Lecture 11: Convolutional neural networks

Announcements:

« HW #4 is due Monday, Feb 19, uploaded to Gradescope. To submit your Jupyter
Notebook, print the notebook to a pdf with your solutions and plots filled in. You must
also submit your .py files as pdfs.

* The midterm exam is during class (2-3:50pm) on Wednesday, Feb 21, 2024.

* You are allowed 4 cheat sheets (each an 8.5 x 11 inch paper). You can fill out
both sides (8 sides total). You can put whatever you want on these cheat sheets.

* The midterm will cover material up to and including this\Aledresday's lecture (Feb
1§). today’s

» Past exams are uploaded to Bruin Learn (under “Modules” —> “past exams”).

* You may bring a calculator to the exam.

* You may do the exam in pen or pencil.

« Midterm exam review session: Thursday, Feb 15, 6-9pm at WG Young CS50.
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Adam

Adam (cont.)

Initialize v = 0 as the “first moment”, and a = 0 as the “second moment."”
Set 31 and 2 to be between 0 and 1. (Suggested defaults are 31 = 0.9 and
B2 = 0.999.) Initialize v to be sufficiently small. Initialize ¢ = 0. Until stopping
criterion is met:

o Compute gradient: g

e Time update: t < t+1

» First moment update (momentum-like): € [ 33

v vt (1-Pi)g
[ SRS
» Second moment update (gradient normalization):

a< fa+(1-pP2)g08 E[jz.]

e Bias correction in moments:

~ 1
vV = \%
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a = a
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Gradient step:
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A resource on bias correction: https://www.coursera.org/lecture/deep-neural-network/bias-correction-in-exponentially-weighted-averages-XjuhD
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Second order methods

First order vs second order methods (cont)

It is possible to also use the curvature of the cost function to know how to take
steps. These are called second-order methods, because they use the second
derivative (or Hessian) to assess the curvature and thus take appropriate sized
steps in each dimension. See following picture for intuition:
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Newton’s method

Newton’s method

Newton's method, by using the curvature information in the Hessian, does not
require a learning rate.

Until stopping criterion is met:
e Compute gradient: g
e Compute Hessian: H

o Gradient step:

2. vaareﬁlg Hue llessioun O("3>
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Challenges in gradient descent

o Exploding gradients.
Sometimes the cost function can have “cliffs” whereby small changes in
the parameters can drastically change the cost function. (This usually
happens if parameters are repeatedly multiplied together, as in recurrent
neural networks.) Because the gradient at a cliff is large, an update can
result in going to a completely different parameter space. This can be
ameliorated via gradient clipping, which upper bounds the maximum
gradient norm.
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Challenges in gradient descent

e Vanishing gradients.
Like in exploding gradients, repeated multiplication of a matrix W can

cause vanishing gradients. Say that each time step can be thought of as a
layer of a feedforward network where each layer has connectivity W to the
next layer. By layer ¢, there have been W' multiplications. If

W = UAU lisits eigendecomposition, then W! = UA*U !, and hence
the gradient along eigenvector u; is shrunk (or grown) by the factor \!.
Architectural decisions, as well as appropriate regularization, can deal with
vanishing gradients.
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Convolutional neural networks

Reading:

Deep Learning, Chapter 9
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Background: convolutional neural networks

The CNN played a large role in this last “revival” of neural networks (i.e., the
past 5 years).

28.2

(152 layers ~ ‘f°/o

4 \ 16.4
,Q& \ 11.7

22 layers 19 layers ]
Q‘x@‘ '\ 6.7 7.3

ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13
ResNet GoogleNet VGG

shallow

ILSVRC'12
AlexNet

ILSVRC'11  ILSVRC'10

>

Prof J.C. Kao, UCLA ECE




Background: convolutional neural networks

Fukusiwa,  Neo Caguitveu 15¢0'

CNNSs have been around since the 1990’s. In 1998, Yann LeCun introduced
LeNet, which is the modern convolutional neural network.

Le Net

C3:f. maps 16@10x10
INPUT gcl):éggge maps S4: 1. maps 16@5x5
32x32 S2: 1. maps
6@14x14

I
Full conrlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
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Background: convolutional neural networks

How do we arrive at this architecture? What are the principles that lead us to
this?

C3:f. maps 16@10x10
INPUT C1: f%a’éuare maps S4:f. maps 16@5x5
32x32 6@2 S2: 1. maps
6@14x14

I
Full conrlection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
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Biological inspiration for the CNN

Biological inspiration

Principles of the convolutional neural network are inspired from neuroscience.
Seminal work by Hubel and Wiesel in cat visual cortex in the 1960's (Nobel
prize awarded in the 1980's) found that V1 neurons were tuned to the
movement of oriented bars. Hubel and Wiesel also defined “simple” and
“complex” cells, the computational properties of which were later
well-described by linear models and rectifiers (e.g., Movshon and colleagues,
1978). Three key principles of neural coding in V1 are incorporated in
convolutional neural networks (CNNs):

e V1 has a retinotopic map.

e V1 is composed of simple cells that can be adequately described by a
linear model in a spatially localzed receptive field.

e V1 is composed of complex cells that respond to similar features as simple
cells, but importantly are largely invariant to the position of the feature.

