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Class Presentations next Tue (5/21/24)

Campus students (up
Modules / Week 6 to 5 students / paper)

Paper Name Name Name Name Name
24S-R1 Umair Siddique

245-R2  Dennis Chiu  Shengyi Wei Yanan Li Yang-Ho Wu  Wesley Weng
245-R3  Keith Chen Cennet Tugce Turan

24S5-R4  Egor Glukhov  Qinghua Gu Jiyu Zhou Jinyuan Piao  Hugh Lin

245-R5a+R5b Selasi Etchey Rafael Guerrafuentes Revati Kulkarni Frank Sheng

Aim for about 5 minutes per person
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The Quest for
Artificial Intelligence



Biologically Inspired Flying Machines?

e Biology and
v R technology operate //
B | differently //
e Airplanes are tech-

like, not bird-like

MYENTOR:

WITNESSES: g

¢ . " - 7‘..'
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Mixing Biology and Technology (with Al Spin)
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SOURCHE: RAY KURZIWEIL, “THE SINGULARITY I3 NEAR: WHEN HUMANS TRANSCEND BIOLOGY™, PAT, THE VIXING PRESS, 2006, DATAPOINTS BETWEEN 2000 AND

2012 REPRESENY BCA ESTIMATES,

HUMAN
BRAIN

MOUSE
BRAIN

e There yet?

e Singularity
point gets
delayed

= |n 1998: 2020
= |n2016: 2045

e The meaning
of Al is also

redefined

= 1997: chess /IBM

= Wide range of
disembodied &
embodied stuff
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Brain vs Computer?

e These “comparisons” aren’t very useful...

- Weight Processor Speed Energy Efficiency

/6 basketball
=it (80 cubic
3 pounds inches or Up to 1,000,000 trillion
(14kg) 1,300 cm?) operations per second 20 watts

Basketball
court
(cabinets over

4.350 square
feet, or 400 93,000 trillion operations

130 tons m?) per second 10 million watts
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Neural Networks Outpace Moore’s Law

Computing Power demanded by Deep Learning

10" Deep Learning

Growth of neural
networks

Hardware Performance

Moore’s Law

Deep Learning era

Relative Computation
o

Dennard-scaling era Multicore era
1985 1990 1995 2000 2005 2010 2015 2020
Year

Neil C. Thompson et al. (MIT) 2020 https://arxiv.org/pdf/2007.05558.pdf
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Insights from Biology



Human Vision Model

e Hierarchical Temporal Memory (HTM)
e Bayesian Theory
e Particle Filtering

e Visual Cortex

3.9



What is HTM?

e Theory championed by Jeff Hawkins
(creator of the Palm Pilot)

He noticed that in brain anatomy:

= All layers look similar

= Must have common underlying algorithm
e Brain processes patterns
e Builds model of the world based on patterns
e Make predictions based on models

e Prediction is the foundation of intelligence
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Example in Vision

e Everyone has 2 Blind Spots

Sclera (one in each eye)

choroid

|f
i '#

Ins Macula

e Even when one eye is closed,

! you will not notice your blind spot

Pupil

| |Blind spot

e The brain fills in the blind spot by

making predictions about what

Agueous |
humour

| vitreous
hurmor

oicneve  the image in the blind spot should
lens

look like based on prior

knowledge
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The Hierarchy

e At each level or node

= Learns common spatial and

temporal patterns
= Learns common sequences

= Forms representations

representation up to the

next node

e Higher nodes are more

stable
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HTM

i)
A [

awhili o
| TR
L

b W
l’ ]

e Hierarchy is important because it

allows the reuse of components

e Makes learning and storing

information efficient
* Not a one-way feed-forward system
e Lower nodes have a lot of noise and
ambiguity
e Stable representation is picked using

Bayesian Belief Propagation
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Bayesian Theory

e Use knowledge of prior events to predict future events

e Find Probability of A, given B

. P(B|A)P(A)
o — P(BIA) P(4;

S5 =55

e Probability of events are updated as more detail is given

3.14



Uses

e Google Search

e Google Gmail and Priority inbox

e Microsoft Notifications on Windows Phone
e Voice Recognition Technology

e Used in medicine to correlate symptoms with diseases
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Particle Filtering

* In HTM, each node sends representation of

highest probability up to the next

e What happens when two competing
interpretations both have high probabilities (the
input is ambiguous)?

