Lecture 15: RNNs + Object Detection and Segmentation

Announcements:

* Remaining schedule: Today: RNNs + object detection, 3/11: object detection + adversarial
examples, 3/13: adversarial + overview.

* The project and its accompanying data have been uploaded to Bruin Learn. It is due
March 15, 2024 (Friday of Week 10).

* You will be allowed to use PyTorch, Keras, or other deep learning libraries for the
project.

* Midterm regrades are due by Monday, 3/11, at 11:59pm.

Prof J.C. Kao, UCLA ECE

t
ok o e

|

¥
< = (St__) Xt
Moo oxsguw/fﬁw t :Jz . l\ | 1 34’% = pelut (V\lmﬁw + Wi, Xy + lo)
“ly 3t-21
At a high-litel, the RNN can be diagrammed as follows:

Vawlla RNN architecture

D
Wrec &’0 €Ik vt
Sy AL Cpa | S Wi Wout e\{fl’ D
—> z 2(,*\9 4
Xt —> > z; = Wout ﬂuv t boug
>

The RNN has three major components:

e Wi,s: An input at time ¢, denoted x¢, is transformed via Wi, onto
artificial neurons, whose activations are h;.

o W,..: Each artificial neuron is the network is denoted by an orange circle,
and these artificial neurons have recurrent connections. recurrent
connections are defined by the matrix W..

o Wyt Finally, the artificial neuron activations are mapped linearly to the
output z; through the matrix Wt

Prof J.C. Kao, UCLA ECE

What do we need to train an RNN?

W’rec
Wzn Wout
—
>
>

Let’s take stock of what we know:
- We know the RNN equations, and we can define a loss function.
- So we know how to do a forward pass and calculate a loss.

- In general, we know how to do optimization (i.e., with SGD and your
favorite optimizer on top of that, e.g., Adam or RMSprop).

- Do we know how to take gradients of the weight matrices?

- Is there any problem in applying backpropagation as in feedforward
networks (e.g., CNNs, FC nets) to RNNs?

Prof J.C. Kao, UCLA ECE

Mulbplicetine RNN) Wi (6
Key insight: unroll the computational graph

RNN training (cont.) hy = el (ch by + W%)

To get around this confound, we consider the RNN as a computational graph
through time.

to, ¥ —s h; — hy = hy = hy —
~—— @
W, X
o g
h

Prof J.C. Kao, UCLA ECE

et
Key insight: unroll the computational graph he €I
i\’c*\ = velwn (\A)mC /L_t j

RNN training (cont.)

For example, consider a matrix Wi, that looks like the following:

"4 0 0 04]
el 69 0 06 05
T 0 0 0 0.3
0 08 0 0.7 |

Prof J.C. Kao, UCLA ECE

Mu%’rlﬂmﬁw NN Wyee (£)
Key insight: unroll the computational graph

h; 1

h;

h; 3

hiy — hir1a

Prof J.C. Kao, UCLA ECE

Key insight: unroll the computational graph

RNN training (cont.)

To train the network, we calculate gradients on the unrolled graph. Doing
backpropagation through the unrolled graph is called backpropagation through
time (BPTT).

L
Ll £2 ?3
Z, Zy Z3
Wour T T
Wiree Wree Wiec
o —> f —> h, —> f —> h, f —
[wi, T T
X, X X3

Note that sometimes, one may only care about the last loss L7, in which case
Lt =0 for t < T.

=y t=3 Prof J.C. Kao, UCLA ECE

£\ t

Key insight: unroll the computational graph

RNN training (cont.)

To train the network, we calculate gradients on the unrolled graph. Doing
backpropagation through the unrolled graph is called backpropagation through
time (BPTT).

L
El ﬁg ?3
Z, z, Zg
Wour T T
Wiec Wiee Wiec
o —> f —> h, —> f —> h, f —>
Wi, T T
X, X2 X3

Note that sometimes, one may only care about the last loss L7, in which case
Lt =0 for t < T.

Prof J.C. Kao, UCLA ECE

Key insight: unroll the computational graph

RNN training (cont.)

