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1. Multiple choice and short answer (20 points). For multiple choice, you do not need to
justify your answers. If you provide justifications, they may be used to award partial credit
if applicable.

(a) (5 points) Consider a Fully connected (FC) network with the tanh(·) activation for
classification on the CIFAR-10 dataset. The network has no biases, only weights. Your
goal is to initialize the weights. Please select all true statements (multiple may be
true).

(A) Initializing all weights to zero results in zero gradients and therefore no learning.

(B) Initializing all weights to very large random values will result in vanishing gradients.

(C) Initializing all weights to the same exact value (say every weight is equal to 2) will
cause all weights to always be equal, even after several gradient descent steps.

Solution: A, B.

(b) (5 points) A trained neural network achieves high training accuracy but poor validation
accuracy on CIFAR-10 dataset. Which of the following are reasonable approaches to
decrease the gap between the training and validation accuracy? Please select all true
statements (multiple may be true).

(A) Increase the number of layers in the neural network.

(B) Perform dataset augmentation on input images (including crops, color augmenta-
tions, and reflections).

(C) Use dropout.

Solution: B, C

(c) (5 points) Your friend just finished a deep learning course. He comes to you with an
idea he believes is brilliant: He thought of a new activation function that he wants to
use in neural network training:

f(z) =

{
1, z ≥ 0

−1, z < 0

Would you recommend he use this activation function? Justify your answer in no more
than two sentences.

Solution: f(z) has zero gradients for all inputs (except at 0 where it’s non-differentiable)
which means there won’t be learning.

(d) (5 points) Consider a Convolutional neural network (CNN) with N conv-pool layers.
Each conv-pool layer uses five filters of size 3× 3, stride = 1 and padding = 1, followed
by relu(), followed by 2 × 2 max pooling with stride 2. The input image is of size
256× 256× 3. What is the number of trainable parameters (including bias) in the first
conv-pool layer?
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Solution: The number of parameters in the first layer are:

Parameters = (3 · 3 · 3 + 1) · 5
= 140

Max-pool layer does not have any parameters.
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2. Binary classification on unbalanced data: backpropagation with weighted cross-
entropy loss (30 points)

Bronchitis is an inflammation of the lining of your bronchial tubes, which carry air to and
from your lungs. The symptoms of bronchitis are wheezing and coughing. If you develop these
symptoms, you visit a pulmonologist and they order a chest X-ray to diagnose the disease.
However, analyzing the X-ray manually takes time and is not scalable. Therefore, doctors
at UCLA have contacted you to build a machine learning model for predicting whether the
patient has bronchitis or not given the chest X-ray. Since bronchitis is not a common disease,
the dataset they have provided you is highly imbalanced:

• 10000 chest X-rays from patients without bronchitis

• 1000 chest X-rays from patients with bronchitis

(a) (2 points) Name two data augmentation techniques that can help you to alleviate the
class imbalance problem.

Solution: Some data augmentation techniques that can help you to alleviate the class
imbalance problem are:

• Translation

• Cropping

• Reflection

• Gaussian Blurring

(b) (21 points) Instead of data augmentation, you want to design a neural network that
can learn well even from the imbalanced dataset. You have come up with the following
architecture:

z1 = W1x
(i) + b1

a1 = ReLU(z1)

z2 = W2a1 + b2

ŷ(i) = σ(z2)

L(i) = α · y(i) · log(ŷ(i)) + β · (1− y(i)) · log(1− ŷ(i))

J = − 1

m

m∑
i=1

L(i)

where ŷ(i) ∈ R, y(i) ∈ R, x(i) ∈ RDx×1, W1 ∈ RDa1×Dx , W2 ∈ R1×Da1 , and σ(·) is
the sigmoid activation function. Note that m is the size of the dataset. Also note that
the chest X-ray are flattened into vectors of length Dx before being fed into the neural
network. If the ith chest X-ray belongs to a patient with bronchitis, then y(i) = 1. If
the ith chest X-ray belongs to a patient without bronchitis, then y(i) = 0.

i. (2 points) What are the dimensions of b1 and b2?

Solution: b1 ∈ RDa1 , b2 ∈ R
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ii. (2 points) Why are the hyperparameters α and β useful? Answer in no more than
3 sentences.

Solution: Weighting how much each class contributes to the loss function can
help gradient descent because the network will take larger steps when learning
from instances of the underrepresented class.

iii. (2 points) What values of α and β should you pick such that the samples from each
class contribute equally in the training process?

Solution: Since the ratio of the class samples is 10, so we can pick α = 1, β = 10.

iv. (3 points) Compute ∇ŷ(i)L(i) and denote it as δŷ(i) . For all the following parts, you
can refer to this computed gradient as δŷ(i) .