e Particle Filtering approach is to allow time for

longer feedback loops to have an influence
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Examples of Particle Filtering

e What do you see in these images?
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Organization of the Retina

pigment _ @[ @ ' 000U e Retina converts light into

epithelium \ - i ! .
rods ‘ neural signals and sends

these neural signals to the

brain for visual recognition

outer limiting
membrane

Rods enable vision in poor
light, cones enable color

Miiller cells
Horizontal cells regulate
signals from rods and cones

Bipolar cells Tx signals from
photoreceptors to ganglion

e Pigment: a protective layer

horizontal
cells
bipolar
cells

amacrine
cells

ganglion
cells

nerve fiber
layer =~

inner limitin
mem raneg/

Fig. 2. Simple diagram of the organization of the retina. Adapted from: webvision.med.utah.edu
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Visual Cortex

temporal sulcus

Central sulcus

Intraparietal
sulcus

* Retina

* LGN (Lateral
Geniculate
Nucleus)

*V1,V2, V3,
V4, V5/MT, IT
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Visual Cortex

e Retina

e LGN (Lateral
Geniculate

= Striate
Cortex — Nucleus)

°V1,V2, V3,
V4, V5/MT, IT
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Visual Cortex (1/2)

e Lower levels have higher spatial and temporal resolution
e V1 neurons respond to precise small areas from the retina
e IT neurons respond to larger areas, loses resolution

e Low levels (V1) generally process from a fine to a

coarse manner

 Higher levels (IT) does the opposite: coarse to fine

(and there is a dense feedback network to lower levels)
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Visual Cortex (2/2)

e Visual system has generally been thought of as a

feed-forward system

e Lower levels send information up and the information

converges to form a representation of something
* In order for HTM to work, there must also be a feedback loop

e Higher levels must send information down that influences the

activity of the lower levels
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Topographical representations
of mental images in primary
visual cortex

Stephen M. Kosslyn*{, Willlam L. Thompson*,
Irene J. Kim* & Nathaniel M. Alpert:

*Department of Psychology, Harvard University, Cambridge,
Massachusetts 02138, USA

T Department of Neurology and { Department of Radiology,
Massachusetts General Hospital, Boston, Massachusetts 02114, USA

WE report here the use of positron emission tomography (PET) FIG. 1 Stimuli used in four of the five conditions. In the listening base-
to reveal that the primary visual cortex is activated when subjects line condition, subjects received trials of the following sort. First they
close their eyes and visualize objects. The size of the image is heard the name of a common object (such as ‘anchor'), and 4 s later
systematically related to the location of maximal activity, which heard a spatial comparison term (such as ‘right higher'), and then
is as expected because the earliest visual areas are spatially responded. One second later, another trial was presented. Subjects

oreanized' ™. These results were onlv evident. however. when imag- were told to close their eyes and respond as quickly as possible on

e Kosslyn et al. showed with fMRI studies that V1 region
responds differently when patients were asked to close their
eyes and imagine different objects

e Objects with more fine details activated the V1 region more

e Shows that even when process is begun on a higher level, the
lower level V1 will still be activated

e V1 will only be activated if scene is ambiguous without high
resolution information
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Interaction Between Levels

e When input is received, higher levels

are sensitive to global context
V4

e Lower levels process on a local scale

V2 e As the levels interact, the lower levels

/ become sensitive to global context

while the higher level become
W1
; sensitive to more precise detailed

information
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Edge Detection

e Studies show that V1 neurons are involved in edge (contour)

detection

e V2 neurons are involved in illusory contour

V1

V2 =

|l
¢ 9

3.25



Contour Test

Edge Detection

400 ms

\

¢
¢

400 ms

.. 400 ms
N\
L | @@

¢

* Monkeys are shown
series of 4 dots

* “Pac-man” dots are arranged so
that there seems to be an
illusionary square in the middle

wmn ° Electrodes measure response
activity of the monkey’s V1 and
V2 regions
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Results

[{e]
o o o o

Average firing rate (spikes/sec)
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What Does This Mean?

e V1 was able to respond to illusory contours but at latency of

~35ms after V2

e V2 detects existence of illusory contour by integrating
information from spatially more global context
e V2 then feedback to V1 and modulates V1 to become

sensitive to illusory contours

* This is an example of particle filtering: V1 has to wait for

feedback from V2
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Conclusions from the Study

e Thus it is possible that visual cortex fits in a HTM model and

is governed by Bayesian principles and particle filtering
e Low levels form “representations” or hypotheses about input

e Higher levels modulates the probability distribution of

competing hypotheses using prior knowledge

e There are both feedforward and feedback signals relaying

between higher and lower levels
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Further Reading

e Dileep George & Jeff Hawkins. Towards a Mathematical
Theory of Cortical Micro-circuits. PLoS Computational

