
ECE 239AS, Winter 2019 Midterm Overview

Department of Electrical Engineering Prof. J.C. Kao

UCLA ECE TAs W. Chuang & M. Kleinman & K. Liang & A. Wickstrom

Midterm statistics (out of 100 maximum points):

Overall statistics (across whole class; 254 exams)

High score: 100

Mean score: 78.4

Median score: 80.5

Standard deviation: 11.8

Graduate student statistics (225 exams)

High score: 100

Mean score: 78

Median score: 80

Standard deviation: 11.4

Undergraduate student statistics (29 exams)

High score: 100

Mean score: 80.6

Median score: 84

Standard deviation: 14.4

1

ECE 239AS, Winter 2019 Midterm

Department of Electrical Engineering Prof. J.C. Kao
UCLA ECE TAs W. Chuang & M. Kleinman & K. Liang & A. Wickstrom

UCLA True Bruin academic integrity principles apply.
4 cheat sheets allowed
6:00 - 7:50pm.
Wednesday, 20 Feb 2019.

State your assumptions and reasoning.
No credit without reasoning.
Show all work on these pages.

Name:

Signature:

ID#:

Problem 1 / 20
Problem 2 / 20
Problem 3 / 20
Problem 4 / 20
Problem 5 / 20

Total / 100

1

1. Training, validation, and testing.

(a) (5 points) Briefly explain the purpose of the training, validation, and testing set. Com-
ment on how many times each set should be used when doing k-fold cross validation.

(b) (10 points) Consider a dataset where a signal evolves through time. The data is sampled
at an extremely high rate, meaning that adjacent time points are highly correlated.
Consider also that this dataset has few trials. Your colleague comes up with an idea
to increase the number of effective trials: he decides to subsample the data with no
overlapping time points (so, for instance time points 1, 3, 5, 7, 9... could represent one
effective trial and time points 2, 4, 6, 8, ... another). He tells you he now has twice the
number of effective trials.

i. (3 points) Why might it be beneficial to subsample the data to increase the number
of effective trials?

ii. (7 points) After subsampling the data, your colleague randomly split his trials (of
which he now has double) into a training and validation set. He tells you that his
validation accuracy is much higher than anything you have achieved. Suggest why
this might be the case.

(c) (5 points) Another colleague splits the data into 80% training, 10% validation, and 10%
test. This colleague did not subsample the data. He has experimented with various
architectures, each time training on the training set, validating on the validation set,
and then testing on the testing set. Based on his testing accuracy, he would see which
hyperparameters worked well, and make modifications to his model, reiterating the
above process. Will the final test accuracy reported be an accurate proxy for how well
his model will generalize to new data? Briefly explain.

Solution:

(a) (5 points) The training set is used to adjust the parameters of the network to fit the
input examples. The validation set is used to select optimal hyperparameters. The
testing set is to be used as a proxy to see how well the model (the architecture and
hyperparameters) would generalize to new data. The test set should only be used
once, after the cross-validation procedure, where each fold will be used k times for
training/validation.

(b) (10 points)

i. (3 points) Increasing the number of trials can allow for a more complicated/descriptive
model to be learned. It can also help against overfitting and make the model more
robust.

ii. (7 points) The group was effectively training on the validation set, since the sub-
sampled trials were highly correlated, and hence the parameters were adjusted to
fit the highly correlated trials in the training set, which were effectively in the vali-
dation set as well. They should have first split the training and validation set, and
then subsampled.

(c) (5 points) No, it will be an overestimate. By testing on the training set multiple times,
they will have overfit to the testing set.

2

2. Backpropagation. Consider a 3 layer neural network (NN), with x 2 Rn as input and
y 2 Rm as the target value. The NN is constructed as the following:

L =
1

2
||h3(h2(h1(x)))� y||2

h1(x) = PReLU(W1x)

h2(x) = ELU(W2x)

h3(x) = W3x

where

• W1,W2 2 Rn⇥n and W3 2 Rm⇥n

• For the PReLU unit, f(x) = max(↵x, x).

• For the ELU unit, f(x) = max(↵(ex � 1), x).

for 0 < ↵ < 1.

(a) (5 points) Draw the computational graph for this neural network.

(b) (15 points) Calculate @L
@W1

, @L
@W2

, @L
@W3

using backpropagation. You may define interme-
diate variables and write the gradients in terms of these intermediate variables.

Hint: For a ReLU function f(x) = max(0, x), we compute the gradient for x < 0 and
x > 0 separately. For instance, @f(x)

@x = {x > 0}·1+ {x < 0}·0. Compute the gradient
for PReLU and ELU with the same method.

Solution:

(a) We gave full points for a correctly drawn computational graph.

