
Lecture 13: CNNs

Prof J.C. Kao, UCLA ECE

Announcements:

• HW #5 is due Monday, March 4, uploaded to Gradescope. Appreciate that you went
from 35-40% accuracy with softmax on Homework 2 to 65+% accuracy with CNNs!

• Remaining schedule: Today: CNNs, 3/4: CNNs + RNNs, 3/6: RNNs + object detection,
3/11: object detection + adversarial examples, 3/13: adversarial + overview.

• The project and its accompanying data have been uploaded to Bruin Learn. It is due
March 15, 2024 (Friday of Week 10). Custom projects should be requested no later than
Friday, March 1, 2024.

• You will be allowed to use PyTorch, Keras, or other deep learning libraries for the
project.

• The TAs will release a Jupyter Notebook that implements a CNN + LSTM hybrid this
Friday at Discussion.

• Although we have yet to cover RNNs, you can feel free to implement them using
LSTM cells in PyTorch (https://pytorch.org/docs/stable/generated/
torch.nn.LSTM.html) or Keras (https://keras.io/api/layers/recurrent_layers/lstm/) and
play with hyperparameters.

Prof J.C. Kao, UCLA ECE

Case studies

To help get an intuition behind CNN’s, we’ll go over a few architectures that
have been influential in recent years.

Case studies:

• LeNet (1998)
• AlexNet (2012)
• VGG (2013)
• GoogLeNet (2014)
• ResNet (2015)

Prof J.C. Kao, UCLA ECE

CNN architecture

Fully connected

Prof J.C. Kao, UCLA ECE

LeNet-5

4 total layers. Input is 32x32.

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1.

Prof J.C. Kao, UCLA ECE

LeNet-5

4 total layers. Input is 32x32.

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1.
2. [14x14x6] POOL: 2x2 pool with stride 2. (Adds all elems, multiplies them

by trainable coefficient, then passes through sigmoid.)

Prof J.C. Kao, UCLA ECE

LeNet-5

4 total layers. Input is 32x32.

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1.
2. [14x14x6] POOL: 2x2 pool with stride 2. (Adds all elems, multiplies them

by trainable coefficient, then passes through sigmoid.)
3. [10x10x16] CONV: 16 convolutional filters, 5x5.
4. [5x5x16] POOL: 2x2 pool with stride 2.
5. [120] CONV: 120 5x5 convolutional filters.
6. [84] FC: FC layer: 84 x 120.
7. [10] OUT: MSE against a template for each digit.

Prof J.C. Kao, UCLA ECE

LeNet-5

LeCun et al., 1998.

Overall architecture:

[CONV-POOL]x2 - CONV - FC - OUT

Prof J.C. Kao, UCLA ECE

AlexNet in context

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

The number of layers refers to the number of convolutional or FC layers.

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

Input processing:
• ImageNet has variable-sized images.
• Downsample or resize each image; given a rectangular image …

• Crop so the shorter side is 256 pixels.
• Crop out the central 256 x 256 pixels.
• The actual input to the CNN is 224 x 224 x 3 after data augmentation.

• However, the layer sizing doesn’t quite work out, so we’ll say it’s
227x227x3.

• Subtracted the mean image over the training set from each pixel.

!
:

e

256#see

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

Nonlinearity:
• Used the ReLU. It was faster than sigmoidal or tanh units.

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

Dotted line is tanh
Solid line is ReLU
Clearly ReLU resulted in more
 efficient training.

ReLU is at the output of every
 convolutional and fully-connected
 layer.

-

Itanh-

Trem

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

Training on multiple GPUs.

• This is why the above image is cropped. Everything is replicated x2,
and the two paths correspond to training on two GPU’s.

• They trained on GPUs due to memory; they trained on 1.2 million images
and they stored them on GPUs; each GPU had just 3 GB of memory.

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• Local response normalization (not common anymore).
• Used pooling with overlapping (i.e., the stride was not the pool width).

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• Data augmentation:
• Image translations and horizontal reflections.

• Extract out random 224 x 224 patches and their horizontal reflections.
• At test time, extract 5 random 224 x 224 patches + reflections, and

average the predictions of the 10 output softmax’s. This avg’ing
reduces error rate by ~1.5%.

• Color augmentation: scale the PCs of the colors, capturing different
levels of illumination and intensities.

• Reduces the Top 1 error rate by 1%.
• Dropout with p = 0.5.

• Substantially reduces overfitting; takes twice as long to train.