_::*w Biology, October 2009, Vol. 5, Issue 10.

e Lee TS, Mumford D. Hierarchical Bayesian inference in
the visual cortex. Journal of the Optical Society of
America. 2003;2:1434-1448.

e S. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert.
Topographical representations of mental images in
primary visual cortex. Nature 378, 496—-498 (1995)

e D. George, J. Hawkins. A Hierarchical Bayesian Model of
Invariant Pattern Recognition in the Visual Cortex. |EEE
Int. Joint Conf. on Neural Networks, 2005.

INTELLIGENCE <:I Great book | download

e Hawkins J, Blakeslee S. On Intelligence. New York: Henry
Holt and Company; 2004.

THll CREATION OF
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Deep Learning Revolution

B - Introduction
 Deep Learning Hardware
* Current Research
* Future: Self-Supervised Learning
* Neuromorphic Computing and Chips



What is Deep Learning?

Deep Learning is a neural
network with multiple layers
and tries to mimic how the
human brain processes
Information and learns.

Deep Learning is a machine
learning algorithm that uses
multiple layers to extract
higher-level features from the
raw input.

Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Machine Learning:
A technique by which a computer
can "learn" from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

Deep Learning:
A technique to perform
machine learning
inspired by our brain's
own network of
neurons.

33



Machine Learning and Deep Learning

e Machine Learning requires more preprocessing to allow the
algorithms to work

e Deep Learning can use unstructured data for its algorithms and uses
more layers typically

Deep neural network
Multiple hiddenlayers ~  Output layer

5
<
9

Artificial Intelligen

Machine Learnin
Neural Networks

XYY

QRQOE
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Supervised, Unsupervised and Reinforcement Learning

e Supervised Learning
o The most common one
o Trains and tests on a labelled datasets
e Unsupervised Learning
o Uses unlabeled datasets
o It “discovers” hidden features and patterns without human processing

e Reinforcement Learning

machine learning
N

o Focus on finding a balance between  (nsupervised ~ supervised  reinforcement”
learning learning learning

exploration and exploitation St
' i - T -
o Taking an action to get maximum LR
reward
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Types of Neural Networks

e Feedfoward Neural Network
e Recurrent Neural Network (RNN)

e Convolutional Neural Network (CNN)

36



Feedforward Neural Network

Input Layer Hidden Layer Output Layer

e Most basic neural network T

N\

e Information flows from one

Variable - #2
layer to the next
Output
e Takes along time to train RIS
for large datasets
Variable - #4

An example of a Feed-forward Neural Network with one hidden layer ( with 3 neurons )
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Recurrent Neural Network

e Adds a feedback

component

o Gives the network a time
dependence

e Used in speech and
handwriting recognition

Input layer

38



Convolutional Neural Network

e Takes advantage of convolution
to reduce computations
e Used in image recognition

Input image

(\
N

N

2]

CONVOLUTION + RELU

INPUT

POOLING

CONVOLUTION + RELU POOLING

Output [0][0] = (9%0) + (4*2) + (1*4) +
(1*1) + (1*0) + (1*1) + (2*0) + (1*1)

) =0+8+1+4+1+0+1+0+1
t =16

Filter Output array
W [] - Healthy
u ] = Alarm
[ | | | = Danger
O [0 - Damaged
FULLY
FLATIEN NN erep SOFTMAX

N

Aircraft .
Feature Learning

Sensing Input

Video tutorial: https://voutu.be/pj9-rr1wDhM?si=W8nkK yVLrOXqWzq

Structural Condition
Classification
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History of Deep Learning and Hardware

Limitations

o hardware
e 0Open source software
o datasets

40



Timeline e 1957

o Perceptron ~ motorized potentiometers
o Adaline ~ electrochemical memistors

e 1980s

o Back Propagation
o Neural Network Chips
o CNN development ~ shift registers

e 2000s

o rebranded domain as Deep Learning
o RelLU

o applications in speech recognition

o further use of CNN

41



Deep Learning Revolution

* Introduction
»  Deep Learning Hardware
* Current Research
* Future: Self-Supervised Learning
* Neuromorphic Computing and Chips



Perceptrons

Invented by Frank Rosenblatt in 1957
Analog computer with 400 photocells
as input, with weights that were
variable resistance potentiometers
adjusted by motors

