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1. ML basics (25 points).

(a) (5 points) Consider a k-nearest neighbors binary classifier which assigns the class of
a test point to be the class of the majority of the k-nearest neighbors, according to a
Euclidean distance metric. Using the data set shown above to train the classifier and
choosing k = 5, what is the classification error on the training set? Assume that a point
can be its own neighbor.

Answer as a decimal with 4 significant figures, e.g. (6.051, 0.1230, 1.234e+7) or a
fraction.
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(b) (7 points) Assume we have a training and test set drawn from the same distribution,
and we would like to classify points in the test set using a k-nearest neighbors classifier.

i. (3 points) In order to minimize the classification error on this test set, we should
always choose the value of k which minimizes the training set error.
Select one:

A. True

B. False

ii. (4 points) Consider two methods for optimizing the hyperparameters.

• Method 1 chooses the hyperparameters that minimize the training set error.

• Method 2 splits the data into training and validation sets, and chooses the
hyperparameters that minimize the validation error.

Which method is better? Justify with no more than 3 sentences. Select one:

A. Method 1

B. Method 2

(c) (5 points) Please select all true statements about k-nearest neighbors:

(Note: Justification is not necessary, but may result in partial credit if the answer is
incorrect.)

Select all that apply:

A Increasing k will generally result in a smoother decision boundary.

B Icreasing k will generally reduce the impact of noise or outliers in the data.

C Increasing k increases the likelihood of overfitting the data.

D It is possible to use cross-validation to select the value of k.

E We should never select the k that minimizes the error on the validation dataset.

F None of the above.
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(d) (8 points) Consider a classifier trained till convergence on some training data Dtrain,
and tested on a separate test set Dtest. You evaluate the test error, and find that it is
very high. You then compute the training error and find that it is close to 0.

i. (3 points) Has this classifier (1) underfit, (2) reasonably fit, or (3) overfit the data?

ii. (5 points) Which of the following are expected to help improve this classifier?
(Note: Justification is not necessary, but may result in partial credit if the answer
is incorrect.)
Select all that apply:

A. Increase the training data size.

B. Decrease the training data size.

C. Increase model complexity.

D. Decrease model complexity.

E. Train on a combination of Dtrain and Dtest and test on Dtest.

F. Conclude that Machine Learning does not work.
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2. Detecting signature forgery using similarity network (40 points)

Bank of Westwood has been receiving many complaints from its clients about their signa-
tures being forged. In order to address this problem, the bank has decided to hire you for
designing a machine learning system for detecting signature forgery. You have learned about
the similarity network recently and want to use it for this problem.

A similarity network is a Fully Connected Feedforward network that accepts distinct in-
puts but share the same weights. To be precise, {(x(i), x̂(i)), y(i)} constitutes the ith training
example, where (x(i) ∈ Rd,x̂(i) ∈ Rd) represents the ith pair of single input example and
y(i) ∈ {+1,−1} is the output label for the ith pair. For this problem,

• If the ith pair of input (x(i), x̂(i)) is composed of signature images both of which are
genuine, then the label for the ith example is +1 (y(i) = +1).

• If the ith pair of input (x(i), x̂(i)) is composed of signature images both of which are
forged, then the label for the ith example is -1 (y(i) = −1).

• If the ith pair of input (x(i), x̂(i)) is composed of signature images one of which is genuine
and the other is forged, then the label for the ith example is -1 (y(i) = −1).

The architecture of the similarity network is given below:

h1 = ReLU(W1x)

ĥ1 = ReLU(W1x̂)

z = W2h1

ẑ = W2ĥ1

s = cos⟨z, ẑ⟩ = zT ẑ

∥z∥2∥ẑ∥2
L = −y · s

(a) (30 points) Having defined the architecture of the similarity network, you are now
ready to learn the parameters of the network using stochastic gradient descent. The
main ingredient of the gradient descent algorithms are the gradients. In the following
parts, we will be walking you through the gradient computation process. To aid the
gradient computations, we have drawn out the computational graph for you below. You
may directly use any results derived in class.
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Figure 1: Computational graph of the similarity network

i. (10 points) Compute ∇zL and ∇ẑL and denote them as δz and δẑ respectively. For
all the following parts, you can use δz and δẑ to refer to ∇zL and ∇ẑL respectively.