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• SGD with momentum and weight decay.
• Batch size: 128, momentum: 0.9
• Learning rate initialized to 0.01, manually decreased when validation

error stopped improving.
• L2 weight decay: 0.0005

·
om

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• Training time: roughly five to six days on two GTX 580 GPUs.

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• Averaged the output of multiple CNNs. Validation error of …
• 1 CNN: 18.2%
• 5 CNNs: 16.4%
• 7 CNNs: 15.4%

Prof J.C. Kao, UCLA ECE

AlexNet

Prof J.C. Kao, UCLA ECE

AlexNet

Top5erroro
1000 classes

Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012.

• Importance of depth?
• Validation error worsens by 2% by removing any middle layer.

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

Question: The input is 227x227x3. The first convolutional layer has 96 11x11
filters applied at stride 4. What is the output size?

Will - Wf + 2pad + 1Wont =-
stride

-I + 1 = 55

4

(55x55 x 96)

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

Question: How many trainable parameters in the first convolutional layer?
(Recall, 96 filters that are 11x11.)

96 . (lx/x3 + 1) = 34 , 944

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4.

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

Question: The output of the first convolutional layer is 55x55x96. The pooling
layer is 3x3 filters applied at stride 2. What is the output size?

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

Question: How many trainable parameters in the first pooling layer? (Recall,
pool is with 3x3 filters at stride 2.)

O

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4.
2. [27x27x96] POOL: 3x3 filters with stride 2.
3. [27x27x96] NORM: normalization layer

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

Question: The input into the second convolutional layer is 27x27x96. The
layer has 256 5x5 filters at stride 1 with pad 2. What is the output size?

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4.
2. [27x27x96] POOL: 3x3 filters with stride 2.
3. [27x27x96] NORM: normalization layer
4. [27x27x256] CONV: 256 filters of size 5x5x96 with stride 1, pad 2.
5. [13x13x256] POOL: 3x3 filters with stride 2.

Prof J.C. Kao, UCLA ECE

AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were
changed so the operations work out).

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4.
2. [27x27x96] POOL: 3x3 filters with stride 2.
3. [27x27x96] NORM: normalization layer
4. [27x27x256] CONV: 256 filters of size 5x5x96 with stride 1, pad 2.
5. [13x13x256] POOL: 3x3 filters with stride 2.
6. [13x13x256] NORM: normalization layer
7. [13x13x384] CONV: 384 filters of size 3x3 at stride 1, pad 1.
8. [13x13x384] CONV: 384 filters of size 3x3 at stride 1, pad 1.
9. [13x13x256] CONV: 256 filters of size 3x3 at stride 1, pad 1.
10. [6x6x256] POOL: 3x3 filters at stride 2.
11. [4096] FC: Fully connected layer with 4096 units
12. [4096] FC: Fully connected layer with 4096 units
13. [1000] FC: Fully connected layer with 1000 units (class scores).
14. [1000] OUT: Softmax layer

Wort = Wis-Wf + 2 pad + /
= 13 - 3 + 2 . 1 + 1

I 13

G 3 x3x25b

O C o
3

512

EF 1024
5/2

Prof J.C. Kao, UCLA ECE

ZFNet

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

ZFNet, which was
AlexNet but with better
hyperparameters.

Prof J.C. Kao, UCLA ECE

ZFNet

Zeiler & Fergus, arXiv 2013, “Visualizing and understand convolutional neural
networks.”

• They introduced the deconvnet, which maps the output activations back
to input pixels. This enables a visualization of features being captured
by the convnets.

• With this, they made optimizations to AlexNet.

Prof J.C. Kao, UCLA ECE

ZFNet

Differences between ZFNet and AlexNet:

• The first convolutional layer has 7x7 filters at stride 2 (AlexNet: 11x11
filters at stride 4).

• The third, fourth, and fifth convolutional layers have 512, 1024, and 512
filters (AlexNet: 384, 384, 256).

Prof J.C. Kao, UCLA ECE

ZFNet

Differences between ZFNet and AlexNet:

• The first convolutional layer has 7x7 filters at stride 2 (AlexNet: 11x11
filters at stride 4).

• The third, fourth, and fifth convolutional layers have 512, 1024, and 512
filters (AlexNet: 384, 384, 256).

How big are these differences?

• Big!
• Dropped error rate from 16.4% to 11.7%.
• Measuring relative to zero error, this is approximately a 30% reduction in

error.