Solution: Using linearity and chain rule of differentiation,

∇ŷ(i)L
(i) = α

y(i)

ŷ(i)
− β

1− y(i)

1− ŷ(i)
= δŷ(i)

v. (3 points) Compute ∇b2L(i) and denote it as δb2 . For all the following parts, you
can refer to this computed gradient as δb2 .

Hint: The derivative of σ(z) with respect to z is: dσ(z)
dz = σ(z)(1− σ(z))

Solution: The local derivative at the sigmoid operator is given by,

∇z2 ŷ
(i) = σ(z2)[1− σ(z2)].

Then backpropagating to z2 we get

∇z2L(i) = σ(z2)[1− σ(z2)]∇ŷ(i)L
(i).

Since plus operator passes the gradient, so

∇b2L(i) = σ(z2)[1− σ(z2)]∇ŷ(i)L
(i)

δb2 = σ(z2)[1− σ(z2)]δŷ(i)

vi. (3 points) Compute ∇W2L(i) and denote it as δW2 . For all the following parts, you
can refer to this computed gradient as δW2 .

Solution: Since multiplication operator switches the gradient, so

∇W2L(i) = aT1 δb2 = δW2

vii. (3 points) Compute ∇b1L(i) and denote it as δb1 . For all the following parts, you
can refer to this computed gradient as δb1 .
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Solution: Backpropagating to a1 we get

∇a1L(i) = WT
2 ∇b2L(i)

= WT
2 δb2

Now, backpropagating to z1 we get

∇z1L(i) = I(z1 > 0)⊙∇a1L(i).

Since plus operator passes the gradient, so

∇b1L(i) = ∇z1L(i) = δb1 .

viii. (3 points) Compute ∇W1L(i) and denote it as δW1 .

Solution: Since multiplication operator switches the gradient, so

∇W1L(i) = ∇b1L(i)x(i)T

δW1 = δb1x
(i)T

(c) (5 points) You learned in class that regularization increases the generalization ability
of the model. Suppose you want to add L2 regularization with strength 1 to parameter
W2. That is, the updated loss function with L2 regularization is:

Ĵ = J + ∥W2∥22 .

Assuming you are using vanilla gradient descent with learning rate ϵ, write down the
update rule for weight parameter W2.

Solution:

W
(k+1)
2 = W

(k)
2 − ϵ[∇W2J

(k) + 2W
(k)
2 ]

(d) (2 points) Suppose you used L1 regularization instead. How would you expect the
weights learned using L1 regularization to differ from those learned using L2 regular-
ization?

Solution: Weights learned using L1 regularization will be more sparse than the weights
learned using L2 regularization.
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3. Regularization (25 points)

(a) (5 points) Ensembling. Why does ensembling several neural networks usually increase
generalization performance? Justify your answer in no more that 4 sentences.

Solution: If neural networks make somewhat independent errors, then they are likely
to make errors on different trials. We will only get a trial wrong when several neural
networks make the same errors. Hence, lower correlation between the model, better
accuracy of the ensemble model.

(b) (10 points) L-∞ norm. Your friend, Alice, is helping you to train a Fully connected
(FC) network with n layers. The parameters in layer i are represented as a weight
matrix Wi. She suggests using L−∞ regularization on Wi (also known as Chebyshev
norm) as shown below:

Lreg(θ) = L(θ) +R(W)

where

R(W) =
λ

n

n∑
i=1

||Wi||∞.

For A ∈ Rp×m, the L−∞ norm returns the maximum row sum of A. Mathematically,
it is defined as

||A||∞ = max
1≤k≤p

m∑
j=1

|Akj |

Compute the gradient∇WiR(W). This expression is the gradient of R(W) with respect
to the weight matrix Wi. For this question, assume the gradient of |w| with respect to
w is sign(w) (i.e., −1 if w is negative, +1 if w is positive, and 0 if w is zero).

Solution: Given L−∞ expression is

R(W) =
λ

n

n∑
i=1

||Wi||∞

Based on the dimensions of input, hidden layer and output dimensions, the individual
weight matrix dimensions will be known to us. Without loss of generality, let the weight
matrix of the ith hidden layer Wi ∈ Rm×p comprising of row vectors wi

r and elements
represented as wi

rc then

R(W) =
λ

n

n∑
i=1

(
max

1≤r≤m

p∑
c=1

|wi
rc|

)
Let j denote the index of row with maximum row-sum. Then the above equation reduces
to

R(W) =
λ

n

n∑
i=1

p∑
c=1

|wi
jc|
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Therefore,

∇WiR(W) =
λ

n


0 0 · · · 0
0 0 · · · 0

sign(wi
j1) sign(wi

j2) · · · sign(wi
jp)

0 0 · · · 0



∇WiR(W) =
λ

n


0
0

sign(wi
j)

0


(c) Batch vs Layer Normalization (10 points)