Hint: Recall the derivative quotient rule for scalars:

d

dz

(
f(z)

g(z)

)
=

f ′(z)g(z)− g′(z)f(z)

g(z)2

for f ′(z) = df(z)
dz and g′(z) = dg(z)

dz .
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ii. (5 points) Compute ∇W2L. For all the following parts, you can use δW2 to refer
to ∇W2L.

iii. (5 points) Compute ∇h1L and ∇ĥ1
L. For all the following parts, you can use δh1

and δĥ1
to refer to ∇h1L and ∇ĥ1

L respectively.
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iv. (5 points) Compute ∇mL and ∇nL. For all the following parts, you can use δm and
δn to refer to ∇mL and ∇nL respectively. Use the symbol ⊙ to denote elementwise
multiplication (Hadamard product).

v. (5 points) Compute ∇W1L.

8



(b) (9 points) In the similarity network architecture, z and ẑ represents the embedding
vectors for input signature images x and x̂ respectively. Suppose we are given a training
sample, {(x(g), x̂(g)),+1}.

i. (3 points) Compute the loss for the training sample if z(g) = ẑ(g).

ii. (3 points) Compute the loss for the training sample if z(g) and ẑ(g) are orthogonal
to each other

iii. (3 points) Compute the loss for the training sample if z(g) = −ẑ(g).

(c) (1 points) Based on your answer to part (b), explain if the loss function is forcing the
embedding vectors in the right direction.
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3. Training neural networks (25 points)

(a) (4 points) Which of the following activation functions where vanishing gradients usually
happen? Select all that apply. (Note: Justification is not necessary, but may result
in partial credit if the answer is incorrect.)

A. ReLU
B. Tanh
C. Sigmoid
D. Leaky ReLU
E. Identity

(b) (5 points) What is true about batch normalization? Select all that apply. (Note:
Justification is not necessary, but may result in partial credit if the answer is incorrect.)

A. Batch normalization slows down the training process by requiring more iterations.
B. Batch normalization is a non-learnable transformation.
C. Batch normalization is a non-linear transformation to make the output of each layer
have unit statistics.
D. Batch normalization introduces noise to a hidden layer’s activation.
E. Batch normalization is not applicable at test time.

(c) (5 points) Which of the following are true about regularization? Select all that ap-
ply. (Note: Justification is not necessary, but may result in partial credit if the answer
is incorrect.)

A. L1 regularization often results in some weights being 0.
B. Adding a regularization penalty will always reduce the training loss.
C. Dropout acts as regularization.
D. Unsuccessful regularization attempts (such as having too large a weight on a param-
eter norm penalty) could lead to model underfitting.
E. None of the above
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(d) (5 points) Which of the following are true? Select all that apply. (Note: Justifica-
tion is not necessary, but may result in partial credit if the answer is incorrect.)

A. In transfer learning, we can freeze most parameters of the original network.
B. Data augmentation could help address the class imbalance problem (having different
number of examples for each class) for image classification.
C. Multitask learning is not applicable if you have a small amount of data for a particular
task.
D. Ensemble methods are an effective way to improve performance.
E. None of the above.

(e) (6 points) Early stopping is a popular regularization method that constantly evaluates
the training and validation loss on each training iteration, and returns the model with
the lowest validation error. Now, you are going to draw an illustration of early stopping
and introduce the concept of it to your friend. Fill in the blanks in the figure with
precise answers.

Hint:
(1) and (2) describe the axis legends.
(3) and (4) describe specific values on the vertical and horizontal axes.
(5) and (6) describe the names of curves.
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4. Gradient-based optimization algorithms (15 points)

We have learned several optimization algorithms. Given a loss function L(θ), the algorithms
make use of the gradient information g = ∇θL to iteratively update the parameters θ. The
update rule, however, varies for different algorithms.

Let gt := ∇θL(θt−1) be the gradient at θt−1. This question will discuss the following update
rules from class, reproduced here for convenience:

Gradient Descent At the tth iteration,

θt ← θt−1 − εgt,

where ε is the step size hyperparameter.