Prof J.C. Kao, UCLA ECE

What makes convolutional neural networks work better?

Some observations from ZFNet are:

• Smaller filters applied at smaller strides appears to help (at least in early
layers).

• Having more filters later on in deeper layers appears to help.

Prof J.C. Kao, UCLA ECE

What about depth?

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

New architectures, that are
substantially deeper.

Prof J.C. Kao, UCLA ECE

VGGNet

From the Visual Geometry Group, Dept of Eng. Sci., Oxford, “Very Deep
Convolutional Neural Networks for Large-Scale Image Recognition,” Simonyan
& Zisserman, arXiv 2014.

“Our main contribution is a thorough evaluation of networks of increasing
depth using an architecture with very small (3×3) convolution filters, which
shows that a significant improvement on the prior-art configurations can be
achieved by pushing the depth to 16–19 weight layers.”

Their approach: focus on a small convolutional filter (3x3) and extend the
depth.

Prof J.C. Kao, UCLA ECE

VGGNet

VGG Net:

Instead of 8 layers (AlexNet), VGGNet increased the network architecture to
16-19 layers.

ARCHITECTURE:

Input -> [CONVx2-POOL]x3 -> [CONVx3-POOL]x2 -> FC x 3 -> Softmax

All CONV filters are uniform: 3x3 with stride 1, pad 1
All POOL filters are uniform: 2x2 max pool with stride 2.

Reduction from 11.7% to 7.3%, approximately a 40% reduction in error rate.

Prof J.C. Kao, UCLA ECE

VGGNet

Small filters and depth:

What might be a con of using a small filter, and how does VGGNet address
this? (Think receptive fields.)

& VGG Net 3x3
7x7

EFNet

↑
O

O /N RF =3
O O &< IL -%o

o

- ↑ 1-/o /in RE = 5
O D O o o o O

- --1 -X1/ I I- do
& - O O O -

RF = 7
RF = 7

I

I

↑

Prof J.C. Kao, UCLA ECE

VGGNet

Small filters and depth:

Which has more parameters? One 7x7 CONV layer or three 3x3 stacked
CONV layers?

IF Net 7 x7 VGG Net

input depth : Cin = < stack of three
3x3 filters

#filters : Cont = C

((3x3X (in) . Cout) · 3

(7X7 X (in). Cont

49. C2 I 27. c

Prof J.C. Kao, UCLA ECE

VGGNet

Small filters and depth:

Why might stacking many 3x3 filters turn into a good thing?

"Move nonlinearity"

S1 rel zF vs .

3 retu for V46)

Prof J.C. Kao, UCLA ECE

VGGNet

Small filters and depth:

What is a potential con of using small filters and more layers?

&FNet UGG

one 747 filter , pad = / three 3x3 filters , pad = /

Wont = Win - F + 2 + / I (Win ,
hinC

= Win - 4 (Win
, thin !

(win-4 ,
hin - 4) (win

,
tin (

Prof J.C. Kao, UCLA ECE

VGGNet

INPUT [224x224x3]
CONV (64) [224x224x64]
CONV (64) [224x224x64]
POOL [112x112x64]
CONV (128) [112x112x128]
CONV (128) [112x112x128]
POOL [56x56x128]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
POOL [28x28x256]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
POOL [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
POOL [7x7x512]
FC [1x1x4096]
FC [1x1x4096]
FC [1x1x1000]

- 64 filters , each 3x3x3 , pad = /

=> 64 filters ,
each 3x3464

, pad = /

->

#Ops : #remous . (# ops/nemon)

(112 . 112 - 128) (3 . 3 . 64)
-

-
Hops

: (56 . 56 . 256) (3 . 3 - 128)

Prof J.C. Kao, UCLA ECE

VGGNet

224*224*3 ~ 150K
224*224*64 ~ 3.2M
224*224*64 ~ 3.2M
112*112*64 ~ 800K
112*112*128 ~ 1.6M
112*112*128 ~ 1.6M
56*56*128 ~ 400K
56*56*256 ~ 800K
56*56*256 ~ 800K
56*56*256 ~ 800K
28*28*256 ~ 200K
28*28*512 ~ 400K
28*28*512 ~ 400K
28*28*512 ~ 400K
14*14*512 ~ 100K
14*14*512 ~ 100K
14*14*512 ~ 100K
14*14*512 ~ 100K
7*7*512 ~ 25K
 4096
 4096
 1000