Recall that batch normalization transforms the activation of a single neuron over B
examples in a batch, {x(1), x(2), . . . , x(B)} into {y(1), y(2), . . . , y(B)} according to the
following set of equations:

µB =
1

B

B∑
j=1

x(j)

σ2
B =

1

B

B∑
j=1

(x(j) − µB)
2

x̂(j) =
x(j) − µB√

σ2
B + ϵ

, ∀ j = 1, 2, · · · , B

y(j) = γx̂(j) + β, ∀ j = 1, 2, · · · , B

There is another type of normalization called “layer normalization.” In “layer normal-
ization,” the input is x ∈ RD, the activity of D artificial neurons, and the output is
y ∈ RD, the layer normalized activity of the D artificial neurons, according to the
following equations:

µℓ =
1

D

D∑
i=1

xi

σ2
ℓ =

1

D

D∑
i=1

(xi − µl)
2

x̂i =
xi − µℓ√
σ2
ℓ + ϵ

, ∀ i = 1, 2, · · · , D

yi = γx̂i + β, ∀ i = 1, 2, · · · , D

where xi and yi are the ith elements of x and y, respectively. Therefore, µℓ is the mean
of all the D artificial neurons and σ2

ℓ is the variance across the D artificial neurons in
the lth layer.

i. (3 points) Why does batch normalization cause a network to be more robust to
random weight initializations?
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ii. (4 points) Describe the major differences between Layer and Batch normalization
(no more than 4 sentences).

iii. (3 points) Name one condition when it may be preferable to use layer normalization
instead of batch normalization (no more than 3 sentences).

Solution:

i. Random weight initializations can cause problems of exploding/vanishing gradients
and exacerbate internal covariate shift. For an appropriate batch size, the random
weight initialization does not affect Batch Normalization as strongly because the
mean and variance of the output of Batch Normalization is constrained and learnt
by model.

ii. In batch normalization, the normalization occurs on a per neuron per batch that
is the mean and variance calculated is for all instances in a batch per channel.
In Layer normalization, the mean and variance is calculated for a single instance
across all channels that is across a layer.

iii. As layer normalization normalizes the activations across an entire layer, it performs
better than Batch normalization when the batch size is reduced. It also performs
better when modelling sequential data. Layer Normalization is extensively used in
RNNs.
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4. Gradient-based optimization algorithms (25 points)
We have learnt several optimization algorithms in class. We list them below along with their
update rules for your convenience. For all the algorithms below,

gt = ∇θL(θt−1)

where gt is the gradient at tth iteration of the loss function with respect to the parameter θ
evaluated at θt−1.

Vanilla Gradient Descent At tth iteration,

θt = θt−1 − εgt

Gradient Descent with momentum At tth iteration,

vt = αvt−1 − εgt

θt = θt−1 + vt

Nesterov Momentum At tth iteration,

vt = αvt−1 − ε∇θL(θt−1 + αvt−1)

θt = θt−1 + vt

Adagrad At tth iteration,

at = at−1 + gt⊙gt

θt = θt−1 −
ε

√
at + ν

⊙gt

RMSProp At tth iteration,

at = βat−1 + (1− β)gt⊙gt

θt = θt−1 −
ε

√
at + ν

⊙gt

Adam with bias correction At tth iteration,

vt = β1vt−1 + (1− β1)gt

at = β2at−1 + (1− β2)gt⊙gt

v̂t =
vt

1− βt
1

ât =
at

1− βt
2

θt = θt−1 −
ε√

ât + ν
⊙v̂t
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Comparing optimization algorithms

(a) (5 points) Consider a loss surface with 1-D parameter w ∈ R as shown in Figure 1. In
the plot we marked the starting point of the optimization algorithm. We made 4 vanilla
gradient descent updates as marked in the figure. We also stored the running average
of the momentum vt, for these 4 vanilla gradient descent steps, using the update rule

vt = αvt−1 − εgt

We choose α = 0.9. For the 5th step, you must choose to update the weight using
“Gradient Descent with Momentum” or “Nesterov Momentum.” which weight update
will lead to a faster convergence to the minimum which is marked with a star in Figure
1. Why? Justify your answer in no more than 5 sentences.

Figure 1: Figure for question 4a

Solution: It is better to choose ”Nesterov Momentum” in the above scenario. The loss
function has a steep slope in steps 1-4 so the accumulated momentum will be large. We
know that our weight update is always opposite to the direction of gradient so in our
case it would be a large positive update on weights( as slope is negative for steps 1-4),
this will overshoot the minima for and reach to the right of it in case of plain ”GD+
momentum”.

However in case of Nesterov Momentum we look before we leap. So although the
momentum weight update to the right of point 4 the slope at point θt−1 + αvt−1 is
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positive which will work against the momentum and push the weight updates towards
to minima, hence we converge on the minima faster.