Early precursor of deep learning
networks, able to classify

patterns/images
o Single Layer Neural Network - r
classifies input into two possible
categories
Discovers a set of weights
automatically through training

examples
o Makes a prediction, then tweaks itself

to make a more informed prediction

next time Source: The Deep Learning Revolution -

T Machine Intelligence Meets Human
Limitation: Could only separate Intelligence

categories that are linearly separable 43

out(t)

in(t) <




Hybrid Digital/Analog Chips

54 neuron mixed analog-digital chip (1987)

“MATRIX OF RESISTIVE INTERCONNECTIONS

ADDRESS
7
S I I
4
w
o
;,( ',,!’ m*rsn'::‘c\)#:lsxcnon §
54x54 CELLS ;
o e :
i !
| 54 AMPLIFIER UNITS |
oATA 4 I I ¢ pata
s I f BUFFER f et
[ conTroL Los;/cowmn DEC. Je~- SONTROL
F
ADDRESS

ARRAY OF AMPLIFIER UNITS

FIGURE 1—Circuit schematic. Connections between input
and output lines, drawn as resi are provided by lii
elements shown in Figure 5.

FIGURE 3—Block diagram of chip.

e Resistor array implements vector-
matrix multiplication
e Issues with I/O bandwidth

Source: H. Graf, P. de Vegvar, “A CMOS Associative Memory
Chip Based on Neural Networks”, ISSCC, pp. 304- 305, 1987.

Net32k, 256 neurons (1991)

4k
[INPI" DATA REGISTER ‘ 128 BITS J
s

E™[ |™™| 128 CONNECTIONS =
X X ® x COMPARATOR 1
- o
X OUTPUT 1
7
SUMMING WIRE MULTIPLIER
E#EI.OG % A ~ A REFERENCE 1
CONNECTION A
“_~
\T n 128 CONNECTIONS =
® 0 xus COMPARATOR 4
% 5 ®_ OUTPUT 4
SUMMING WIRE MULTIPLIER
REFERENCE 4
Figure 2: Connecting four building blocks to form connections with four bits of

resolution

o Used shift registers to enable
convolutional neural networks

o Used for image processing
applications

Source: H.P. Graf, R. Janow, D. Henderson, R. Lee,
“Reconfigurable Neural Net chip with 32K Connections”,
Advances in Neural Information Processing Systems,

pp. 1032-1038, 1991.
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Computational Power

e Not until the 2000’s that computers became powerful enough to train large
neural networks on realistic, real-world problems
e Development of chips for deep learning:
o Computations consist of dense linear algebra calculations
o Highly parallelizable

Table 2: Comparing state-of-the-art Al chips to state-of-the-art CPUs

Training Inference Generality®® Inference
accuracy®
Efficiency Speed Efficiency Speed
CPU 1x baseline Very High ~98-99.7%
GPU ~10-100x | ~10-1,000x ~1-10x ~1-100x High ~98-99.7%
FPGA ~10-100x ~10-100x Medium ~95-99%
ASIC ~100-1,000x | ~10-1,000x | ~100-1,000x | ~10-1,000x Low ~90-98%

Saif M. Khan and Alexander Mann, "Al Chips: What They Are and Why They Matter" (Center for Security and Emerging

Technology, April 2020), cset.georgetown.edu/research/ai-chips-what-they-are-and-why-they-matter/.




Computational Capacity for Learning

Petaflop/s-day (Training)

10,000

1,000

100

10

.01

0001

00001

Dean, Jeffrey. "1.1 the deep learning revolution and its implications for computer architecture and chip design.

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

e AlexNet
e Dropout

2013

e AlphaGo Zero

e AlphaZero

e Neural Machine Translation
e Neural Architecture Search

e Xception e TI7 Dota 1vi

VGG e DeepSpeech2
® Seq2Seq *HasNels

e GoogleNet

® Visualizing and Understanding Conv Nets

2014 2015 2016 2017 2018 2019

Yeal

2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2020.
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Computational Power

100000
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1
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Based on SPECINtCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018
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Deep Learning Hardware Industry

Many startups that began in the
past decade

Focused on different areas such
as low power mobile SoCs and
data centers

Other Technology

o Silicon Photonics (Lightelligence)

o Neuromorphic Hardware (Rain
Neuromorphics)

o Wafer Scale Integration (Cerebras)