INPUT [224x224x3]
CONV (64) [224x224x64]
CONV (64) [224x224x64]
POOL [112x112x64]
CONV (128) [112x112x128]
CONV (128) [112x112x128]
POOL [56x56x128]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
POOL [28x28x256]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
POOL [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
POOL [7x7x512]
FC [1x1x4096]
FC [1x1x4096]
FC [1x1x1000]

Every activation is 4B

24 M x 4 Bytes
= 96 MBytes

Prof J.C. Kao, UCLA ECE

VGGNet

224*224*3 ~ 150K
224*224*64 ~ 3.2M
224*224*64 ~ 3.2M
112*112*64 ~ 800K
112*112*128 ~ 1.6M
112*112*128 ~ 1.6M
56*56*128 ~ 400K
56*56*256 ~ 800K
56*56*256 ~ 800K
56*56*256 ~ 800K
28*28*256 ~ 200K
28*28*512 ~ 400K
28*28*512 ~ 400K
28*28*512 ~ 400K
14*14*512 ~ 100K
14*14*512 ~ 100K
14*14*512 ~ 100K
14*14*512 ~ 100K
7*7*512 ~ 25K
 4096
 4096
 1000

0
(3*3*3)*64 = 1,728
(3*3*64)*64 = 36,864
0
(3*3*64)*128 = 73,728
(3*3*128)*128 = 147,456
0
(3*3*128)*256 = 294,912
(3*3*256)*256 = 589,824
(3*3*256)*256 = 589,824
0
(3*3*256)*512 = 1,179,648
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
0
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
(3*3*512)*512 = 2,359,296
0
7*7*512*4096 = 102,760,448
4096*4096 = 16,777,216
4096*1000 = 4,096,000

INPUT [224x224x3]
CONV (64) [224x224x64]
CONV (64) [224x224x64]
POOL [112x112x64]
CONV (128) [112x112x128]
CONV (128) [112x112x128]
POOL [56x56x128]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
CONV (256) [56x56x256]
POOL [28x28x256]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
CONV (512) [28x28x512]
POOL [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
CONV (512) [14x14x512]
POOL [7x7x512]
FC [1x1x4096]
FC [1x1x4096]
FC [1x1x1000]

IGNORE
BIASES

#
parans

VGGNet : 158 M params
FC layers : 122M

Prof J.C. Kao, UCLA ECE

VGGNet

Some observations:

• Memory: 24M * 4 bytes = 96MB for one forward pass.
• Total parameters: 138M parameters
• A lot of the network parameters are in the fully connected layer.

Prof J.C. Kao, UCLA ECE

VGGNet

Simonyan et al., arXiv 2014

Number of layers

A - 11
B - 13
C - 16
D - 16
E - 19

Difference between C & D: C had three 1x1 conv layers.

& more
laye

Prof J.C. Kao, UCLA ECE

VGGNet

Other implementation notes about VGGNet.

• Input is 224x224 RGB image that has global mean-subtraction.
• They disposed of the local response normalization (LRN) layers from

AlexNet, as they found they did not increase performance but consumed
more memory & computation.

• Batch size 256, SGD + momentum 0.9.
• L2 penalty of 5e-4.
• Dropout for first two FC layers.
• Learning rate adjusted as in AlexNet.
• In initialization, they trained a shallower network and then used its

weights as the initial weights for deeper networks.
• But later on they found out the Xavier initialization performed

comparably.
• Also performed the horizontal flipping, random crops, and RGB shifting

that AlexNet and others used.
• Training took 2-3 weeks on a 4 GPU machine.
• Their submission averaged the output of 7 nets.

Prof J.C. Kao, UCLA ECE

What about depth?

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

New architectures, that are
substantially deeper.

Prof J.C. Kao, UCLA ECE

GoogLeNet

From Szegedy et al., IEEE CVPR 2014.

The main take-home points of the GoogLeNet:

• 22 layers (deeper)
• Introduces the “Inception” module
• Gets rid of fully connected layers.
• Has only 5 million parameters, which is about 12x less than AlexNet and

27x less than VGGNet.
• Also tries to keep computational budget down.

• “… so that the [sic] they do not end up to be a purely academic
curiosity…”

• Won ImageNet top 5 error (w/ error rate 6.7%).

-
(1) Lets the network pick out/optimise for

L the most important features
(2) Reduce computational expense

Prof J.C. Kao, UCLA ECE

GoogLeNet

Going deeper requires more parameters, and more computational expense.