Gradient Descent with Momentum At the tth iteration,

vt ← αvt−1 − εgt

θt ← θt−1 + vt

where ε is the step size hyperparameter, and α ∈ [0, 1] is the running average parameter
for momentum.

AdaGrad At the tth iteration,

at ← at−1 + gt ⊙ gt

θt ← θt−1 −
ε

√
at + ν

⊙ gt,

where ν is a small value to prevent zero-division and ε is the step size hyperparameter.

Adam At the tth iteration,

vt ← β1vt−1 + (1− β1)gt

at ← β2at−1 + (1− β2)gt ⊙ gt

ṽt =
1

1− βt
1

vt (bias correction for first moment)

ãt =
1

1− βt
2

at (bias correction for second moment)

θt ← θt−1 −
ε√

ãt + ν
⊙ ṽt,

where ν is a small value to prevent zero-division, β1 and β2 are the running average
parameter for the first and second moment estimation. ε is the step size hyperparameter.

(a) (10 points) Getting out of a “trap”. Figure 2 is the landscape of a loss function
with an 1-D parameter θ ∈ R. As the plot shows, there is a “plateau” between θ = 3
and θ = 6.

In the plot, the arrows show 6 vanilla gradient descent steps (with a fixed step size ε)
before reaching the red dot near a local minimum. Note that the 6th step is so small that
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Figure 2: Loss landscape of L(θ), and a gradient descent trajectory on it.

the details can only be shown in the zoom-in inset. This demonstrates that the plateau
acts as a “trap” for gradient descent, where the gradient almost vanishes, leading to
marginal update magnitude.

Now consider the optimization algorithms mentioned above. Assume they all share the
same ε and starting point as that are used for the plotted gradient descent steps, and
that Adam and AdaGrad share the same ν.

i. (5 points) Which optimization algorithms would have a better chance to get out of
the trap compared to Gradient Descent? Briefly explain your reasons.
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ii. (5 points) After several updates from the same starting point, when the optimizers
“just step into the plateau”, please order the “update magnitude” given by Gradi-
ent Descent with Momentum, AdaGrad, and Adam. Briefly explain your reasons.

Here “update magnitude” refers to the norm of the update step, for example, at
the tth step, “update magnitude” is ∥θt − θt−1∥2.
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(b) (5 points) Notice that the Adam algorithm designs the “bias correction” steps for the
first and second moment estimation of the gradients. In this question, we are going to
derive the correction factors.

We will treat the gradients along the optimization trajectory as random variables, and
assume that g1,g2, . . ., are i.i.d. with some distribution that has the first and second
moment. That is, we assume

E[gt] = µ, t = 1, 2, . . .

E[g2
t ] = s, t = 1, 2, . . .

where for simplicity, we denote gt ⊙ gt as g
2
t .

We first expand the recursive relation and express vt in terms of g1,g2, . . . ,gt.

This gives

vt = (1− β1)gt + β1(1− β1)gt−1 + β2
1(1− β1)gt−2 + . . .+ βt−1

1 (1− β1)g1

= (1− β1)

t∑
i=1

βt−i
1 gi (1)

and similarly,

at = (1− β2)

t∑
i=1

βt−i
2 g2

i (2)

Then consider the expectation of vt, E[vt], and compare with µ.

Show that the correction factor γ1 =
1

1− βt
1

satisfies

γ1E[vt] = µ = E[gt].

You will see that γ2 =
1

1− βt
2

corrects E[at] to s (i.e. E[g2
t ]) in a similar way.

Hint: The sum of a geometric series p0, p1, . . . , pn−1 is given by:

n−1∑
j=1

pj =
1− pn

1− p
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(Space for question 4b.)
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5. Bonus (5 points) Nesterov Momentum.

Recall that in class, we discussed the Nesterov momentum update. For parameters θ, Nes-
terov momentum performs:

v ← αv − ϵ∇θL(θ + αv)

θ ← θ + v

In class, we showed the result that by defining θ̃old = θold + αvold, the update becomes:

vnew = αvold − ϵ∇θL(θ̃old)
θ̃new = θ̃old + vnew + α(vnew − vold)

followed by setting vold = vnew and θ̃old = θ̃new. Show that these two update rules are
equivalent.
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