
Lecture 13: CNNs

Prof J.C. Kao, UCLA ECE

Announcements:

• HW #5 is due Monday, March 4, uploaded to Gradescope. Appreciate that you went 
from 35-40% accuracy with softmax on Homework 2 to 65+% accuracy with CNNs! 

• Remaining schedule: Today: CNNs, 3/4: CNNs + RNNs, 3/6: RNNs + object detection, 
3/11: object detection + adversarial examples, 3/13: adversarial + overview. 

• The project and its accompanying data have been uploaded to Bruin Learn. It is due 
March 15, 2024 (Friday of Week 10). Custom projects should be requested no later than 
Friday, March 1, 2024. 

• You will be allowed to use PyTorch, Keras, or other deep learning libraries for the 
project. 

• The TAs will release a Jupyter Notebook that implements a CNN + LSTM hybrid this 
Friday at Discussion. 

• Although we have yet to cover RNNs, you can feel free to implement them using 
LSTM cells in PyTorch (https://pytorch.org/docs/stable/generated/
torch.nn.LSTM.html) or Keras (https://keras.io/api/layers/recurrent_layers/lstm/) and 
play with hyperparameters.
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Case studies

To help get an intuition behind CNN’s, we’ll go over a few architectures that 
have been influential in recent years. 

Case studies: 

• LeNet (1998) 
• AlexNet (2012) 
• VGG (2013)  
• GoogLeNet (2014) 
• ResNet (2015)
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CNN architecture

Fully connected
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LeNet-5

4 total layers.  Input is 32x32. 

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1. 
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LeNet-5

4 total layers.  Input is 32x32. 

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1. 
2. [14x14x6] POOL: 2x2 pool with stride 2.  (Adds all elems, multiplies them 

by trainable coefficient, then passes through sigmoid.)
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LeNet-5

4 total layers.  Input is 32x32. 

1. [28x28x6] CONV: 6 convolutional filters, 5x5 filter size, applied at stride 1. 
2. [14x14x6] POOL: 2x2 pool with stride 2.  (Adds all elems, multiplies them 

by trainable coefficient, then passes through sigmoid.) 
3. [10x10x16] CONV: 16 convolutional filters, 5x5. 
4. [5x5x16] POOL: 2x2 pool with stride 2. 
5. [120] CONV: 120 5x5 convolutional filters. 
6. [84] FC: FC layer: 84 x 120. 
7. [10] OUT:  MSE against a template for each digit.
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LeNet-5

LeCun et al., 1998. 

Overall architecture: 

[CONV-POOL]x2 - CONV - FC - OUT



Prof J.C. Kao, UCLA ECE

AlexNet in context

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

The number of layers refers to the number of convolutional or FC layers. 



Prof J.C. Kao, UCLA ECE

AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

Input processing: 
• ImageNet has variable-sized images. 
• Downsample or resize each image; given a rectangular image … 

• Crop so the shorter side is 256 pixels. 
• Crop out the central 256 x 256 pixels. 
• The actual input to the CNN is 224 x 224 x 3 after data augmentation.   

• However, the layer sizing doesn’t quite work out, so we’ll say it’s 
227x227x3. 

• Subtracted the mean image over the training set from each pixel.

!
:

e

256#see
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

Nonlinearity: 
• Used the ReLU.  It was faster than sigmoidal or tanh units.
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

Dotted line is tanh 
Solid line is ReLU 
Clearly ReLU resulted in more  
  efficient training. 

ReLU is at the output of every 
  convolutional and fully-connected 
  layer.

-

Itanh-

Trem
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

Training on multiple GPUs. 

• This is why the above image is cropped.  Everything is replicated x2, 
and the two paths correspond to training on two GPU’s. 

• They trained on GPUs due to memory; they trained on 1.2 million images 
and they stored them on GPUs; each GPU had just 3 GB of memory. 
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• Local response normalization (not common anymore). 
• Used pooling with overlapping (i.e., the stride was not the pool width).
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• Data augmentation: 
• Image translations and horizontal reflections. 

• Extract out random 224 x 224 patches and their horizontal reflections. 
• At test time, extract 5 random 224 x 224 patches + reflections, and 

average the predictions of the 10 output softmax’s.  This avg’ing 
reduces error rate by ~1.5%. 

• Color augmentation: scale the PCs of the colors, capturing different 
levels of illumination and intensities. 

• Reduces the Top 1 error rate by 1%. 
• Dropout with p = 0.5. 

