
ECE C147/C247, Winter 2024 Midterm Review

Neural Networks & Deep Learning Prof. J.C. Kao
UCLA ECE TAs: T. Monsoor, Y. Liu, S. Rajesh, L. Julakanti, K. Pang

1. Multiple choice (Shreyas)

Please pick the correct answers for each questions, note that each question can

have one or more than one correct.

(a) Consider Figure 1 plotting loss values as a function of the number of epochs, select
the option that best describe the shaded regions in the plot, and the point where you
would stop training to achieve the best generalization.

Figure 1

i. R1: Overfitting, R2: Underfitting, stop at a.

ii. R1: Overfitting, R2: Underfitting, stop at b.

iii. R1: Underfitting, R2: Overfitting, stop at b.

iv. R1: Underfitting, R2: Overfitting, stop at c.

(b) When we minimize the negative log likelihood for a classification problem with c classes,
which of the following are we inherently performing?

i. Maximizing the likelihood of observing the training data.

ii. Minimizing the Mean Squared Error.

iii. Minimizing the Cross Entropy loss.

(c) Mark all the correct choices regarding cross validation.

i. A 5-fold cross-validation approach results in 5-di↵erent model instances being fit-
ted.
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ii. A 5-fold cross-validation approach results in 1 model instance being fitted over and
over again 5 times.

iii. A 5-fold cross-validation approach results in 5-di↵erent model instances being fitted
over and over again 5 times.

iv. None of the above.

(d) Which of the following are considered as hyperparameter choices while training a neural
network.

i. Loss Function.

ii. Learning Rate.

iii. Number of Layers.

iv. Batch Size.

v. All of the above.

(e) Assuming Stochastic Gradient Descent (SGD) computes gradient using a single sample
from the training data, which of the following statements are true.

i. Gradient computed using SGD will be noisier than gradient computed using Batch
Gradient Descent.

ii. Empirically, SGD takes longer (in terms of clock time) to converge than Batch
Gradient Descent.

iii. SGD usually avoids the trap of poor local minima.

iv. SGD is computationally more expensive than Batch Gradient Descent.

2. Short answer (Kaifeng)

(a) Please explain the di↵erence between batchnormalization during training and testing.

(b) Your friend designed a novel activation function:

f(x) = x3 (1)

Please discuss if this is a good idea to use this activation in a neural network.

(c) Your friend is utilizing a Multi-layer Perceptron (MLP) for a deep learning task and is
trying to increase the number of units within each layer to enhance the model’s complexity.
Please explain potential e↵ect of this action on the model performance.

(d) Please explain the role of `1 regularization.

(e) Please explain the role of the bias correction step in the Adam optimizer.

3. Backpropagation in parallel neural network (Tonmoy)

A parallel neural network consists of twin networks which accept distinct inputs but share
the same weights. The outputs of the twin networks are later processed by more hidden
layers. Let’s assume we have a parallel neural network with the following architecture:
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hp = W1x
(i)
p + b1

z1 = ReLU(hp)

hq = W1x
(i)
q + b1

z2 = ReLU(hq)

z = z1 � z2

z3 = W2z + b2

ŷ(i) = �(z3)

L(i) = LCE(y
(i), ŷ(i))

L = � 1

m

mX

i=1

L(i)

In the above architecture, (x(i)p ,x(i)q ) represent the pair of ith input example and are each of
shape Dx. y(i) represent the label of the ith input example and is a scalar. We also assume
z1 and z2 have shape of Dz.

(a) Draw the computational graph for the parallel neural network described above. You
can start from L(i) as your output variable and then backtrack to the input variables

x(i)p and x(i)q .

(b) Compute rŷ(i)L
(i) and denote it as �ŷ(i) . For all the following parts, you can refer to

this computed gradient as �ŷ(i) .

(c) Compute rz3L
(i) and denote it as �z3 . For all the following parts, you can refer to this

computed gradient as �z3 .