IC Vendors Intel, Qualcomm, Nvidia, Samsung, AMD, Xilinx, IBM, STMicroelectronics, NXP, 17
Marvell, MediaTek, HiSilicon, Rockehip, Renesas Electronics, Ambarella, Sony

Tech Giants
&e:I Pclan Google, Amazon_AWS, Microsoft, Apple, Aliyun, Alibaba Group, Tencent Cloud, 16
Baidu, Baidu Cloud, HUAWEI, Fujitsu, Niokia, Facebook, HPE, Tesla, LG, SK Telecom

Vendors

IP Vendors ARM, Synopsys, Imagination, CEVA, Cadence, VeriSilicon, Videantis 7
Startupsin Cambricon, Horizon Robatics, Bitmain, Chipintelli, Thinkforee, Unisound, AlSpeech,

China P Rokid, NextVPLU, Canaan, Enflame, Eesay Tech, WITINMEM, TSING MICRQO, Black 16

Sesame, Corerain

Cerebras, Graphcore, PEZY, Tenstorrent, Blaize, Koniku, Adapteva, Knowm, Mythic,
Kalray, BrainChip, Almotive, Leepmind, Krtkl, NovuMind, REM, TERADEEP, Deep
Vision, Grog, Kneron, Esperanto Technologies, Gyrfalcon Technology, SambaNova
Systems, GreenWaves Technology, Lightelligence, Lightmatter, ThinkSilicon, Innogrit,
Startups Kortig, Hailo,Tachyum,AlphalCs,Syntiant, aiCTX, Flex Logix, Preferred Network,
Worldwide Cornami, Anaflash, Optaylsys, Eta Compute, Achronix, Areanna Al, Neuroblade,
Luminous Computing, Efinix, AISTORM, SiMa.ai,Untether Al, GrAl Matter Lab, Rain
Neuromorphics, Applied Brain Research, XMOS, DinoPlusAl, Furiosa Al, Perceive,

62

SimpleMachines, Neureality, Analog Inference, Quadric, EdgeQ, Innatera

Nanosystems, Ceremarphic

Source: https://basicmi.qgithub.io/Al-Chip
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Deep Learning Revolution

* Introduction
 Deep Learning Hardware
» * Current Research
* Future: Self-Supervised Learning
* Neuromorphic Computing and Chips



Edge Computing and Deep Learning

o Why?

@)

(@)

(@)

Lower Latency
Bandwidth and energy cost of communication to the cloud
Security and Privacy

Metrics to be Optimized

(@)

(@)

@)

(@)

Latency

Energy consumption
Accuracy

Cost/Area
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CPUs and GPUs

e Traditionally used for ML applications

e Perform multiply-accumulates (MACSs) using highly parallelized SIMD
architectures.

e Classification represented by Matrix multiplications.
e Have efficient memory caches to minimize access to RAM.

e Consume more energy than optimized hardware.
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Accelerators - FPGAs and ASICs

Data Movement Energy Cost

e Low Power consumption | DRAM | oAU I 200x
e Computational throughput comparable »[aw] 6x
or higher than CPU/GPUs [e=] =
RF ALU 1=

e Must access external DRAM for data
and weights - require data-reuse based

design. ,
Link Clock! Core Clock DCNN Accelerator
o FPGAS: T . 14%12 PE Array
o Highly reprogrammable P
o Low Memory - crucial for DNNs

ALY =G0 1% (Reference)

o Sacrifice Performance for Flexibility

e ASICs: : :
o Highest performance ! é
o Low cost and energy FEEE
o Require off-chip memory
o Low generality 64 bits

Eyeriss Architecture
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Algorithmic Improvements

o Quantization:
o 8-bit and 16-bit fixed point operations are sufficient in many
Deep Neural Networks and can lead to up to 2-3x improvement
In energy usage or throughput.
o Tolerable drops in accuracy.
o Novel architectures use binary weights (+1/-1) for large energy and
performance efficiency gains.

e Sparsity and Pruning:
o Removing energy consuming weights with a relatively
low impact on classification.

o Transformations of weights to increase sparsity to reduce
the number of MACs.
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Self-Supervised Learning
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Self-Supervised Learning
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Self-Supervised Learning

(a) Input context

Source: Arxiv
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Neuromorphic Computing

Drawing of neuron connections
in brain

Trial number
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Spike train of a single neuron in the
absence and presence of stimuli
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Neuromorphic Chips

