information from nodes 

for higher-level representations 
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Loss Function/Training

● Learning Tasks
○ Graph level, edge level, node level

● Data Supervision
○ Supervised, Semi-supervised, and unsupervised
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Architecture: Building Model By Computational Module

● Propagation Module
○ Propagate information between nodes 

so that aggregated information could 

capture feature and topological 

information

○ Neighbor: Use Convolution Operator 

& Recurrent operator

○ Historical Representation of nodes: 

Skip Connection operation

● Sampling Module
○ Sampling Operator

○ Conduct propagation on large graph

○ Combine with propagation module

● Pooling Module
○ Pooling Operator

○ Extract higher level information
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Propagation Module

● Convolution operator (Mostly used)
○ Generalize convolution from other domain to this graph domain

○ Spectral approach: Methods based on graph signal processing

○ Spatial approach: define convolution directly on graph based on topology

● Recurrent Operator
○ Diff to Convolution: use same weights in different layers

○ Mostly for acyclic graph

● Skip Connection
○ Deeper model would result in no performance gain or worse

○ Noisy information would propagation, especially with exponentially grow of neighbor

○ Module added for GNN to go deeper
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Sampling Module

● Mean: 
○ GNN model needs information from each neighbor in previous layer → grow 

exponentially

○ Memory issue, computational complexity

● Node Sampling
○ Select subset from each node’s neighbor

○ EX: GraphSAGE: sample a fixed small number of neighbor (2-50 neighborhood 

size)

○ EX: PinSage: importance based sampling method, random walks starting from 

target nodes, find highest normalized visit counts

● Layer Sampling
○ Matain small set of nodes from last layer

● Subgraph Sampling
○ Define multiple subgraphs, and restrain sampling within each subgraph

○ EX: ClusterGCN samples subgraph by graph clustering algorithm
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Pooling Module

● Mean: 
○ Pooling layer for more general features

● Direct pooling modules
○ Learn graph level representation directly from nodes with different node selection 

strategies.

○ EX: Simple Node Pooling: max/mean/sum/attention operation for global graph 

representation

○ EX: SortPooling: sorts the nodes embeddings according to the structural roles of 

the nodes and fed embedding to CNN

● Hierarchical pooling modules
○ Direct pooling method only pay attention to nodes itself

○ Hierarchical pooling methods would investigate the property of graph structure.

○ EX: gPool: use a project vector to learn projection scores for each node and select 

nodes with top-k scores.
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Applications
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Physics - Robotics

● Encode objects as nodes and edges 

as interactions to create physics 

simulation

● Ex: Using GNN to develop controls for 

robotic systems using graph based 

physic simulation

● Automates the search for control in a 

large search space

Graph Networks as Learnable Physics Engines for Inference and Control
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Chemistry - Molecular Fingerprints

● Graphs encoding of structure of molecules

● Atoms are nodes and edges are chemical bonds

● Applying GNNs to molecular graphs can result in 

more accurate fingerprints

● Very important for the pharmaceutical industry to 

develop drugs

Convolutional Networks on Graphs for Learning Molecular Fingerprints
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Traffic Networks

● Traffic networks are dynamic and 

have complex dependencies

● Optimizing traffic flow based on NN 

and GNN is an active area of 

research

● Useful for routing for navigation 

services and ride sharing services

GMAN: A Graph Multi-Attention Network for Traffic Prediction
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Computer Vision - Semantic Segmentation

● Traditional CNNs are successful at 

identifying key objects in large ROIs

● GNN techniques are suitable for 

classifying pixels

● Allows for much stricter boundaries on 

important objects in frame

● Potentially useful for self-driving cars

Semantic Object Parsing with Graph LSTM
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Text - Natural Language Processing

● GNNs are being used to gain more 

information from text

● Relationships can be drawn 

between words farther from each 

other than traditional NN methods

● Important in any application where 

a human needs to be understood 

by a machine

Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN
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Other Applications

● Protein Interface Prediction

● Stock Market Prediction

● Social Networking Analysis

● Image Classification

● Text Prediction
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Current Challenges in GNNs

● Generally lack robustness and resilience to adversarial attacks

● Still largely a “black box”

● Well-labeled and easily usable datasets are lacking compared to 

traditional machine learning
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Conclusions

● GNNs offer a unique way of performing training and inference on 

graph-based data

● Unlocks machine learning to problems not easily represented in 2D 

kernel or 1D space

● Still fairly novel compared to CNNs and are not easily interpreted

● Far-reaching in various scientific fields
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GNNs / References

● Graph neural networks: A review of methods and applications. 

https://arxiv.org/pdf/1812.08434.pdf

● https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

● https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-

cnn/

● https://distill.pub/2021/gnn-intro/
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