(d) Compute rb2L
(i) and denote it as �b2 . For all the following parts, you can refer to this

computed gradient as �b2 .

(e) Compute rW2L
(i) and denote it as �W2 . For all the following parts, you can refer to

this computed gradient as �W2 .

(f) Compute rzL(i) and denote it as �z. For all the following parts, you can refer to this
computed gradient as �z.

(g) Compute rz1L
(i) and denote it as �z1 . For all the following parts, you can refer to this

computed gradient as �z1 .

(h) Compute rz2L
(i) and denote it as �z2 . For all the following parts, you can refer to this

computed gradient as �z2 .

(i) Compute rhqL
(i) and denote it as �hq . For all the following parts, you can refer to this

computed gradient as �hq .

(j) Compute rhpL
(i) and denote it as �hp . For all the following parts, you can refer to this

computed gradient as �hp .

(k) Compute rb1L
(i).
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(l) Compute rW1L
(i).

4. Regularization techniques (Yang)

(a) True or False: Regularization is intended to reduce training error but not validation
error.

(b) Consider a model L̃(✓) = L(✓;X,y)+↵⌦(✓) where L(✓;X,y) is some loss function and
⌦(✓) is some norm penalty. What are the e↵ects on the model when ↵ = 0 and ↵ ! 1?

(c) Mathematically show that `2 regularization shrinks the weight in gradient descent.
Hint: start with L̃(✓;X,y) = L(✓;X,y) + ↵

2 ||✓||
2
2 and derive the gradient descent step

for ✓.

(d) List two dataset augmentation techniques for image classification.

(e) How did you implement dropout in homework 4? Please comment on both training and
testing.

5. Optimization techniques (Lahari)

(a) In lecture, we have learnt about Nesterov Momentum and it’s update rule for parame-
ters. The update rule for parameter ✓ is given by:

vt = ↵vt�1 � ✏r✓L(✓t�1 + ↵vt�1)

✓t = ✓t�1 + vt (2)

Prove that the update rule in (3) is equivalent to the update rule in (2)

vnew = ↵vold � ✏re✓old
L(e✓old)

e✓new = e✓old + vnew + ↵(vnew � vold) (3)

Explain one advantage of using the update update rule in (3) over the update rule in
(2).

(b) Consider the two loss curves L1(x) and L2(x) shown in Figure 2. Which loss curve has
a saddle point? Which loss curve has a poor local minima? In which of the loss curves,
is an optimizer more likely to escape the trap of a saddle point or a poor local minima?
And what property does the optimizer require for it to escape these traps in this case?

(c) Consider the contour plot shown in Figure 3 , where the loss surface is plotted with
respect to just 2 weights w1 and w2, where w1, w2 2 R (scalars). Assume you are given
a hypothetical scenario, where you start from point A and use vanilla gradient descent
in many iterations to get to point B. During this process, we have started accumulating
momentum based on the following equation,

gt = r✓tL(✓t)

vt = vt�1 � ✏gt

Comment on which direction does the weight update occur if we use the following
optimizers : vanilla gradient descent, gradient descent with momentum, gradient descent
with Nesterov momentum, Adagrad.
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Figure 2: Loss curves L1(x) (Left), L2(x) (Right)

Figure 3: Contour plot of a Loss function L(w1, w2)

(d) In the Gradient descent + momentum scheme, find a general expression of vt in terms
of gradients g1, g2, ..., gt and ✏(learning rate), considering an initial value of momentum
v0 = 0.

(e) Consider that the gradients g1, g2, ..., gt in part (d) are i.i.d. random variables with
mean µ and variance �. Find the expected value of weights ✓t at t = 3.

6. `1 regularization (Tonmoy)

Let x 2 Rn, then we define the `1 norm and the Log-Sum-Exponent (LSE) of it as follows:

kxk1 = max
i

|xi|

LSE(x) = ln

✓ nX

i=1

e|xi|
◆

(a) Show that the following inequality holds for n � 1,
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kxk1  LSE(x)  kxk1 + ln(n) (4)

(b) Is the lower bound in (4) strict for n > 1?