If interested, you can YouTube some videos of their experiments. Warning:
they do show cats in an experimental apparatus.
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Biological inspiration for the CNN

* Retinotopic map: CNNs are spatially organized, so that nearby cells act on

nearby parts of the input image.
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Biological inspiration for the CNN
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o Simple cells:/CNNs use spatially localized linear filters, which are followed
by thresholding.

e Complex cells: CNNs use pooling units to incorporate invariance to shifts
of the position of the feature.
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Biological inspiration for the CNN

Do CNN’s compute like the visual system?
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Biological inspiration for the CNN
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Biological inspiration for the CNN

Do CNN’s compute like the visual system?

Limitations of biological analogies

There are several limitations in these analogies. For example,

* CNNs have no feedback connections; neural populations are recurrently
connected.

e The brain foveates a small region of the visual space, using saccades to
focus on different areas.

e The output of the brain is obviously more than just image category
classification.

e Pooling done by complex cells is an approximate way to incorporate
Invariance.
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Motivation for CNNs

Motivation for convolutional neural networks

e For images, fully connected networks require many parameters. In
CIFAR-10, the input size is 32 x 32 x 3 = 3072, requiring 3072 weights for
each neuron. For a more normal sized image that is 200 x 200, each
neuron in the first layer would require 120000 parameters. This quickly
gets out of hand. This network, with a huge number of parameters, would
not only take long to train, but may also be prone to overfitting.
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Convolution

The convolution operation

The convolution of two functions, f(¢) and g(t), is given by:

(f *9)(t) = / T F(r)gt — )dr

In discrete time, this is given by:

(f+g)(n)= Y f(m)g(n —m)

m=—aoo
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Correlation and convolution

Note, however, that in general CNNs don’t use convolution, but instead use
cross-correlation. Colloquially, instead of “flip-and-drag,” CNNs just “drag.”
For real-valued functions, cross-correlation is defined by:

(f*g)(n) = Y f(m)g(n+m)

We'll follow the field's convention and call this operation convolution.
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Convolution in 2D

Convolution in 2D

The 2D convolution (formally: cross-correlation) is given by:
2} A
(f*9)(3,5) = Y 7 f(m,n)g(i +m,j+n)

m=—o nN=-—

This generalizes to higher dimensions as well. Note also: these “convolutions”
are not commutative.

Prof J.C. Kao, UCLA ECE



Convolution in 2D example

1 1 1

w x
1 1 1 *

) z
1 1 1

*** All convolutions in this class will be VALID convolutions (the
filter and inputs must be totally overlapping). ***
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Convolution in 2D example

W+ 2 xf2-w +8-x
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Convolution in 2D
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Convolution in 2D

*** All convolutions in this class will be VALID convolutions (the
filter and inputs must be totally overlapping). ***

Input Filter Output

"\
W r
(w—ws+1,h—hs+1)
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The convolutional layer of a CNN

Convolutional layer

This convolution operation (typically in 3D, since images often come with a
width and height as well as depth for the R, G, B channels) defines the
“convolutional layer” of a CNN. The convolutional layer defines a collection of
filters (or activation maps), each with the same dimension as the input.
e Say the input was of dimensionality (w, h, d).
o Say the filter dimensionality is (w, hs,d). So that the filter operates on a
small region of the input, typically w; < w.
e The depths being equal means that the output of this convolution
operation is 2D.

Input Filter
L
g. hf | i

Y
5xSx3 +1 = Fb
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The convolutional layer of a CNN

Convolutional layer (cont.)

After performing the convolution, the output is (w — wy¢ +1,h —hy + 1)
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The convolutional layer of a CNN

Convolutional layer (cont.)

Now, we don't have just one filter in a convolutional layer, but multiple filters.
We call each output (matrix) a slice.

Input i\_j_ Filters  Convolution t\_s Output
5 | > .{,bl
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The convolutional layer of a CNN

Convolutional layer (cont.)

The output slices of the convolution operations with each filter are composed
together to form a (w — ws + 1,h — hy + 1,ny) tensor, where ny is the
number of filters. The output is then passed through an activation nonlinearity,
such as ReLU(:). This then acts as the input to the next layer.

Conv layer output Next layer input

relu "'f‘f x \

W-w; t)\
j.
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The convolutional layer of a CNN . ?%
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Convolutional layers have sparse interactions

Convolutional layers have sparse interactions

Convolutional layers have sparse interactions or sparse connectivity. The idea
of sparse connectivity is illustrated below, where each output is connected to a
small number of inputs.