• Substantially reduces overfitting; takes twice as long to train.
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• SGD with momentum and weight decay. 
• Batch size: 128, momentum: 0.9 
• Learning rate initialized to 0.01, manually decreased when validation 

error stopped improving. 
• L2 weight decay: 0.0005

·
om
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• Training time: roughly five to six days on two GTX 580 GPUs.
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• Averaged the output of multiple CNNs. Validation error of … 
• 1 CNN: 18.2% 
• 5 CNNs: 16.4% 
• 7 CNNs: 15.4%
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AlexNet
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AlexNet

Top5erroro
1000 classes
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AlexNet

AlexNet, Krizhevsky et al., NIPS 2012. 

• Importance of depth? 
• Validation error worsens by 2% by removing any middle layer.
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

Question: The input is 227x227x3.  The first convolutional layer has 96 11x11 
filters applied at stride 4.  What is the output size?

Will - Wf + 2pad + 1Wont =-
stride

-I + 1 = 55

4

(55x55 x 96)
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

Question: How many trainable parameters in the first convolutional layer?  
(Recall, 96 filters that are 11x11.)

96 . (lx/x3 + 1) = 34 , 944
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4.
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

Question: The output of the first convolutional layer is 55x55x96.  The pooling 
layer is 3x3 filters applied at stride 2.  What is the output size?
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

Question: How many trainable parameters in the first pooling layer?  (Recall, 
pool is with 3x3 filters at stride 2.)

O
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4. 
2. [27x27x96] POOL: 3x3 filters with stride 2. 
3. [27x27x96] NORM: normalization layer
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

Question: The input into the second convolutional layer is 27x27x96.  The 
layer has 256 5x5 filters at stride 1 with pad 2.  What is the output size?
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4. 
2. [27x27x96] POOL: 3x3 filters with stride 2. 
3. [27x27x96] NORM: normalization layer 
4. [27x27x256] CONV: 256 filters of size 5x5x96 with stride 1, pad 2. 
5. [13x13x256] POOL: 3x3 filters with stride 2.
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AlexNet

Architecture: 8 layers. Input is 227x227x3 (in paper, 224x224x3; numbers were 
changed so the operations work out). 

1. [55x55x96] CONV: 96 filters of size 11x11x3 with stride 4. 
2. [27x27x96] POOL: 3x3 filters with stride 2. 
3. [27x27x96] NORM: normalization layer 
4. [27x27x256] CONV: 256 filters of size 5x5x96 with stride 1, pad 2. 
5. [13x13x256] POOL: 3x3 filters with stride 2. 
6. [13x13x256] NORM: normalization layer 
7. [13x13x384] CONV: 384 filters of size 3x3 at stride 1, pad 1. 
8. [13x13x384] CONV: 384 filters of size 3x3 at stride 1, pad 1. 
9. [13x13x256] CONV: 256 filters of size 3x3 at stride 1, pad 1. 
10. [6x6x256] POOL: 3x3 filters at stride 2. 
11. [4096] FC: Fully connected layer with 4096 units 
12. [4096] FC: Fully connected layer with 4096 units 
13. [1000] FC: Fully connected layer with 1000 units (class scores). 
14. [1000] OUT: Softmax layer

Wort = Wis-Wf + 2 pad + /
= 13 - 3 + 2 . 1 + 1

I 13

G 3 x3x25b

O C o
3

512

EF 1024
5/2
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ZFNet

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

ZFNet, which was 
AlexNet but with better 
hyperparameters.
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ZFNet

Zeiler & Fergus, arXiv 2013, “Visualizing and understand convolutional neural 
networks.” 

• They introduced the deconvnet, which maps the output activations back 
to input pixels.  This enables a visualization of features being captured 
by the convnets. 

• With this, they made optimizations to AlexNet.
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ZFNet

Differences between ZFNet and AlexNet: 

• The first convolutional layer has 7x7 filters at stride 2 (AlexNet: 11x11 
filters at stride 4). 

• The third, fourth, and fifth convolutional layers have 512, 1024, and 512 
filters (AlexNet: 384, 384, 256).
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ZFNet

Differences between ZFNet and AlexNet: 

• The first convolutional layer has 7x7 filters at stride 2 (AlexNet: 11x11 
filters at stride 4). 

• The third, fourth, and fifth convolutional layers have 512, 1024, and 512 
filters (AlexNet: 384, 384, 256).

How big are these differences? 