This graph can be redrawn as follows:

Prof J.C. Kao, UCLA ECE

How does gradient flow in this graph?

RNN training (cont.)

This graph can be redrawn as follows:

T
f] {

Wtrec) eee

Prof J.C. Kao, UCLA ECE

How does gradient flow in this graph?

RNN training (cont.)

Redrawing the graph in this way, we see that to do backpropagation, there are
several gradient paths to the parameters. Here, simply consider Wie.. The red
lines are all paths from the loss to W through backpropagation.

t i
T r
h,) f by (Xl f

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Vanishing and exploding gradients

There are a few important considerations then for backpropagation through
time. The first of these is vanishing and exploding gradients.

As the number of layers to backpropagate through is the length of your input
sequence in time, training these networks is like training a deep network with a
bit of gradient injected at every time step (through £:). With RNNs, the
problem can be more precisely formulated.

Every backpropagation step from h;y; to h; will require backpropagating
through the nonlinearity f, and then a matrix multiply with Wec. If our
nonlinearity is ReLU and our upstream gradient is 0L;/0h;_j, then
backpropagating to h;_x_1 involves the following computation:

0L

= =W/ (I(hy—p—1 > 0) ® IL:/Ohy_4)
Ohi_r—1

And hence going back At layers in time requires repeated multiplication by
WL, (At times).

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Vanishing and exploding gradients (cont.)

Let WL _ have eigenvalue decomposition UAU~!. Then multiplication by by
this matrix At times is equivalent to:

At - 1. AN =133&0
pe=0 (WE)T = (uau)® S
lwo -
= UAUPTUAU'--) <0q | A =245x0°
_ UAAtU—l
k

Let \; be the ith eigenvalue of A. Then, along eigenvectors where \; < 1, the
gradients will be attenuated to zero (vanishing gradients). Along dimensions
where \; > 1, the gradients will grow exponentially (exploding gradients).
These cause problems for gradient descent at earlier layers.

’ -)\\loo
~

(>\\ >‘ oo
>\2 O too 2
A = . A |

O *>»\ { D))Q:’"

g]

O

[

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Addressing vanishing and exploding gradients

There are a few ways to address the problem of vanishing and exploding
gradients. But first, a question:

Consider the gradient injected by £;. Doesn'’t this help to train the weights
Wec, and if so, why should | be concerned that gradients from L; are
inaccurate? (e.g., think of the gradient injected by £; as analogous to the
auxiliary classifiers of GooglLeNet. Why doesn’t this solve the problem of
inaccurate gradients at earlier time steps?)

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Addressing vanishing and exploding gradients (cont.)

A general way to address the vanishing and exploding gradients problem is to
do truncated backpropagation through time. In truncated backpropagation
through time, instead of backpropagating all gradients back to the activations
at time 1, we only backpropagate them p layers through time.

At = 20 T %‘&‘%

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Exploding gradients. Like in CNNs, we can address the exploding gradients
problem by constraining their norm to be a certain value. Let's say that the
maximum gradient norm is a constant c¢. Then if the gradient, g, is such that

lg|| > ¢, then
c

g 78
Il

Prof J.C. Kao, UCLA ECE

Vanishing and exploding gradients

Vanishing gradients. Usually the way to handle vanishing gradients is via
changing the architecture (later on in this lecture). However, there are ways to
regularize RNNs to help ameliorate the vanishing gradients problem. Pascanu
and colleagues (2012) propose the following regularization, which is added to

the loss function: ,
Ohyyq

H aht 6ht+1
0O = § (P

Prof J.C. Kao, UCLA ECE

Weight initialization

Weight initialization strategies

In CNNs, we saw that the Xavier and He initializations can make a big
difference in training neural networks. How should we initialize RNN’'s? The

following strategies are for networks using RelLU’s.

o Le et al., 2015, suggest an “initialization trick” of setting W;ec = I and
brec = 0. The intuition for why this is good is that it preserves the
gradients going back in time (at least to begin), i.e., its eigenvalues are all
1 so gradients at the start are not heavily attenuated or amplified.

o Talathi et al., 2016, hypothesize that an initialization where one
eigenvalue is equal to 1 and the rest are less than 1 is better. Their
initialization is as follows:

Sample a matrix A € RV XY whose values are drawn from N (0,1), and N
is the number of units in the RNN.