(c) Under what condition on x, will the upper bound in (4) be satisfied with equality.

(d) Use the result from (4) to show that the following inequality holds,

kxk1  1

t
LSE(tx)  kxk1 +

ln(n)

t
(5)

for some scaling constant t > 0.
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a)
R1 -> underfitting

R2 - overfitting

↓ -> stopping point

Answer -> (iii)











Short Answers
(a) Please explain the di↵erence between batchnormalization during training
and testing.
Solution: During training, it first computes the mean and variance of the
mini-batch data in the unit-wise. Then BatchNorm normalizes the layer’s
input based on the mean and variance. After the normalization, BatchNorm
applies two learnable parameters for each unit: � for scaling and � for shift-
ing, which are learned during training and allow the network to adaptively
adjust the output distribution. Meanwhile, it also keeps tracking the running
averages for mean and variance through all batches.

During testing, BatchNorm uses the fixed accumulated running averages
from training for normalizing the testing data. The learned scaling and shift-
ing parameters � and � are then applied to the normalized data.
(b) Your friend designed a novel activation function:

f(x) = x3 (1)

Please discuss if this is a good idea to use this activation in a neural network.
Solution: This activation function is nonlinear and di↵erentiable every-
where, which satisfy some requirements of a good activation function. How-
ever, it is likely to cause exploding gradients as the gradient can be very large
for inputs with large absolute values. Also, small inputs can lead to vanishing
gradients, e.g. inputs that are close to zero.
(c) Your friend is utilizing a Multi-layer Perceptron (MLP) for a deep learning
task and is trying to increase the number of units within each layer to enhance
the model’s complexity. Please discuss potential e↵ect of this action on the
model performance.
Solution: (i) If the model is originally underfitting on the training data,
adding more units in layers allows the MLP to capture more complex pat-
terns in the data, which can improve the model performance, e.g. decrease
both training and testing error. (ii) On the other hand, it may also cause
overfitting as increasing the model’s capacity is likely to make the model
sensitive to the training data. As a result, the training loss may still keep
decreasing while the testing error increase.
(d) Please explain the role of `1 regularization.
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Solution: `1 regularization introduces a penalty which is equal to the sum
of absolute values of the model weights. It encourages the model to optimize
some of the feature weights to zero. This property allows the model to learn
a simpler and sparser patterns by pushing less important feature weights to
zero, which can help prevent overfitting. Further, by observing the trained
weights, we can implement feature selection to simplify the model and save
computation resource.
(e) Please explain the role of the bias correction step in the Adam optimizer.
Solutions: Since Adam optimizer uses running averages to estimate the
gradient and its square, these estimations are biased towards zero at the
start of training because we initialize them to zero. Therefore, the optimizer
is likely to take larger steps in the initial several updates of the model, leading
to unstable training and slower convergence. The bias correction step adjusts
these estimations to be more accurate.

After the early phase of training, the estimations tend to be accurate, so
the bias correction factor will gradually approach 1, reducing the impact of
bias correction.
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(a) Given equation of nesteror momentum

Ut = XU+-, - E % LIOt-+ XU+ -1)
- Q

Of = Ot-1 + Ut
3

To prove it is equivalent to :

View : XVold-EV
,

2/ Ood 3-Over : Ould + Une+(Unew-Yold)

=> Let us assume that new parameter T

o= 0+ XV

This is :Gold = Old+ <Vold Pold= ToXVoldIOnes = One + XVnew Onew=OresXVnu

= From D
,

we have :

Unew = XVold - E TpL)Ood+ XVold)

n
~+( 22(ord)- Fod) = 20od)
=O N

CO
I

-So , Good+<ord = T2lOod+ Lunde

T: = ( Xv) = I+ 0 =1

https://goodnotes.com/


So
,

we have
, T2(God) = To 10dd+ Xold)

View = Xold-ET
- 2(God)=> This is

equation

=> FromD
,

we have : Onew : Ood"new

Fold- Nnew"Oold - Wold + Vnew

Ood = Oold + Vnew + <(Unew-Vold)=This is aon

Hence
,

we have shown that both DE

all equivalent as we can get from

① by a change in variable
.