• Big! 
• Dropped error rate from 16.4% to 11.7%. 
• Measuring relative to zero error, this is approximately a 30% reduction in 

error.
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What makes convolutional neural networks work better?

Some observations from ZFNet are: 

• Smaller filters applied at smaller strides appears to help (at least in early 
layers). 

• Having more filters later on in deeper layers appears to help.
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What about depth?

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

New architectures, that are 
substantially deeper.
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VGGNet

From the Visual Geometry Group, Dept of Eng. Sci., Oxford, “Very Deep 
Convolutional Neural Networks for Large-Scale Image Recognition,” Simonyan 
& Zisserman, arXiv 2014. 

“Our main contribution is a thorough evaluation of networks of increasing 
depth using an architecture with very small (3×3) convolution filters, which 
shows that a significant improvement on the prior-art configurations can be  
achieved by pushing the depth to 16–19 weight layers.” 

Their approach: focus on a small convolutional filter (3x3) and extend the 
depth.
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VGGNet

VGG Net:

Instead of 8 layers (AlexNet), VGGNet increased the network architecture to 
16-19 layers. 

ARCHITECTURE: 

Input -> [CONVx2-POOL]x3 -> [CONVx3-POOL]x2 -> FC x 3 -> Softmax 

All CONV filters are uniform: 3x3 with stride 1, pad 1 
All POOL filters are uniform: 2x2 max pool with stride 2. 

Reduction from 11.7% to 7.3%, approximately a 40% reduction in error rate.
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VGGNet

Small filters and depth:

What might be a con of using a small filter, and how does VGGNet address 
this?  (Think receptive fields.)

& VGG Net 3x3
7x7

EFNet

↑
O

O /N RF =3
O O &< IL -%o

o

- ↑ 1-/o /in RE = 5
O D O o o o O

- --1 -X1/ I I- do
& - O O O -

RF = 7
RF = 7

I

I

↑
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VGGNet

Small filters and depth:

Which has more parameters?  One 7x7 CONV layer or three 3x3 stacked 
CONV layers?

IF Net 7 x7 VGG Net

input depth : Cin = < stack of three
3x3 filters

#filters : Cont = C

((3x3X (in) . Cout) · 3

(7X7 X (in). Cont

49. C2 I 27. c
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VGGNet

Small filters and depth:

Why might stacking many 3x3 filters turn into a good thing?

"Move nonlinearity"

S1 rel zF vs .

3 retu for V46)
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VGGNet

Small filters and depth:

What is a potential con of using small filters and more layers?

&FNet UGG

---

one 747 filter , pad = / three 3x3 filters , pad = /

Wont = Win - F + 2 + / I (Win ,
hinC

= Win - 4 (Win
, thin !

(win-4 ,
hin - 4) (win

,
tin (
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VGGNet

INPUT          [224x224x3]        
CONV (64)   [224x224x64] 
CONV (64)   [224x224x64] 
POOL           [112x112x64] 
CONV (128) [112x112x128] 
CONV (128) [112x112x128] 
POOL           [56x56x128] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
POOL           [28x28x256] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
POOL           [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
POOL           [7x7x512] 
FC                [1x1x4096] 
FC                [1x1x4096] 
FC                [1x1x1000]

- 64 filters , each 3x3x3 , pad = /

=> 64 filters ,
each 3x3464

, pad = /

->

#Ops : #remous . (# ops/nemon)

(112 . 112 - 128) (3 . 3 . 64)
-

-
Hops

: (56 . 56 . 256) (3 . 3 - 128)
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VGGNet

224*224*3     ~ 150K 
224*224*64   ~ 3.2M 
224*224*64   ~ 3.2M 
112*112*64   ~ 800K 
112*112*128 ~ 1.6M 
112*112*128 ~ 1.6M 
56*56*128     ~ 400K 
56*56*256     ~ 800K 
56*56*256     ~ 800K 
56*56*256     ~ 800K 
28*28*256     ~ 200K 
28*28*512     ~ 400K 
28*28*512     ~ 400K 
28*28*512     ~ 400K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
7*7*512         ~ 25K 
                         4096 
                         4096 
                         1000

INPUT          [224x224x3]        
CONV (64)   [224x224x64] 
CONV (64)   [224x224x64] 
POOL           [112x112x64] 
CONV (128) [112x112x128] 
CONV (128) [112x112x128] 
POOL           [56x56x128] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
POOL           [28x28x256] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
POOL           [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
POOL           [7x7x512] 
FC                [1x1x4096] 
FC                [1x1x4096] 
FC                [1x1x1000]