(b) (6 points) Consider the contour plot of a loss function with 2-D weights w ∈ R2. You
and your friend in C147/C247 want to play a guessing game.Your friend uses 3 opti-
mization algorithms “Gradient Descent with Momentum”, “Adagrad” and “Adam” to
find the minima of the loss function whose contour plot is shown in Figure 2.

The learning rate (ε) used for all the 3 algorithms is the same. Despite different weight
initializations the algorithms happen to meet at a common point at some iteration t as
marked in Figure 2. At iteration t + 1, the 3 algorithms mentioned above update the
weights to points a,b, c as marked in Figure 2.

You need to pair which optimization algorithm amongst ”GD+momentum”, ”Adagrad”
and ”Adam” correspond to the weight updates to point a,b and c respectively. Justify
your answer in no more than 6 sentences.

Figure 2: Figure for question 4b

Solution: We see from contour plot that at the point of interest, we we have large
gradient in the y / w2 direction and small gradients in the x / w1 direction. We know
that ”GD with momentum” updates weights governed the direction of the higher gra-
dient in this case it is along w2 so point a corresponds to update of GD+Momentum.
The magnitude for a is also the largest.
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Adagrad on the other hand anneals the learning rate along the direction where the gra-
dient is large and the weight update is biased to the direction of smaller gradient which
x direction in our case so point c corresponds to update of Adagrad. The magnitude
for c is the smallest.

Adam on the other hand combines the above two so its update would not be dominantly
x or y so point b corresponds to update of Adam. The magnitude for b is in between
a and c

a → GD+momentum. b → Adam. c → Adagrad.

(c) (14 points) Gradients as Random vectors:
You plan to train a neural network with Mini-batch Gradient descent + Momentum.
You initialize the weights by drawing samples from a multivariate Gaussian distribution
with mean 0 and covariance η2I . In other words E(θ0) = 0,Cov(θ0) = η2I,θ ∈ RD.
We assume the gradients calculated at any arbitrary iteration k have the same expected
value E(gk) = µ. Assume the initial value for momentum v0 = 0.

i. (6 points) Express θt (the weights at iteration t) in terms of θ0 (the initial weights),
ε (the learning rate), α (momentum hyperparameter) and the gradients g1,g2, . . .gt.

Solution: For GD+ momentum we have the following update rules,

vt = αvt−1 − εgt

θt = θt−1 + vt

The recursive equation for vt, θt would yield,

vt = −ε

t∑
i=1

αt−igi

θt = θ0 +
t∑

j=1

vj

θt = θ0 − ε

t∑
j=1

(

j∑
i=1

αj−igi)
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ii. (8 points) Calculate the expected value of the weights E(θt) at any arbitrary itera-
tion t. Your answer should be in terms of ε (the learning rate), α (momentum hy-
perparameter), µ( Expected value of gradients) and t only. Recall that E(gk) = µ
for all k.

Hint: The sum of terms in a geometric series a, ar, ar2, . . . , arn−1 is:

n−1∑
p=0

(arp) =
a(1− rn)

1− r

Solution:

E(θt) = E(θ0)− εE(
t∑

j=1

j∑
i=1

αj−igi)

E(θt) = E(θ0)− ε

t∑
j=1

j∑
i=1

αj−iE(gi)

Expectation is linear and ε is a constant

E(θt) = −ε
t∑

j=1

j∑
i=1

αj−iµ

Substitute for ,E(gk) = µ

E(θt) = −ε

t∑
j=1

j∑
i=1

αj−iµ

E(θt) = −εµ

t∑
j=1

(1 + α+ α2 . . . αj−1)

E(θt) = −εµ

t∑
j=1

1− αj

1− α

E(θt) =
−εµ

1− α

t∑
j=1

(1− αj)

E(θt) =
−εµ

1− α

(
t− α(1− αt)

1− α

)
5. Bonus (7 points) Covariance of Momentum

For this question, you may assume that E(gt) = E(vt) = µ = 0, where gt ∈ RD is the
gradient vector at iteration ”t” and vt ∈ RD is the running average of the momentum at
iteration t.
Further, it is given that

E(gigT
j ) =

{
σ2I i = j

0 i ̸= j
(1)
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Compute E(vtv
T
t ) .

Solution: Again we start with recursive form of momentum update equation

vt = −ε

t∑
i=1

αt−igi

Cov(vt) = E(vtvt
T )

Zero mean for momentum update

Cov(vt) = ε2E(
t∑

i=1

αt−igi[
t∑

j=1

αt−jgj ]
T )

= ε2E(
t∑

i=1

t∑
j=1

αt−iαt−jgig
T
j )

= ε2[
t∑

i=1

α2(t−i)E(gigT
i )]

= ε2σ2I
t∑

i=1

α2(t−i)

Cov(v̂t) = ε2σ2(
1− α2t

1− α2
)I
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