Compute B = %AAT and let Amax be the largest eigenvalue of the matrix
B+ 1

Initialize Wiee = s——B + L

max

Empirically this is better than initializing Wy = 1.

Prof J.C. Kao, UCLA ECE

LSTM

The long short-term memory

The long short-term memory (LSTM) is a particular RNN architecture that is
well-suited for addressing the problem of vanishing and exploding gradients. It
was proposed by Hochreiter and Schmidhuber in 1997. It is one of the most
commonly used RNN architectures today.

The name refers to its ability to store short-term memory for a long period of
time. Hopefully the next few slides will help unpack what this really means.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM wp = [We W]

The standard LSTM is defined as follows: "

hy eR
£, = w, | B +b "

/ t = (O J X, f Xy € R

R wx (W+wm)
jd_e ir = @Wi |: h)t(_l] —I—bq;> NJt e R
t

B h:
2 - o])
O¢
b yvalnes T
ht = O Ct)

where o(-) is the sigmoid function. These functions at first glance are opaque.
Here, we will unpack what they mean and how they help solve the vanishing
and exploding gradients problem.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, block diagram
Here is a block diagram of the LSTM cell.

Ct-1 > GAD > —1— T » Cy

\/

¢ T talgl
Y
©
ZAN Dy Q\

o o tanh o

s e 4 f f
h, ;—> concat L h,

T

Xt

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, cell state

The LSTM cell state, ¢y, is the central component of the LSTM. We think of
the cell state as some memory or tape; it holds some value and remembers it.
But the key thing is that we can alter this cell state (i.e., we can alter the
memory or tape). At each point in time, there are three things we can do to
the cell state:

1. Forget information.
2. Write-in information.
3. Read-out information.

This is illustrated on the next page.

Note that the next hidden state, hy, is essentially a read out of the cell state c¢,
as h; = f(c¢), so the cell state contains all the vital information in the LSTM.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, cell state

Forget Write in Read out
information information information
Ct1 > © > + > Cy
A v
o\ T tanh

o tanh

2 _,
h; ; —> concat h

T

Xt

/Q\ >@\
y

—>» Q
—>

Forgetting information, writing in information, and reading out information are
all mediated by gates.

Prof J.C. Kao, UCLA ECE

LSTM

]Ct = ¢ (M’(@W\
€ (o)1)

To forget information, the LSTM uses the forget gate, f;. This comprises the
update, c; = ct—1 ® f;. Note:

LSTM, forgetting information

o If f; is close to 1, then ¢; = c.—1. Thus, when the forget gate is large,
most information is remembered.

o If f; is close to 0, then ¢; =~ 0. Thus, when the forget gate is small, most
information is forgotten.

This gate is illustrated on the next page.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, forget gate

The network computes a linear transformation

h;:_
cn([] o)

and if f; is small, it forgets the information. If f; is large, it remembers the

information.

Ct-]. > GB > + > Ct

Forget information T tanh

if £; small. ® N,

VAN Pe
o o tanh o
-

h;_{ —> concat h,

T

Xt
Prof J.C. Kao, UCLA ECE

LSTM

To write in information, the LSTM needs to compute two values. The following
Is not convention, but it helps me remember. We'll call these gates the value
gate, v¢, and the input gate, i;. These are calculated as:

v:; = tanh (WU [b] —l—bv>

Xt
i, = o (Wz- [b1] +bi)
Xt

e The value gate, v € (—1,1) tells us the value we want to add to the cell
state.

e The input gate, i; € (0,1) tells us how much of the value gate, v; to write
to the cell state.

