
Lecture 15: RNNs + Object Detection and Segmentation

Prof J.C. Kao, UCLA ECE

Announcements:

• Remaining schedule: Today: RNNs + object detection, 3/11: object detection + adversarial 
examples, 3/13: adversarial + overview. 

• The project and its accompanying data have been uploaded to Bruin Learn. It is due 
March 15, 2024 (Friday of Week 10). 

• You will be allowed to use PyTorch, Keras, or other deep learning libraries for the 
project. 

• Midterm regrades are due by Monday, 3/11, at 11:59pm.



Markov assumption St = f(s + -1 ,
Xt)

H
= g(St-1 , St-2 - Xt)
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What do we need to train an RNN?

Let’s take stock of what we know: 
- We know the RNN equations, and we can define a loss function.  

- So we know how to do a forward pass and calculate a loss. 

- In general, we know how to do optimization (i.e., with SGD and your 
favorite optimizer on top of that, e.g., Adam or RMSprop). 

- Do we know how to take gradients of the weight matrices? 

- Is there any problem in applying backpropagation as in feedforward 
networks (e.g., CNNs, FC nets) to RNNs? 
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Key insight: unroll the computational graph
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Key insight: unroll the computational graph
Multiplicative RNNs Wvx(t)
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Key insight: unroll the computational graph

til t =2 t =3



Prof J.C. Kao, UCLA ECE

Key insight: unroll the computational graph
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Key insight: unroll the computational graph
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How does gradient flow in this graph?
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How does gradient flow in this graph?

Win Win Win
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Vanishing and exploding gradients

At = 20 time steps
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Vanishing and exploding gradients
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Vanishing and exploding gradients
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Weight initialization
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LSTM
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LSTM
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LSTM
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LSTM

feelat
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LSTM
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LSTM
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LSTM
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LSTM
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LSTM
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LSTM
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GRU
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GRU
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GRU
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GRU
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GRU
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GRU



Prof J.C. Kao, UCLA ECE

Training RNNs



Prof J.C. Kao, UCLA ECE

Training RNNs



Detection and Segmentation
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Classification is important but often times we care about where objects are in an image, 
or to identify multiple objects in an image.I

&As "localization



Pascal VOC dataset
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Used in YOLO (to be described). 

This dataset had a competition until 2012. There are twenty classes. They had both a 
classification and detection competition. 

Classes: 

• Person: person 
• Animal: bird, cat, cow, dog, horse, sheep 
• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train 
• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor 

Classification and Detection Tasks: 

• Classification: For each of the twenty classes, predicting presence/absence of an 
example of that class in the test image. 

• Detection: Predicting the bounding box and label of each object from the twenty 
target classes in the test image. 

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/



Pascal VOC dataset
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http://host.robots.ox.ac.uk/pascal/VOC/voc2007/



Pascal VOC dataset
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/



Pascal VOC dataset
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Segmentation: 



Pascal VOC dataset
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Action detection: 



Pascal VOC dataset
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Action detection: 



COCO: Common Objects in Context
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https://cocodataset.org/#home
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https://cocodataset.org/#home

https://www.tensorflow.org/datasets/catalog/coco



COCO: Common Objects in Context
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https://cocodataset.org/#home

Search for bicycles:



COCO: Common Objects in Context
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https://cocodataset.org/#home

Search for persons:



COCO: Common Objects in Context
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https://cocodataset.org/#home

Search for persons + sandwiches:



COCO: Common Objects in Context
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https://cocodataset.org/#home

Tasks (competitions until 2020):
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https://cocodataset.org/#home

Tasks (competitions until 2020):
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https://cocodataset.org/#homeTasks (competitions until 2020):



COCO: Common Objects in Context
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Tasks (competitions until 2020):



Detection, Localization, Segmentation
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Classification is important but often times we care about where objects are in an image, 
or to identify multiple objects in an image. 

Let’s start off with how you might do segmentation.



Segmentation
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From COCO: 

“The panoptic segmentation task involves assigning a semantic label and instance id 
for each pixel of an image, which requires generating dense, coherent scene 
segmentations. The stuff annotations for this task come from the COCO-Stuff 
project described in this paper. For more details about the panoptic task, including 
evaluation metrics, please see the panoptic segmentation paper." 

“Panotptic annotations defines defines 200 classes but only uses 133”



Segmentation
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How do we go from 



Segmentation
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How do we go from 

to



Segmentation
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Naive idea 1: Classify each pixel?



Segmentation
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Naive idea 1: Classify each pixel?

Question for class: If we can’t classify each pixel, what should we do instead? What 
are options?



Segmentation
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Idea 2: sliding windows?

ꌀ



Segmentation
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Sliding windows?

CNN Horse
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Sliding windows?

CNN Horse
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Sliding windows?

CNN Horse

CNN Horse
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Sliding windows?

CNN Horse

CNN Horse



Segmentation

Prof J.C. Kao, UCLA ECE

Sliding windows?

CNN Horse

CNN Horse

CNN Sky

Question for class: What are the cons of a sliding window approach?



Segmentation
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Cons of sliding windows?



Segmentation
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Cons of sliding windows? 

• Very large computational expense to slide all windows. Number of classifications 
(inferences, forward passes) through the neural network is the number of sliding 
windows. 

• Also inefficient: many of the same pixels are going into the same CNN, since 
the sliding windows are overlapping. 

• Multiple classes in a single image. 

• Thought, why not also pass in skinny and wide windows (rectangles) for 
classification? (Think of input expected by CNN!)

Nobody does this. You probably shouldn’t, either.

O



Segmentation
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Idea 3: why not just train one CNN to label every pixel? 

Question: What are some design considerations for how you might train one CNN to do 
this?

C = 1000 classes---
--

"- --
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Segmentation
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Idea 3: why not just train one CNN to label every pixel? 

Question: What are some design considerations for how you might train one CNN to do 
this? 

What kind of training data do we need for this? 



Segmentation
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Why not just train one CNN to do this?

CNN

What does the output size of this CNN have to be?  

Would ResNets, GoogLeNets, VGGNets, AlexNets, work here?



Segmentation
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Why not just train one CNN to do this?

This should be a C x H x W tensor of scores per pixel.

Question: What is the major con of this approach?

256 . 256-1000 = 65 , 536 , 000 #'s

4 bytes => 250MB

-

probs
-



Segmentation
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Why not just train one CNN to do this?

This should be a C x H x W tensor of scores per pixel.
Cons?

Images are large, there will be significant memory + computational expense.



Have a bottleneck to reduce the number of parameters
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Have a bottleneck to reduce the number of parameters
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https://arxiv.org/pdf/1505.04366.pdf
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Have a bottleneck to reduce the number of parameters
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https://arxiv.org/pdf/1505.04366.pdf

Aside: DO NOT CALL THIS DECONVOLUTION. This is called TRANSPOSED CONV. 



Transposed convolution
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Unpool?
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2x 2 max poolI
stride 2
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Transposed convolution
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Transposed convolution
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Transposed convolution
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https://d2l.ai/chapter_computer-vision/transposed-conv.html



Transposed convolution
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https://d2l.ai/chapter_computer-vision/transposed-conv.html



Transposed convolution — padding removes from the output
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https://d2l.ai/chapter_computer-vision/transposed-conv.html

The output of a transposed convolution is therefore: 

(input_size - 1) * stride + kernel_size - 2*pad



One more padding example
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What is the size of an output of a transposed convolution with: 

Input: 2x2 
Kernel: 3x3 
Stride = 2 
Pad = 1 
 
From equation, (input_size - 1) * stride + kernel_size - 2*pad = 2 + 3 - 2 = 3.