Intel’s Loihi 2

“We can expect Als to have operating
systems comparable to the one in our
brain by 2050.” - J. Seijnowski,
Terrence. The Deep Learning
Revolution. MIT Press, 2018
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Deep Learning / References

http://yann.lecun.com/exdb/publis/pdf/lecun-isscc-19.pdf

https://www.ibm.com/cloud/learn/deep-learning

https://eyeriss.mit.edu/

Talib, M.A., Majzoub, S., Nasir, Q. et al. A systematic literature review on
hardware implementation of artificial intelligence algorithms. J Supercomput 77,
1897-1938 (2021). hitps://doi.org/10.1007/s11227-020-03325-8

V. Sze, Y. -H. Chen, J. Emer, A. Suleiman and Z. Zhang, "Hardware for machine
learning: Challenges and opportunities,” 2017 IEEE Custom Integrated Circuits
Conference (CICC), 2017, pp. 1-8, doi: 10.1109/CICC.2017.7993626.
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https://www.ibm.com/cloud/learn/deep-learning
https://eyeriss.mit.edu/
https://doi.org/10.1007/s11227-020-03325-8

Graph Neural Networks
(GNNS)



GNNs / Outline

1. Brief background on neural networks
2. Data as Graphs

3. Introduction and Motivation for GNNs
4. Architecture Overview

5. Applications
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Neural Networks Review

e Neural network - artificial representation of

brain neurons
o Typically organized in layers with weighted edges
(weights)
o Foundational in modern machine/deep learning
e NNSs contain trainable parameters, typically

adjusted through backpropagation
o Output layer used to complete either regression or
classification task
o “Learning” typically seeks to minimize loss/error
function

e Multiple layers allow network to learn complex
models for increasingly complex tasks
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Fig. 1. Example fully-
connected neural net
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Supervised, Semi-Supervised, Unsupervised Learning

e Supervised learning - all training data is labeled
o Classification
m Image classification (CIFAR), character recognition (MNIST), any task where data is
categorical. Output is a class
o Regression
m Predicting a cost given trends, predicting weather, tasks where data is continuous.
Output is a single value
e Unsupervised learning - all training data is unlabeled
o Clustering - can be used to identify patterns in data that is not overtly classified together

e Semi-supervised learning - mix of labeled and unlabeled data
o Uses labeled examples to further correlate unlabeled data
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Convolutional Neural Networks

CNNs rose to prominence in 2012 (AlexNet)
Particularly useful for data easily

represented in 2D or 1D kernels
o Images pixel by pixel, for example

Convolutions identify the presence of local e S
spatial features (i:)"“h o () . A
o Images of specific class often contain similar e i @x2) e d,,.t, 0
characteristics e :
CNNs are superior at feature extraction with . 2
significantly fewer trainable parameters mom s s o \g s

o Much more computationally efficient

n3 units

Source: CNN introduction
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https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html?gclid=CjwKCAiArNOeBhAHEiwAze_nKCDzY403qP_iIE5m8vwgm-yu0h41pWzYcqDpjcdGgK57U4vBmGM1ghoCC_YQAvD_BwE&ef_id=CjwKCAiArNOeBhAHEiwAze_nKCDzY403qP_iIE5m8vwgm-yu0h41pWzYcqDpjcdGgK57U4vBmGM1ghoCC_YQAvD_BwE:G:s&s_kwcid=AL!8664!3!591866074057!b!!g!!%2Bconvolutional%20%2Bneural%20%2Bnetwork&s_eid=psn_57384017272&q=+convolutional%20+neural%20+network

Data as Graphs

e Graphs, consisting of nodes and edges,
represent data items and their relationships
Ex: social network example

Unlike images, graphs lack spacial localities
o Two graphs representing identical information and
relationships can be visualized and arranged in
numerous ways

e Traditional CNNs thus struggle to generalize
for inference tasks based on graph data

=

Source: lin

High school
Local area friends
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https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

Graph-based Learning Motivations

e Why might graph-based learning be

desirable?
o Inference tasks on large, complex sets of
related data points. Example applications:

Molecular-level structures and

interactions

Social networks )
Knowledge graphs - L

Physical systems BN . 0
Graph generation . pi" . TR

Relationship extraction” = , == *a
Graph signal processin S
...and more

z(n)

(a) original signal

n(n)

[

(b) noisy signal

xg(n)

(c) filtered signal

01z 2 4 5 6 T
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Graph Neural Networks

e GNNSs represent a class of learning algorithms/architectures capable of
performing supervised, semi-supervised, and unsupervised learning and
inference on graph-represented data

e GNNSs, as a generalization, extend CNN architectures - convolution, fully-
connected, pooling layers

e Challenge: How do we structure GNNSs to extract features, despite lack of
spatial localities?
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GNN Design Pipeline