Then, the total information we get to write in to the cell state is the
multiplication of these two, i.e., this update looks like:

Ct =Ct—1 +1it ©® vy

If either v or 1; is zero, we write no information to the cell state. If i; = 1, we
write whatever update information v; into the cell.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, input gate

C¢1 > GA> > > Cy
Write-in Y
informationT targl
it/ ® Vi p o
o o tanh o \
a L
h;_{—> concat h,

T

Xt

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, reading out information

Now that we've updated the cell state by both forgetting information and
writing in information, we are now ready to read out information to update the

hidden state of the LSTM. This is fairly simple: we take our cell state, put it
through the tanh nonlinearity, and then use our final gate, the output gate o;.

e The output gate, oy, tells us how much of the cell state is going to be
read out to the hidden state.

o If o; is small, very little will be read out.

o If o4 is large, a lot of the cell state will be read out.

Formally, the readout is:
h: = o; ® tanh(c;)

0y = 0°(offive)

Prof J.C. Kao, UCLA ECE

. 9=
- = oy
Db\ L . DL-
LSTM, output gate < CY ac,
C t-1 > @ > + ¢ » C /
A T . Read out
[J W information
\ ®
J o o tanh o
O)V(K —© A A A T
| - "
h; 1 —> concat h, ~]C(%)

|

Xt

Prof J.C. Kao, UCLA ECE

LSTM

LSTM training

From this representation of the LSTM, we now can glean insight into why this
works well.

e The cell state, c¢, during backpropagation, has almost uninterrupted
gradient flow. It's analogous to a gradient highway, much like in ResNets.

e In particular, the 4+ operation passes the gradient back.

o The gradient may be attenuated by the forget gate, f;. The gradient

oL oL of
(9(:,5_1 o 8Ct t
and therefore if the forget gate is small, then 835_1 will be small, too.

Prof J.C. Kao, UCLA ECE

LSTM

LSTM, last comments

In practice, LSTMs are easier to train than vanilla RNNs using first order
gradient descent techniques. However, note that the LSTM has (!) 4x the
number of parameters of a vanilla RNN.

To address this problem, another type of recurrent unit is used, called the
gated recurrent unit.

Prof J.C. Kao, UCLA ECE

GRU

Gated recurrent units (GRUs)
The standard GRU is defined as follows:

[l

q
VRN
<
| E— |
% 5
—
|

-
N—

It
o]
Xt
h, = tanh (Wh [re © hi—] +bh)
Xt
h, = Zt@ht—l‘l‘(l_zt)@ﬁt

Again, it looks opaque at first, so let's unpack it. We call:
* r; the reset gate.
e u:; the update gate.

o flt the candidate activation.

Prof J.C. Kao, UCLA ECE

GRU

GRU, block diagram
The GRU has the following block diagram:

h; 4 l > () > 4 > h,
X¢ T i T
T g—>» — —>0
S T
\ f

Like the LSTM, we see that the hidden state essentially has a gradient highway
for backpropagation.

Prof J.C. Kao, UCLA ECE

GRU

GRU, update gate

The first thing we note about the GRU is that it has no cell state. So let's start
with the update gate, u;. The update gate tells us how the hidden state
updates.
o |If the update gate u; is close to 1, then the hidden state stays
approximately constant: h; ~ h:_;.

e If the update gate u: is close to 0, then the hidden state forgets its
previous value and adopts the candidate activation, h;.

Hence, the GRU colloquially uses the hidden state as the “memory” as opposed
to instantiating a new cell state. We can think of u; being close to 1 as
information not being forgotten, and u; being close to 0 as information being
forgotten and new information (i.e., the candidate activation) being written in.

Prof J.C. Kao, UCLA ECE

GRU

GRU, reset gate

At this point, we're left with only one thing left to understand about the GRU
— what is the new value h; that may be written into the hidden state (if the
update gate u; is close to 0)?

This is mediated by the reset gate.

o |f the reset gate r; is close to 1, then the value flt looks like a standard
vanilla RNN update.

o |f the reset gate r; is close to 0, then the value h; is completely set by the
input.

The intuition is that if the reset gate r; is close to 0, then it'll be as if the GRU
was being reset, only looking at the input.