Every activation is 4B

24 M x 4 Bytes
= 96 MBytes
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VGGNet

224*224*3     ~ 150K 
224*224*64   ~ 3.2M 
224*224*64   ~ 3.2M 
112*112*64   ~ 800K 
112*112*128 ~ 1.6M 
112*112*128 ~ 1.6M 
56*56*128     ~ 400K 
56*56*256     ~ 800K 
56*56*256     ~ 800K 
56*56*256     ~ 800K 
28*28*256     ~ 200K 
28*28*512     ~ 400K 
28*28*512     ~ 400K 
28*28*512     ~ 400K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
14*14*512     ~ 100K 
7*7*512         ~ 25K 
                         4096 
                         4096 
                         1000

0 
(3*3*3)*64 = 1,728 
(3*3*64)*64 = 36,864 
0 
(3*3*64)*128 = 73,728 
(3*3*128)*128 = 147,456 
0 
(3*3*128)*256 = 294,912 
(3*3*256)*256 = 589,824 
(3*3*256)*256 = 589,824 
0 
(3*3*256)*512 = 1,179,648 
(3*3*512)*512 = 2,359,296 
(3*3*512)*512 = 2,359,296 
0 
(3*3*512)*512 = 2,359,296 
(3*3*512)*512 = 2,359,296 
(3*3*512)*512 = 2,359,296 
0 
7*7*512*4096 = 102,760,448 
4096*4096      = 16,777,216 
4096*1000      = 4,096,000

INPUT          [224x224x3]        
CONV (64)   [224x224x64] 
CONV (64)   [224x224x64] 
POOL           [112x112x64] 
CONV (128) [112x112x128] 
CONV (128) [112x112x128] 
POOL           [56x56x128] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
CONV (256) [56x56x256] 
POOL           [28x28x256] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
CONV (512) [28x28x512] 
POOL           [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
CONV (512) [14x14x512] 
POOL           [7x7x512] 
FC                [1x1x4096] 
FC                [1x1x4096] 
FC                [1x1x1000]

IGNORE
BIASES

#
parans

VGGNet : 158 M params
FC layers : 122M
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VGGNet

Some observations: 

• Memory: 24M * 4 bytes = 96MB for one forward pass.   
• Total parameters: 138M parameters 
• A lot of the network parameters are in the fully connected layer.
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VGGNet

Simonyan et al., arXiv 2014

Number of layers 

A - 11 
B - 13 
C - 16 
D - 16 
E - 19

Difference between C & D: C had three 1x1 conv layers.

& more
laye
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VGGNet

Other implementation notes about VGGNet. 

• Input is 224x224 RGB image that has global mean-subtraction. 
• They disposed of the local response normalization (LRN) layers from 

AlexNet, as they found they did not increase performance but consumed 
more memory & computation. 

• Batch size 256, SGD + momentum 0.9. 
• L2 penalty of 5e-4. 
• Dropout for first two FC layers. 
• Learning rate adjusted as in AlexNet. 
• In initialization, they trained a shallower network and then used its 

weights as the initial weights for deeper networks. 
• But later on they found out the Xavier initialization performed 

comparably. 
• Also performed the horizontal flipping, random crops, and RGB shifting 

that AlexNet and others used. 
• Training took 2-3 weeks on a 4 GPU machine. 
• Their submission averaged the output of 7 nets.
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What about depth?

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

New architectures, that are 
substantially deeper.
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GoogLeNet

From Szegedy et al., IEEE CVPR 2014. 

The main take-home points of the GoogLeNet: 

• 22 layers (deeper) 
• Introduces the “Inception” module 
• Gets rid of fully connected layers. 
• Has only 5 million parameters, which is about 12x less than AlexNet and 

27x less than VGGNet. 
• Also tries to keep computational budget down. 

• “… so that the [sic] they do not end up to be a purely academic 
curiosity…” 

• Won ImageNet top 5 error (w/ error rate 6.7%). 

-
(1) Lets the network pick out/optimise for

L the most important features
(2) Reduce computational expense
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GoogLeNet

Going deeper requires more parameters, and more computational expense. 

Is there a way to address this? 

GoogLeNet: the inception module.
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GoogLeNet

They leverage an idea called “network-in-network.” 

Naive inception module:-
tract diflite theof

int
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GoogLeNet

They leverage an idea called “network-in-network.” 