This representation helps as in implementation
of restoror momentum as this doesn't

require us to calculate gradient at a different

value of 0 + XV -

Also
,

both 0 and O start from the same

↑ value of parameter initialization as I
L O = F initially as v= 0 at start

https://goodnotes.com/


(b) 4 (2) has a saddle point. The curve

decreases on one side of the saddle
and increases

on other side of saddle

point . The gradient at a saddle point
is equal to zero .

22(2) has a poor local minima .
This is

a local minima as it is a minimum value

of the function in it's surrounding until

a certain limit in all the directions.

The gradient is zero at a local minima-

# #
We need momentum to get out of saddle
point or local minima because the gradient
becomes zero at these points -

It is alo more likely to escape the saddle
coint than the local minima because afterI

crossing the local minima
,

the momentum

decreases due to gradient being in oppositel
down The slope .

Idirection to the momentum accumulated

https://goodnotes.com/


L

A

·wie <
B 100

no
->

1-E
-->

Wi

From the above contour plot ,
we can

make some initial observations:

(2) The gradient along we direction is higher

than the gradient alongw ,
direction .

This is because the contour lines along
We directions are very close to each

other which indicates a steep curve

in we
direction .

The contour lines along w
,
direction are

further apart and hence has slower

descent. (or low gradient)

https://goodnotes.com/


(2) Vanilla gradient descent is in the

direction perpendicular to a contour line.

iL
(3) Sgat momentum

%--
B csgd

EG-↓EmoreLuteg

https://goodnotes.com/


↳ Sydt nesteror momentum .

A

-&sydtmp-

In this
,
first we take a step along

the momentum and then calculate

the gradient at that point
in graph .

(5) Adagrad .

The update equation :

a + a + gog [accumulately
gradient

of o+> 09
Vatv

If gradient is accumulated move in a

direction
,

then the step is e
in that direction .

https://goodnotes.com/


It gradient accumulated is len in a

direction ,
then the step is more

in that direction

From plot ,
we can see that when it

traversed from A to B
,
the gradients

accumulated
alongW 2

direction is

more and
gradient along o

,
direction

is lever than it.

Hence
,
the step along

n
,
direction is

more and step alongWe direction is len .

A

--@-
Ne B↑ ↓>arLEE

-

o
,
in thisparticular No on

see that AdagrassAls X

converging faster to minima without much zigzagging.

https://goodnotes.com/


(d) Sgd + momentum update :

Vi = XV
+ -I

- EGt

Of = Ot-1 + Vt

-> Vo = 0 [Given]
V = XV - Eg ,

= - Eg ,

V2 = V
,
- EG2 = x) - Eg) - Eg2 = - E(92+ 191)

V = <V- Eq3 = 4 ( E(g2+ 49,) - 293
=

- E(93+ x92+ x 91)
i

From this, we can observe that

=> Vi =
-E(9 + + 197 ,

+ 49tct ... "gi)

ELVE : #[-3) 9+ x9+- 1 + <"gtet ... +<g ,
17

= -E[#(9t) + xE(gt - D +
.. .