Prof J.C. Kao, UCLA ECE

GRU

GRU, gradient flow

Much like the LSTM, the GRU is able to learn long term dependencies since
there's a gradient highway on the hidden states h;. When it needs to
remember long-term sequences, then the update gate will be close to (1),
allowing the gradient to flow back in time through h;.

Prof J.C. Kao, UCLA ECE

GRU

GRU, other comments

In this formulation of the GRU, it has 3x the parameters of a vanilla RNN,
which is less than the LSTM. (There is also a minimal GRU, which only has 2x
the parameters, and operates similarly to the GRU.) Compared to the LSTM:

e The GRU uses less memory and computation than the LSTM, since it
doesn’t maintain a cell state.

* GRUs have been empirically observed to train faster than LSTMs.

o LSTMs ought to be able to remember longer sequences by using a
dedicated cell state.

e GRUs empirically tend to perform better than LSTMs, but this isn’t
always the case. In particular, in your application, it could be that a GRU
does better than an LSTM, or vice versa. My recommendation is that you
try both.

Prof J.C. Kao, UCLA ECE

Training RNNs

A final note on training RNNs

Since RNNs tend to have less units, second order methods may be more
plausible. For example, Martens, Sutskever and Hinton (2011) reported a
“Hessian-free” conjugate gradient method to optimize RNNs, and even a more
expressive architecture called a multiplicative RNN. Here, second order
methods helped substantially.

Prof J.C. Kao, UCLA ECE

Training RNNs

How to train?

In total, we have suggested four ways you might go about training recurrent
neural networks.

e Use a vanilla RNN with gradient clipping (to ameliorate exploding
gradients) and Pascanu’s suggested regularization (to ameliorate vanishing
gradients).

e Use an LSTM.
e Use a GRU.

o (Extension of 2 and 3: use some other gating unit variant (there are a
bunch).)

o Consider using second order optimization methods.

Prof J.C. Kao, UCLA ECE

Detection and Segmentation
\

Classification is important but often times we care about where objects are in an image,
or to identify multiple objects in an image.

\\//\ W lo w?ug‘—‘b\/l\/\

g

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

Used in YOLO (to be described).

This dataset had a competition until 2012. There are twenty classes. They had both a
classification and detection competition.

Classes:

e Person: person

e Animal: bird, cat, cow, dog, horse, sheep

e Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

e Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Classification and Detection Tasks:

e Classification: For each of the twenty classes, predicting presence/absence of an
example of that class in the test image.

e Detection: Predicting the bounding box and label of each object from the twenty
target classes in the test image.

http://host.robots.ox.ac.uk/pascal/NOC/voc2007/

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

Segmentation:

» Segmentation: Generating pixel-wise segmentations giving the class of the object visible at each pixel, or "background" otherwise.

Image Objects Class

http://host.robots.ox.ac.uk/pascal/NOC/voc2012/

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

Action detection:

Action Classification Competition

» Action Classification: Predicting the action(s) being performed by a person in a still image.

10 action classes + "other"
| DB

».

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Prof J.C. Kao, UCLA ECE

Pascal VOC dataset

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

info@cocodataset.org

Common Objects in Context Home People Tasks- Evaluate-

COCO Explorer

COCO 2017 train/val browser (123,287 images, 886,284 instances). Crowd labels not shown.

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

info@cocodataset.org

Common Objects in Context Home People Tasks- Evaluate-

COCO Explorer

COCO 2017 train/val browser (123,287 images, 886,284 instances). Crowd labels not shown.

https://cocodataset.org/#home

coco M-

e Visualization: Explore in Know Your Data 7

e Description:

COCO is a large-scale object detection, segmentation, and captioning dataset.