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

What is the size of the output of the 128 1x1 convolutions?

Wont = Win-Nf + 2 pad + 1

= 28 - 1 + 0 + 1

= 28

28 x28 x/28

pad
=
1

I
Pad

=
2



Prof J.C. Kao, UCLA ECE

GoogLeNet

They leverage an idea called “network-in-network.” 

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

What padding do we need to keep the output size consistent for the 192 3x3 
convolutional filters?

28x28x128
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GoogLeNet

They leverage an idea called “network-in-network.” 

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256
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GoogLeNet

They leverage an idea called “network-in-network.” 

Naive inception module:

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672
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GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

With this architecture, can the concatenated output ever have smaller depth 
(3rd dimension) than the input?

No .
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GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

How many operations are there in this layer?((| x / Conv .: (28 . 28 . 128) (1 . 1 . 256)

3x3 w : (28 . 28 . 192)(3 . 3 . 256)
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GoogLeNet

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

How many operations are there in this layer?

1x1x128 conv: 28*28*256*1*1*128 = 25,690,112

3x3x192 conv: 28*28*256*3*3*192 = 356,816,512

5x5x96 conv: 28*28*256*5*5*96 = 481,689,600


SUM = 864,196,224

->

24x24496 if no pad
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GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that 
reduce the number of feature maps to substantially reduce the number of 
operations. 

Question: Say F = 64.  Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5 3x3 pool

Concatenate

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672

Before After-
-->

O#
ops

= (28x28x64) (1x/x256) # ops = (28x28 x 192) (3x3 x 256)

+ (28 . 28 , 142)(3 . 3 : 64) + (28x28 X 64)//x(x192)O

&
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GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that 
reduce the number of feature maps to substantially reduce the number of 
operations. 

Question: Say F = 64.  Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5

3x3 pool

Concatenate

64, 1x1 64, 1x1

64, 1x1

rele
->

rel->
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GoogLeNet

To address this, in GoogLeNet, 1x1xF convolutional layers are added, that 
reduce the number of feature maps to substantially reduce the number of 
operations. 

Question: Say F = 64.  Where should we put these convolutional layers?

28x28x256

128, 1x1 192, 3x3 96, 5x5

3x3 pool

Concatenate

64, 1x1 64, 1x1

64, 1x1

28x28x192

28x28x64 28x28x64 28x28x256

28x28x6428x28x9628x28x192

28x28x480
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GoogLeNet

How many operations?

1x1x128 conv: 28*28*256*1*1*128 = 25,690,112

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

1x1x64 conv: 28*28*256*1*1*64 = 12,845,056

3x3x192 conv: 28*28*64*3*3*192 = 86,704,128

5x5x96 conv: 28*28*64*5*5*96 = 120,422,400


SUM: 271,351,808

These 1x1 convolutions reduce the amount of computation by almost 4x in this 
example. 

Is information lost in these 1x1x64 convolutions?
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GoogLeNet

GoogLeNet architecture.
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GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (5x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Num layers

1

2

4

10

4

1

Total layers: 22
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GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (5x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Num layers

1

2

4

10

4

1

Total layers: 22

What might be a concern about this architecture?
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GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (2x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Inception (3x)Avg pool

Convolution

FC

FC (dropout)

Softmax

Avg pool

Convolution

FC

FC (dropout)

Softmax

Layer 11
Layer 17

a

↓ Rent

ie
In
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GoogLeNet

Convolution

Convolution (2x)

Max pool

Max pool

Inception (2x)

Max pool

Inception (2x)

Max pool

Inception (2x)

Avg pool

FC (dropout)

Softmax

Inception (3x)Avg pool

Convolution

FC

FC (dropout)

Softmax

Avg pool

Convolution

FC

FC (dropout)

Softmax

Layer 11
Layer 17

Later work showed auxiliary classifiers had a minor effect (0.5%) and you only 
need one of them.  They’re discarded at inference.  Their loss is multiplied by 
0.3.
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GoogLeNet

Other details: 

- SGD with 0.9 momentum. 
- Decrease learning rate by 4% every 8 epochs. 
- Image size patches from 8 to 100% of the area, having aspect ratios 3x4 

or 4x3.  Used 144 crops per image. 
- Other “photometric” operations. 
- Averaged results of 7 GoogLeNets.   
- Did not use GPUs (!) 
- Again, 12x less params than AlexNet.  Won ILSVRC ’14.  (6.7% top 5 

error.)
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ResNet

http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Revolution of depth