WhgfL

Fully connected layers:

Lm,ev |

Sparsely connected layers:
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Convolutional layers have sparse interactions

Convolutional layers have sparse interactions (cont.)

Sparse interactions aid with computation.

o Sparse interactions reduce computational memory. In a fully connected
layer, each neuron has w - h - d weights corresponding to the input. In a
convolutional layer, each neuron has w¢ - hs - d weights corresponding to
the input. Moreover, in a convolutional layer, every output neuron in a
slice has the same wy - hs - d weights (more on this later). As there are far
fewer parameters, this reduces the memory requirements of the model.

o Sparse interactions reduce computation time. If there are m inputs and
n outputs in a hidden layer, a fully connected layer would require O(mn)
operations to compute the output. If each output is connected to only k
inputs (e.g., where k = wy - hy - d) then the layer would require O(kn)
operations to compute the output.
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Convolutional layers have sparse interactions

Convolutional layers have sparse interactions (cont.)

A concern of sparse interactions is that information information from different
parts of the input may not interact. For example, a self-driving car should know
where obstacles are from all over the image to avoid them.

This argues that networks should be composed of more layers, since units in
deeper layers indirectly interact with larger portions of the input.
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Convolutional layers share parameters

Convolutional layers share parameters

Convolutional layers have shared parameters (or tied weights), in every output
neuron in a given slice uses the same set of parameters in the filter.

Example: Consider an input that is (32 x 32 x 3). We have two architectures;
in the fully connected architecture, there are 500 output neurons at the first
layer. In the convolutional neural net there are 4 filters that are all 4 x 4 4
(1) How many output neurons are there in the convolutional neural network,
assuming that the convolution is only applied in regions where the filter fully
overlaps the kernel? (2) How many parameters are in each model?

(\) \V\?uﬁ (32 Xg?_')(%) C,o'yﬂ\ro\v‘tcl W/ {\u—y\,\ Cl{.)(‘{xg)
(w-wg £\, b - &,fﬂ) —> wlput of 1 flor (24,25)

(2) Fe: (32%32%x3+1)  sv0 = .5 wmillwm Ta\\/MM'§~

ey (4%4&3 +l) g = b pAvons
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All convolutions in this class are valid convolutions

In this class, all convolutions will be valid convolutions. We explicitly
specify the amount of zero padding when we need it.

Input Filter Output

Output size: (w—wys+1,h—hs+1)
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Convolutional padding

pad =0 pad =1 pad = 2

0{0{0]0]0]10]0
01001010 0]1010{01010]0
0 0 010 010
0 0 010 010
0 0 010 010
0{0]10]0]0 0{0]0]0]0]0 {0

010100101010

The output of the convolution is now (w — wys + 1+ 2pad, h — hy + 1 + 2pad).
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Convolutional padding

Convolution padding (cont.)

It is worth noting that Goodfellow et al. report that the optimal amount of
zero padding (in terms of test accuracy) is somewhere between pad = 0 and
the pad that causes the output and input to have the same width and height.
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Convolutional stride

AN

J‘)’“’PZ‘F““ + L ;&_’e‘iz\fm)\ +1

—

Convolution stride Fde

grvide
Another variable to control is the stride, which defines how much the filter
moves In the convolution. For normal convolution, stride = 1, which denotes
that the filter is dragged across every part of the input. Consider a 7 X 7 input

with a 3 x 3 filter. If convolution is only applied where the kernel overlaps the
input, the output is 5 X 5. With stride = 2, the output is 3 x 3.

de
stride = 2 stride = 2 (‘\'Vi

T~ T~
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Pooling layer

Pooling layer

CNNs also incorporate pooling layers, where an operation is applied to all
elements within the filtering extent. This corresponds, effectively, to
downsampling.

The pooling filter has width and height (w,, h,) and is applied with a given
stride. It is most common to use the max() operation as the pooling operation.

Input - Output
1|2 3] 4 lw S
5 16 | 7| 8 2 x 2 max pool 6 | 8
1 3 5 7 stride 2 " 4 8
2 1 4|68
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Sizing examples

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5 W - V\J:f + |

INPUT 6@28x28
32x32 e S2: f. maps
6@14x14 r

C5: layer
120

F6: layer OUTPUT
84 10

I
’ | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
OW\—F\A}T
C1 contains six/g){s conv filters. smde =1, Faot =0

Size of@ture ma@t(ﬁ? 32-5+)| = 2¢ (zgxl‘a’xb)
Number of parameters in C1 layer?

(gxs‘x\ +\) & =15k FWM!

S2 is a 2x2 pooling layer applied at stride 2.
Size of feature maps at S27 (14 x4 b )
Number of parameters in S2 layer? p

C3 contains sixteen 5x5 conv filters.
Number of parameters in C3 layer? (5 x5x6& + D b
Size of feature maps at C37
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