Y Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same
images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91

classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.

https://www.tensorflow.org/datasets/catalog/coco
psill o / 9 Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Search for bicycles:

DEEERER

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Search for persons:

mERE¥

DEINEEREER

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Search for persons + sandwiches:

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Tasks (competitions until 2020):
COCO 2020 Object Detection Task

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Tasks (competitions until 2020):

COCO 2020 Keypoint Detection Task

https://cocodataset.org/#home

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Tasks (competitions until 2020): htips:/jcocodataset.org/#home
COCO 2020 Panoptic Segmentation Task

1. Overview

The COCO Panoptic Segmentation Task is designed to push the state of the art in scene segmentation. Panoptic
segmentation addresses both stuff and thing classes, unifying the typically distinct semantic and instance segmentation
tasks. The aim is to generate coherent scene segmentations that are rich and complete, an important step toward real-world

Prof J.C. Kao, UCLA ECE

COCO: Common Objects in Context

Tasks (competitions until 2020):
COCO 2020 DensePose Task

1. Overview

The COCO DensePose Task is designed to push the state of the art in dense estimation of human pose in challenging,
uncontrolled conditions. The DensePose task involves simultaneously detecting people, segmenting their bodies and
mapping all image pixels that belong to a human body to the 3D surface of the body. For full details of this task please see
the DensePose evaluation page.

Prof J.C. Kao, UCLA ECE

Detection, Localization, Segmentation

Classification is important but often times we care about where objects are in an image,
or to identify multiple objects in an image.

Let’s start off with how you might do segmentation.

Prof J.C. Kao, UCLA ECE

Segmentation

Vil

Object Detection Semantic Segmentation Instance Segmentation

From COCO:

“The panoptic segmentation task involves assigning a semantic label and instance id
for each pixel of an image, which requires generating dense, coherent scene
segmentations. The stuff annotations for this task come from the COCO-Stuft

project described in this paper. For more details about the panoptic task, including
evaluation metrics, please see the panoptic segmentation paper.”

“Panotptic annotations defines defines 200 classes but only uses 133"

Prof J.C. Kao, UCLA ECE

Segmentation

How do we go from

Prof J.C. Kao, UCLA ECE

Segmentation

How do we go from

o

Prof J.C. Kao, UCLA ECE

Segmentation

Naive idea 1: Classify each pixel?

Prof J.C. Kao, UCLA ECE

Segmentation

Naive idea 1: Classify each pixel?

Question for class: If we can'’t classify each pixel, what should we do instead? What
are options?

Prof J.C. Kao, UCLA ECE

Segmentation

|dea 2: sliding windows?

Prof J.C. Kao, UCLA ECE

Segmentation

Sliding windows”?

Horse

Prof J.C. Kao, UCLA ECE

Segmentation

Sliding windows”?

Horse

Prof J.C. Kao, UCLA ECE

Segmentation

Sliding windows”?

Horse

Horse

Prof J.C. Kao, UCLA ECE

Segmentation

Sliding windows”?

Horse

Horse

Prof J.C. Kao, UCLA ECE

Segmentation

Sliding windows”?

Horse

Horse

Question for class: \What are the cons of a sliding window approach?

Prof J.C. Kao, UCLA ECE

Segmentation

Cons of sliding windows?

Prof J.C. Kao, UCLA ECE

Segmentation

Cons of sliding windows?

« \ery large computational expense to slide all windows. Number of classifications

(inferences, forward passes) through the neural network is the number of sliding
windows.

» Also inefficient: many of the same pixels are going into the same CNN, since
the sliding windows are overlapping.

» Multiple classes in a single image.

e Thought, why not also pass in skinny and wide windows (rectangles) for
classification? (Think of input expected by CNN!)

Nobody does this. You probably shouldn’t, either.

Prof J.C. Kao, UCLA ECE

Segmentation

Idea 3: why not just train one CNN to label every pixel?

Question: \What are some design considerations for how you might train one CNN to do

<”? — _
this” C = 1006 alases _— ;

_— -

1

¢NN |
\A\ — /

H ,

] e
T— —
w

Prof J.C. Kao, UCLA ECE

Segmentation

Idea 3: why not just train one CNN to label every pixel?

Question: \What are some design considerations for how you might train one CNN to do
this?

What kind of training data do we need for this?

Prof J.C. Kao, UCLA ECE

Segmentation

Why not just train one CNN to do this?

What does the output size of this CNN have to be?

Would ResNets, GooglLeNets, VGGNets, AlexNets, work here?