Determine Graph Structure

A 4

Graph Type and Scale

:

Building the Model

-

Loss Function/Training
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Graph Structure

e Structural
o Data has inherent graph-like
structure (e.g. molecules and
social networks)

e Non-structural
o Data does not have an explicitly
graph-like structure and must be
first translated into graphs
before a GNN can be applied
(e.g. text or images for image-
recognition)

WA

(b) Molecule

71



Graph Type and Scale

e Directed vs Undirected
o Directionality of graph edges
o Directed edges generally contain
more information

e Homogeneous/Heterogeneous
o Homogenous
m Edges and Nodes are of the
same type
o Heterogeneous
m Edges and Nodes can be of
varying types (example right)
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Graph Type and Scale

e Dynamic/Static @;\ A
o Topology/Input variance over j ", /" . 2(ts) o
time o ™ ) p((2 4)ls)

e Graph Scale
o Graphs may be too large to
compute node representations
for every layer

Layer Sampling
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Building the Model

e Propagation

O

Passing messages between
nodes, aggregating information
from node neighborhood
between levels of the GNN

e Sampling

(@)

Used for large graphs or deeper

GNNs where “neighbor
explosion” is an issue

e Pooling

(@)

Pulling information from nodes
for higher-level representations

Propagation <
Madule

Sampling
1

Pooling
Module

. .
v Canvolution

1 Operator i

,,,,,,,,,,

! Recurrent
: Operator

__________

-

Skip

'
.

Spectral
Spectral Fommmmmmmmmme IEfRork
DGCN
___________ Neural FPs
]
' Basic '
L
GraphSAGE
Spatial
___________ ymmmmmmeean
1 Attentional :r--— GAT
' Framework F--1 MoNet

___________

N | Convergence j— GNN
T Eieiebeleb bbbl —
Fommemmmmm-

gommT e ]

H Gate r--- GGNN

__________ H

Conmection 1 T TTTTTTTTTTTT L

! Node :r -- GraphSAGE WVR-GCN PinSAGE
___________

Layer r FastGCN LADIES
““““““ '

Subgraph r ClusterGCN GraphSAINT
,,,,,,,,,,,

Direct == Slml.)le Set2set SortPooling
___________ Pooling
___________ ) Coarsening ECC DiffPool
| Hierarchical
...........

EigenPooling SAGPool

ChebNet

GWNN

GAAN

MPNN

GraphSEN

Tree LSTM

Highway
GCN

gPool

GCN

PATCHY-
SAN

NLNN

SSE

Graph LSTM

CLN

AGCN

LGCN

GN

LP-GNN

Sentence
LSTM

DeepGCN
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Loss Function/Training

e Learning Tasks
Graph level, edge level, node level

e Data Supervision
Supervised, Semi-supervised, and unsupervised

(@)

(@)

|

Unsupervised
Training

-

g ——

__________

__________

GAE/VGAE ARGA/ARVGA
AGE
""""""""" DGI Infograph

MGAE

Multi-view

GALA
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Architecture:

i Skip.
1 Connection 1
A D ’
[ [ o
| Sampling Conv/Recurrent Pooling '
) Operator Operator : Operator /'
____________________
Input Output

Node
Embedding

Edge
Embedding

%

GNN GNN
e —> |:'|>
H—.H_’

Graph
Embedding

1. Find graph structure. 4. Build model using computational modules.

2. Specify graph type and scale.

Building Model By Computational Module

e Propagation Module

Propagate information between nodes
so that aggregated information could
capture feature and topological
information

Neighbor: Use Convolution Operator
& Recurrent operator

Historical Representation of nodes:
Skip Connection operation

(@)

Loss Function

e Sampling Module

1

Training Settin Task .