(b) Let

e = W1x

d = ReLU(e)

c = W2d

b = ELU(c)

a = W3b

Therefore, y = ||a||2.
@L
@a = a� y

@L
@W3

=
a

@W3
· @L
@a

= (a� y)bT

@a
@b = W T

3
@b
@c = diag({c1 < 0} · ↵ec1 + {c1 > 0}, ..., {cn < 0} · ↵ecn + {cn > 0})

3

@L
@W2

=
@c

@W2
· @b
@c

· @a
@b

· @L
@a

=
@b

@c
·W T

3 · (a� y) · dT

@c
@d = W T

2
@d
@e = diag({e1 < 0} · ↵+ {e1 > 0}, ..., {en < 0} · ↵+ {en > 0})

@L
@W1

=
@e

@W1
· @d
@e

· @c
@d

· @L
@c

=
@d

@e
·W T

2 · @b
@c

·W T
3 · (a� y) · xT

3. Regularization.

(a) (5 points) You are tasked with training a feedforward neural network. Your boss asks
you to shrink the effective size of the model by using regularization. How can you
complete the task?

(b) (5 points) Why can L2 regularization be referred to as “weight decay”?

(c) (5 points) How does batch normalization help a neural network to be more robust to
initialization?

(d) (5 points) How does dropout act as a regularizer?

Solution:

(a) (5 points) This question was designed to test your knowledge of applying regulariza-
tion methods covered in class to a given model. In the problem statement, shrinking
the ”effective size” of the model implies reducing the number of significant parameters
without directly altering the model architecture. Points were subtracted if the proposed
solution directly altered the architecture of the model, or invoked additional models.

You can shrink the effective size of the model by invoking L1 regularization, which
will impose a sparsity constraint on the model. That is, some parameters will have an
optimal value of zero. This can be implemented by adjusting the loss and gradient of
the model. Specifically:

⌦(✓) = kW k1
=

X

i,j

|Wi,j |

The loss function then becomes:

J̃(W) = ↵kW k1 + J(W)

4

which will encourage a subset of the weights to become zero. This results in a model
with a smaller effective size.
Full points were given for adding an L1 penalty to the loss function, and describing how
this would effect the effective model size.
The following solutions received partial credit:

• Dropout: During each forward pass, it may seem that the model is smaller because
some of the activations are ”zeroed-out”. But in practice, over the course of an ac-
tual set of training epochs, the probability is quite high that each unit gets included
in at least one of the subnetworks within the model. That is, all of the units most
likely end up being trained on some of the input data, and as such, comprise an
integral part of the model. So at test time, a model using dropout still has the same
number of parameters as a vanilla network with an otherwise identical architec-
ture. Besides, the weights corresponding to the units that get dropped during a
given forward pass aren’t actually zeroed out – they are simply not updated during
the subsequent backpropagation and weight update.
Finally, scaling the activations by p during test time doesn’t reduce the size of the
model, as the number of nonzero weights stays the same.

• L2: L2 regularization shrinks the magnitude of the weights, but the overall size of
the model stays the same. Specifically, L2 does not cause parameters to be sparse.
L1 regularization imposes sparsity, which shrinks the effective size of the model.

• Definitions of regularization: This category of solutions described generally how
regularizers may be used to reduce model complexity, but did not describe a specific
example to reduce the effective size of the given model.

(b) (5 points) L2 regularization favors models with smaller weights. With the L2 penalty
in the loss function, the weights will have a tendency to decay over time compared to a
model without L2 penalty.
Let ✏,↵ equal nonzero learning rate and regularization hyperparameter, respectively.
Specifically:

⌦(✓) =
1

2
kW k22

=
1

2

X

i,j

W 2
i,j

J̃(✓) =
↵

2
W>W + J(✓)

rW J̃(✓) = ↵W +rWJ(✓)

For each gradient step to update the weights:

W W � ✏ (↵W +rWJ(✓))

 (1� ✏↵)W � ✏rWJ(✓)

By modifying the gradient update with a weight decay term (1 � ✏↵), for nonzero ✏,↵,
the weight matrix shrinks by a constant factor on each training iteration, before apply-
ing the gradient update. Across training, this will lead to weight matrices with smaller,
more diffuse entries than vanilla gradient update.

5

(c) (5 points) This question was designed to test your intuition on the batchnorm algorithm,
as well as your understanding how neural networks are sensitive to initialization.

By enabling the outputs at each layer to be normalized, batch normalization (BN) en-
sures that none of the activations will decay to zero or explode to infinity after cascading
through multiple layers. As a result, the gradients are more robust to vanishing or ex-
ploding during backpropagation.
Why is this a benefit?
Vanishing gradients make training near impossible because of information loss: it be-
comes impossible to effectively propagate the gradient upstream when you multiply by
zero at some deep layer. Exploding gradients are impossible to train because as they
tend toward infinity, your gradient becomes so large that you either take large steps far
away from the starting point into some new subspace of the loss landscape, or they are
large enough to cause overflow errors.
Poor initializations include those drawn from distributions with variance too low or
too high, which would facilitate activations during the forward pass to either vanish
or explode after composition through multiple layers. Additionally, initializing from a
distribution with a large mean would contribute to multiplicative exponential growth
of activations, even with small variance.
The following solutions received partial credit:

• Mentioning that BN normalizes activations, but failing to describe how this adds
robustness

• Stating that ”parameters in lower layers change the statistics of input to a given
layer” without describing when and how this can be problematic

• Stating that gradient descent expects unchanging distributions when updating lay-
ers, but failing to describe relevance to initialization robustness.