+2 (g ,
)]

(e) 00 = Oo

O
,
= OotV,

Oc = 0
, + Vc = 00 + V

, AVz

03 = 02+ Vs= 00 + V
, tVc+Vz

1

so
,
for general of : 0 + it V + ... VE

https://goodnotes.com/


# (83) = # [Potv ,
+V2 +V3]

= #(8) + #(vi) + #(v2) +E(Vz)

Given
, 91 , 92 .... 9t are i . i . d us

with mean 1 and war +

- From part (d)
,

we saw

E(V) = ( -Egi) = -GE(gi = -EM

# (v2) = E C- 2 (g2+ dq) = - E [M+ xM)

=
= EM[1 + X]

#[V3) = El- 2(93+ 492+ 229,)
-

-E(u+ xM + x -)

=
- EM(1 + 2+2)

#(83) =G(0)q41 + (+2) + (1+ x +22)

AA We know that sum of in terms in

A geometric series with factor it and

first term a is

a+art
...

tact-ch
1 - U

https://goodnotes.com/


Alternately , A(VI) = - 3 [M+ XM+...+& "m]

=-EM[IX + ..
+ <

+ ]

= - EM/F
#103) = #100+ [-EM Asa

= #(8) -zM (1 -2

=

$100)- /3- x
= #18)-<3-
-

https://goodnotes.com/
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We have drawn the computational graph

above Now we will use back propagation

to compute the derivatives
required

for learning
the parameters

through

gradient descent
Always

write dimensions
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b from the computational graph

L Lcecycil yacis

y log yaoi tycis tog
l y

Since
all quantities

are scalar so

by scalar derivatives

i l y
Synci d Ltgi

y



c From the computational graph

go TEED

Since all quantities
are scalar so

by scalar chain rule

Ci
i dydh.cl
dzzdyncDdZ3

Now from lecture we know

zTCZD
Otts I TCZD

Quotient
rule

so

Sz _TCZD
I TAD Syncing

where 0 2 3 He



d from the computational graph

backpropating through gate

all
IT z

3

So

Sb 823

e from the computational graph

M Wz Z

So by chain rule

di dm d
a dm

Swz
Sz ZT



f Using chain rule

d dm d

dz IF Im

Sz
Szz WI

g from the computational graph

2 Z 2 2

Since we back propagate through

terminal of gate for Zi so

dvi
Az

IL
Iz

Sz Sz



h Since we back propagate

through terminal of

gate for Zz So

Dum
Izz IZ

Szz Sz

i from the computational graph

Zz ReLU ha

from Discussion we know that

back propagating through
DeLuc

leads to a
hadamard product

so



ddi
a

Ichor do

Sha Ichor o Sez

j using the same logic as

i we have

Shp Ichi o
Sz

K By law
of total derivatives

z Ii g

Sb Shp
t Shor



l Backprogating through

gate

dais
g

d
dhp

dui
g

d
dhar

By chain rule

fetish E tt

By
3 D tensor derivative

trick

dui
Twilpati xp



By chain rule

dlcildw lpani ff.de

By 3 D tensor derivative
trick

Ivi
II bath axaT

Hence by law of total derivatives

I ft kami 8tw kata

Sw Shp Xp
Tt Sha XI
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a Suppose

P means
Xi 1 21 Hnl

Then we have the following loner

bound

HEI
P E E e
e Et

we also have the following upper

bound

exile ne

8 1

Combining the upper
and lower bounds

we have



EP s EE exile neP

Taking natural logarithm of the above

inequality we have

Ince'D eln
Sen nei

pene E en E e 1 Elint
pence

Since p
11 16 so we have the

required inequality

11 11 5 LSE X E 11 11 Inch



b clearly for
n I

CPL Engel's

Taking natural logarithm
of both

sides

Ince's cen E exit

Pence Cen
exit

11 1104 LSE X



c Suppose

He 1 1 51

for all I jE n Then we have

Hit
Ee
E I

eP
E I

he

Hence the upper
bound will

be satisfied with equality

LSECX 11 11 In n



d Let t 0 be some scaling

constant Substituting with

tx in 2 we get

1 txt ELSE Ctx E 11411 Inch

Now

Htxlk 41 16

So

thx 11g ELSE
TX E thXllatening

Dividing by
t we get the

reauired

inequality

11 11 E LSE tx E 1k11g 14ns
t