Supgr\ﬁsed ) EJ [ Node-level J O Sam p I N g Op erato r

Seml-supgrwsed : E?SE-I?\;SIE .

e e o Conduct propagation on large graph
o Combine with propagation module

3. Design loss function.

e Pooling Module
Pooling Operator
Extract higher level information

(@)
(@)
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Propagation Module

e Convolution operator (Mostly used)

o Generalize convolution from other domain to this graph domain

o Spectral approach: Methods based on graph signal processing

o Spatial approach: define convolution directly on graph based on topology
e Recurrent Operator

o Diff to Convolution: use same weights in different layers

o Mostly for acyclic graph
e Skip Connection

o Deeper model would result in no performance gain or worse

o Noisy information would propagation, especially with exponentially grow of neighbor
o Module added for GNN to go deeper

77



Sampling Module

e Mean:
o GNN model needs information from each neighbor in previous layer — grow
exponentially
o Memory issue, computational complexity
e Node Sampling
o Select subset from each node’s neighbor
o EX: GraphSAGE: sample a fixed small number of neighbor (2-50 neighborhood
size)
o EX: PinSage: importance based sampling method, random walks starting from
target nodes, find highest normalized visit counts
e Layer Sampling
o Matain small set of nodes from last layer
e Subgraph Sampling
o Define multiple subgraphs, and restrain sampling within each subgraph
o EX: ClusterGCN samples subgraph by graph clustering algorithm
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Pooling Module

e Mean:
o Pooling layer for more general features

e Direct pooling modules
o Learn graph level representation directly from nodes with different node selection
strategies.
o EX: Simple Node Pooling: max/mean/sum/attention operation for global graph
representation
o EX: SortPooling: sorts the nodes embeddings according to the structural roles of
the nodes and fed embedding to CNN
e Hierarchical pooling modules
o Direct pooling method only pay attention to nodes itself
o Hierarchical pooling methods would investigate the property of graph structure.
o EX: gPool: use a project vector to learn projection scores for each node and select
nodes with top-k scores.
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Applications



PhySICS B RObOtICS Pendulum Cartpole Acrobot Swimmer6

Encode objects as nodes and edges d " -\ \
as interactions to create physics Cheetah  Walker2d  JACO
simulation

Ex: Using GNN to develop controls for
robotic systems using graph based
physic simulation

Automates the search for control in a
large search space

Real JACO

Graph Networks as Learnable Physics Engines for Inference and Control
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Chemistry - Molecular Fingerprints

e Graphs encoding of structure of molecules

e Atoms are nodes and edges are chemical bonds

e Applying GNNSs to molecular graphs can result in
more accurate fingerprints

e Very important for the pharmaceutical industry to
develop drugs

Convolutional Networks on Graphs for Learning Molecular Fingerprints
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Traffic Networks

. . #Traffic sensor ':.pnt:a] CDTTE[E.[I:}_I:‘I___. - :__I_E:I'EIPﬂml mrre]atmn
e Traffic networks are dynamic and  a_ni» T
have complex dependencies 0/# P ﬁ o . E
. | "\a of
e Optimizing traffic flow based on NN L el t4I41
and GNN is an active area of Time “'

research
e Useful for routing for navigation
services and ride sharing services

(a) Xiamen (95 sensors) (b) PeMS (325 sensors)
GMAN: A Graph Multi-Attention Network for Traffic Prediction
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Computer Vision - Semantic Segmentation

e Traditional CNNs are successful at
identifying key objects in large ROIs

e GNN techniques are suitable for
classifying pixels

e Allows for much stricter boundaries on
important objects in frame

e Potentially useful for self-driving cars

W e
M upper-arms
B o
B uoperlegs
B ower-legs

. lower-arms

Semantic Object Parsing with Graph LSTM
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Text - Natural Language Processing

e GNNs are being used to gain more
information from text

e Relationships can be drawn
between words farther from each
other than traditional NN methods

e Important in any application where
a human needs to be understood
by a machine

He is a true great
goalscorer for club
and England, and it

is fitting that he is

now the highest
goalscorer for both
United and England.

Original text

u

fit

graph
generating

Window Size = 3

nit @
o€ ngland
#-high
L
great
. club
goalscor
L]
true

Graph-of-words

Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN
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Other Applications

Protein Interface Prediction
Stock Market Prediction
Social Networking Analysis
Image Classification

Text Prediction
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Current Challenges in GNNs

e Generally lack robustness and resilience to adversarial attacks

e Still largely a “black box”

e Well-labeled and easily usable datasets are lacking compared to
traditional machine learning
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Conclusions

e GNNs offer a unique way of performing training and inference on
graph-based data

e Unlocks machine learning to problems not easily represented in 2D
kernel or 1D space

e Still fairly novel compared to CNNs and are not easily interpreted

e Far-reaching in various scientific fields
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GNNs / References

e Graph neural networks: A review of methods and applications.
https://arxiv.org/pdf/1812.08434.pdf

e https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

e https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-

cnn/

e https://distill.pub/2021/gnn-intro/
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