Is there a way to address this?

GoogLeNet: the inception module.

Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.”

Naive inception module:-
tract diflite theof

int

Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.”

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

What is the size of the output of the 128 1x1 convolutions?

Wont = Win-Nf + 2 pad + 1

= 28 - 1 + 0 + 1

= 28

28 x28 x/28

pad
=
1

I
Pad

=
2

Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.”

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

What padding do we need to keep the output size consistent for the 192 3x3
convolutional filters?

28x28x128

Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.”

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.”

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

Prof J.C. Kao, UCLA ECE

GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

With this architecture, can the concatenated output ever have smaller depth
(3rd dimension) than the input?

No .

Prof J.C. Kao, UCLA ECE

GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

How many operations are there in this layer?((| x / Conv .: (28 . 28 . 128) (1 . 1 . 256)

3x3 w : (28 . 28 . 192)(3 . 3 . 256)

Prof J.C. Kao, UCLA ECE

GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

How many operations are there in this layer?

1x1x128 conv: 28*28*256*1*1*128 = 25,690,112

3x3x192 conv: 28*28*256*3*3*192 = 356,816,512

5x5x96 conv: 28*28*256*5*5*96 = 481,689,600

SUM = 864,196,224

->

24x24496 if no pad

Prof J.C. Kao, UCLA ECE

GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that
reduce the number of feature maps to substantially reduce the number of
operations.

Question: Say F = 64. Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

Before After-
-->

O#
ops

= (28x28x64) (1x/x256) # ops = (28x28 x 192) (3x3 x 256)

+ (28 . 28 , 142)(3 . 3 : 64) + (28x28 X 64)//x(x192)O

&

Prof J.C. Kao, UCLA ECE

GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that
reduce the number of feature maps to substantially reduce the number of
operations.

Question: Say F = 64. Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5

3x3 pool

Concatenate

64, 1x1 64, 1x1

64, 1x1

rele
->

rel->

Prof J.C. Kao, UCLA ECE

GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that
reduce the number of feature maps to substantially reduce the number of
operations.

Question: Say F = 64. Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5

3x3 pool

Concatenate

64, 1x1 64, 1x1

64, 1x1

28x28x192

28x28x64 28x28x64 28x28x256

28x28x6428x28x9628x28x192

28x28x480

Prof J.C. Kao, UCLA ECE

GoogLeNet

How many operations?

1x1x128 conv: 28*28*256*1*1*128 = 25,690,112

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

3x3x192 conv: 28*28*64*3*3*192 = 86,704,128

5x5x96 conv: 28*28*64*5*5*96 = 120,422,400

SUM: 271,351,808

These 1x1 convolutions reduce the amount of computation by almost 4x in this
example.

Is information lost in these 1x1x64 convolutions?

Prof J.C. Kao, UCLA ECE

GoogLeNet

GoogLeNet architecture.

Prof J.C. Kao, UCLA ECE

GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (5x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Num layers

1

2

4

10

4

1

Total layers: 22

Prof J.C. Kao, UCLA ECE

GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (5x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Num layers

1

2

4

10

4

1

Total layers: 22

What might be a concern about this architecture?

Prof J.C. Kao, UCLA ECE

GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (2x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Inception (3x)Avg pool

Convolution

FC

FC (dropout)

Softmax

Avg pool

Convolution

FC

FC (dropout)

Softmax

Layer 11
Layer 17

a

↓ Rent

ie
In

Prof J.C. Kao, UCLA ECE

GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (2x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Inception (3x)Avg pool

Convolution

FC

FC (dropout)

Softmax

Avg pool

Convolution

FC

FC (dropout)

Softmax

Layer 11
Layer 17

Later work showed auxiliary classifiers had a minor effect (0.5%) and you only
need one of them. They’re discarded at inference. Their loss is multiplied by
0.3.

Prof J.C. Kao, UCLA ECE

GoogLeNet

Other details:

- SGD with 0.9 momentum.
- Decrease learning rate by 4% every 8 epochs.
- Image size patches from 8 to 100% of the area, having aspect ratios 3x4

or 4x3. Used 144 crops per image.
- Other “photometric” operations.
- Averaged results of 7 GoogLeNets.
- Did not use GPUs (!)
- Again, 12x less params than AlexNet. Won ILSVRC ’14. (6.7% top 5

error.)

Prof J.C. Kao, UCLA ECE

ResNet

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Revolution of depth