(d) (5 points) By applying a random mask to activations at each training iteration, dropout
aims to approximate training a large (2N) ensemble of models, each comprised of the
units that passed through a mask. If we view dropout as training these multiple sub-
networks within the full model, and averaging their predictions at test time, dropout
can be seen as an approximation to bagging. The slight distinction is that in dropout,
all the models share a significant portion of weights.
Full credit was awarded for describing how dropout approximates bagging, and how
this constitutes regularization.
Partial credit was awarded for listing one or more of the following properties of dropout,
with extra points for justification:

• Similar to corrupting the input data with noise
• Encourages units to work in diverse contexts, which prevents them from overfitting

to specific features by ”smoothing out” their expressive power
• Encouraging redundant encoding

4. Optimization.

(a) (12 points) Suppose, oddly, that an optimizer takes several gradient steps and arrives
back at a same parameter setting, W, that is exactly the same as in a prior step. This
setting of W does not correspond to a local optima of the loss function. Imagine you are

6

optimizing this neural network using a batch algorithm, i.e., using the entire training
set to calculate a gradient. You are also using a fixed learning rate.

i. (4 points) Consider that the optimizer was a naive gradient descent optimizer (with
no momentum or adaptive gradients). Is the gradient step that you will take the
second time you are at this parameter setting, W, (circle one)
• larger (in magnitude)
• smaller (in magnitude)
• the exact same, or
• can’t be determined (i.e. not enough information)

than the gradient step the first time the optimizer was at the parameter setting,
W? Justify your answer.

ii. (4 points) Consider that the optimizer was Adagrad. Is the gradient step that you
will take the second time you are at this parameter setting, W, (circle one)
• larger (in magnitude)
• smaller (in magnitude)
• the exact same, or
• can’t be determined (i.e. not enough information)

than the gradient step the first time the optimizer was at the parameter setting,
W? Justify your answer.

iii. (4 points) Consider that the optimizer was RMSprop. Is the gradient step that you
will take the second time you are at this parameter setting, W, (circle one)
• larger (in magnitude)
• smaller (in magnitude)
• the exact same, or
• can’t be determined (i.e. not enough information)

than the gradient step the first time the optimizer was at the parameter setting,
W? Justify your answer.

(b) (8 points) The following figure is a contour plot where the contour lines denote the
value of the loss as a function of two weight variables (corresponding to the x and y-
axis). Imagine we have taken two gradient steps given by the gray arrows. Sketch on
the same plot the weight update steps taken by SGD, SGD+momentum, and Adagrad
after step 2. Do not perform any calculations; the sketch should be arrived at through
intuition. Give at most a two sentence explanation for each arrow you’ve drawn.

7

100
90
80
70
60
50

step 1

step 2

w2

w1

Solution:

(a) (a)

i. Exactly the same. SGD maintains no history and all the data is used to calculate
the gradient. Therefore the gradient will be exactly the same. Since the learning
rate is also exactly the same, the step is exactly the same.

Note, some students thought this question asked how an experimenter would in-
tervene in the algorithm, or tried to address why we were in this situation. I gave
partial credit here, since the question did use the phrasing “you will take.” How-
ever, we have never talked (nor is it standard practice, except in annealing the
learning rate) about intervening into a gradient descent algorithm.

ii. Smaller. Adagrad keeps a running sum of the squared gradients, a. a will increase
over more iterations, leading to the Adagrad steps being smaller.

iii. Can’t be determined. Since RMSprop normalizes by an exponential history of
squared gradients, and we don’t know the gradients before reaching this point,
we cannot determine if the step will be bigger or smaller.

(b)

8

100
90
80
70
60
50

step 1

step 2

w2

w1

sgd
sgd+momentum
adagrad

5. Convolutional neural networks. Consider a convolutional layer C followed by a max pool-
ing layer P . The input to layer C is 120 ⇥ 120 ⇥ 50. Layer C has 20 filters, each of which
is of size 4 ⇥ 4. The convolution padding is 1 and the stride is 2. Layer P performs max
pooling over each of the layer C0s output feature maps, over a 3⇥3 receptive field, and stride
1. Given x1, x2, ..., xn all scalars, we assume:

• A scalar multiplication xi · xj accounts for one FLOP;

• A scalar addition xi + xj accounts for one FLOP;

• A max operation max(x1, x2, ..., xn) accounts for n� 1 FLOPs.

You do not need to calculate the products you write out (e.g., answers maybe left in terms
like “(x · y · w) · z”).

(a) (5 points) What is the total number of trainable parameters? Please account for the
bias term.

(b) (4 points) What is the size of layer C ’s output feature map?

(c) (4 points) What is the size of layer P ’s output feature map?

(d) (7 points) How many FLOPs are there in layers C and P during one forward pass?
Please include the bias term when calculating the FLOPs.

Solution:

9

(a) (4⇥ 4⇥ 50 + 1)⇥ 20

(b) 60⇥ 60⇥ 20

(c) 58⇥ 58⇥ 20

(d) 20⇥ (60⇥ 60)⇥ (4⇥ 4⇥ 50⇥ 2) + (8⇥ 58⇥ 58⇥ 20)

10