Prof J.C. Kao, UCLA ECE

Segmentation

Why not just train one CNN to do this?
266 .26 - 1900 = 65,53b000 4bls

4 Lqus = ngMB

T W(o;
This should be a C x H x W tensor of scores per pixel.

Question: What is the major con of this approach?

Prof J.C. Kao, UCLA ECE

Segmentation

Why not just train one CNN to do this?

This should be a C x H x W tensor of scores per pixel.

Cons?

Images are large, there will be significant memory + computational expense.

Prof J.C. Kao, UCLA ECE

Have a bottleneck to reduce the number of parameters

Prof J.C. Kao, UCLA ECE

https://arxiv.org/pdf/1505.04366.pdf

Prof J.C. Kao, UCLA ECE

https://arxiv.org/pdf/1505.04366.pdf

Aside: DO NOT CALL THIS DECONVOLUTION. This is called TRANSPOSED CON\V.

Prof J.C. Kao, UCLA ECE

Transposed convolution

Docs > torch.nn > ConvTranspose2d

CONVIRANSPOSEZD

CLASS torch.nn.ConvTranspose2d (in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1, bias=True, dilation=1,
padding_mode="'zeros ', device=None, dtype=None) [SOURCE]

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a
fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation
as it does not compute a true inverse of convolution). For more information, see the visualizations here
and the Deconvolutional Networks paper.

Prof J.C. Kao, UCLA ECE

Unpool?

2% L WA \’)OQ\

shade 2
\ | 2 | 2
1 2 | | 2 2
2 4 2, |2 b4
3% 4 4

Prof J.C. Kao, UCLA ECE

Transposed convolution

shade
8 A :&L.@ﬂ;]&—
A fgé hzcgf'_r
N T
a b C ‘@ 24 +\LI«\!2(
d e f

Prof J.C. Kao, UCLA ECE

Transposed convolution

stride 2 transposed convolution — 1)

N | e |l 2e |2

T || +2¢ \

a|b | c RN RE A \21 |

1 2 <><r,—b S ,
d e f 3A\ Ze | -
4 -

Prof J.C. Kao, UCLA ECE

Transposed convolution

Input Kernel

R Transposed o

2 3 Conv 2 3
Output
0|0 011 01011
=]10]0 + 213]|+]10]2 v 0|3|=|10]|4]|6
416 6|9 4 (12] 9

Fig. 14.70.7 Transposed convolution with a 2 X 2 kernel. The shaded portions are a portion of an
intermediate tensor as well as the input and kernel tensor elements used for the computation.

https://d2l.ai/chapter_computer-vision/transposed-conv.html

Prof J.C. Kao, UCLA ECE

Transposed convolution

Input Kernel
0| 1 Transposed 0ol 1
Conv
213 (stride 2) 2|3
0|0 011
0|0 213
= + + +
0] 2 0|3
416 6|9
ojo]JOo|1
0j]0]2]3
= Output
0|2]01]3
4161619

Fig. 14.10.2 Transposed convolution with a 2 X 2 kernel with stride of 2. The shaded portions are a
portion of an intermediate tensor as well as the input and kernel tensor elements used for the
computation.

https://d2l.ai/chapter_computer-vision/transposed-conv.htm!

Prof J.C. Kao, UCLA ECE

Transposed convolution — padding removes from the output

Different from in the regular convolution where padding is applied to input, it is applied to output in the
transposed convolution. For example, when specifying the padding number on either side of the height
and width as 1, the first and last rows and columns will be removed from the transposed convolution
output.

The output of a transposed convolution is therefore:

(input_size - 1) * stride + kernel_size - 2*pad

https://d2l.ai/chapter_computer-vision/transposed-conv.htm!

Prof J.C. Kao, UCLA ECE

One more padding example

What is the size of an output of a transposed convolution with:

Input: 2x2
Kernel: 3x3
Stride = 2
Pad = 1

From equation, (input_size - 1) * stride + kernel_size - 2*pad =2 + 3-2 = 3.

Prof J.C. Kao, UCLA ECE

