Lecture 16: Object Detection + Adversarial Examples

Announcements:
* Today we'll cover object detection and adversarial examples.

* This Wednesday'’s lecture is canceled. Instead, | will upload a video to Bruin Learn that
completes the material in this course.

* The project and its accompanying data have been uploaded to Bruin Learn. It is due
March 15, 2024 (Friday of Week 10).

* You will be allowed to use PyTorch, Keras, or other deep learning libraries for the
project.

* Midterm regrades are due tonight, submitted by 11:59pm.
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Segmentation

Vil

Object Detection Semantic Segmentation Instance Segmentation

From COCO:

“The panoptic segmentation task involves assigning a semantic label and instance id
for each pixel of an image, which requires generating dense, coherent scene
segmentations. The stuff annotations for this task come from the COCO-Stuft

project described in this paper. For more details about the panoptic task, including
evaluation metrics, please see the panoptic segmentation paper.”

“Panotptic annotations defines defines 200 classes but only uses 133"
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Segmentation

Why not just train one CNN to do this?
266 - 26k - 1000 = 65,53k 000
4 lsT\rCS = 2coMB

T pwlos
This should be a C x H x W tensor of scores per pixel.

Question: What is the major con of this approach?
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Have a bottleneck to reduce the number of parameters
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https://arxiv.org/pdf/1505.04366.pdf
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Transposed convolution
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Transposed convolution

Input Kernel
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Fig. 14.70.7 Transposed convolution with a 2 X 2 kernel. The shaded portions are a portion of an
intermediate tensor as well as the input and kernel tensor elements used for the computation.

https://d2l.ai/chapter_computer-vision/transposed-conv.html
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Transposed convolution

Input Kernel
nn Transposed ol 1
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Fig. 14.10.2 Transposed convolution with a 2 X 2 kernel with stride of 2. The shaded portions are a
portion of an intermediate tensor as well as the input and kernel tensor elements used for the
computation.

https://d2l.ai/chapter_computer-vision/transposed-conv.htm!
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Transposed convolution — padding removes from the output

Different from in the regular convolution where padding is applied to input, it is applied to output in the
transposed convolution. For example, when specifying the padding number on either side of the height
and width as 1, the first and last rows and columns will be removed from the transposed convolution
output.

The output of a transposed convolution is therefore:

(input_size - 1) * stride + kernel_size - 2*pad

https://d2l.ai/chapter_computer-vision/transposed-conv.htm!
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One more padding example

What is the size of an output of a transposed convolution with:

Input: 2x2
Kernel: 3x3
Stride = 2
Pad = 1

From equation, (input_size - 1) * stride + kernel_size - 2*pad =2 + 3-2 = 3.
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Semantic labeling of each pixel
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https://arxiv.org/pdf/1505.04366.pdf
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Semantic labeling of each pixel

(oW
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While this labels every pixel, it doesn’t separate instances... like the two cows
here. To do this, we also need localization — where is an object in the image? This
extends to object detection — multiple objects in an image, all localized. Prof J.C. Kao, UCLA ECE



Object detection

We'll look next at object detection. This tells us not only that this object is in the image,
but where it is. This will eventually lead to instance segmentation.
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Single object detection (i.e. classification + localization)

Softmax
Probabilities
Over All Classes
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Single object detection

Softmax
Probabillities
Over All Classes

\ (X, y, w, h)
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Single object detection

Softmax
Probabillities
Over All Classes

(X, ¥, w, h)
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The training data needs to come with this information!
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Single object detection

softmax

Localization of the cat is scored via a regression loss (e.g., L2
loss between predicted X, y, w, h, and true x, y, w, h)

(h-4)
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Single object detection (classification + localization)

oL

-
-

softmax «» €€
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How does this extend to multiple objects?
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Multiple object detection

cow 1 (x,y,w, h)

cow 2 (X, Yy, w, h)
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Multiple object detection

cow 1 (x,y,w, h)

cow 2 (X, Yy, w, h)

duck 1 (x,y, w, h)
/> duck 2 (x, Yy, w, h)

duck 12 (x, y, w, h)

How do we handle multiple outputs?
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Multiple object detection

We cannot output a variable number of objects easily, so we need a different solution.

So what if we instead iterate over sliding windows, and if it detects an object above
some threshold, then it will output not only the class but also a bounding box.

We will need to add a class for “background” meaning there is no object.
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Multiple object detection

We cannot output a variable number of objects easily, so we need a different solution.

So what if we instead iterate over sliding windows, and if it detects an object above
some threshold, then it will output not only the class but also a bounding box.

We will need to add a class for “background” meaning there is no object.

softmax where
background has highest probability
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Multiple object detection

We cannot output a variable number of objects easily, so we need a different solution.

So what if we instead iterate over sliding windows, and if it detects an object above
some threshold, then it will output not only the class but also a bounding box.

We will need to add a class for “background” meaning there is no object.

predicts duck
and a bounding box
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Multiple object detection

We cannot output a variable number of objects easily, so we need a different solution.

So what if we instead iterate over sliding windows, and if it detects an object above
some threshold, then it will output not only the class but also a bounding box.

We will need to add a class for “background” meaning there is no object.

predicts duck
and a bounding box

But we have the same problem of this taking a long time
(many sliding windows)!
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Multiple object detection

Big problem: how do we get around having to test many
different crops?

Idea 1: choose crops “wisely”? Maybe with traditional
image processing techniques? (like looking at edges...)
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Solution 1: Region proposals

http://cs231n.stanford.edu/

Get “region proposals” from traditional techniques.
*note, we won'’t discuss in detail what these traditional

techniques are because we’ll soon see that we can do better
without them.
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Solution 1: Region proposals

Use a (non-deep learning) to propose regions (R-CNN).

R-CNN: Regions with CNN features

warped region

aeroplane? no.

erson? ves.
P Yy

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
"¢elechve
Seancln”

https://arxiv.org/pdf/1311.2524 pdf
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Solution 1: Region proposals

Use a (non-deep learning) to propose regions (R-CNN).

R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Examples include: objectness [!], selective search [39],

category-independent object proposals [14], constrained

parametric min-cuts (CPMC) [5], multi-scale combinatorial

grouping [3], and Ciresan et al. [6], who detect mitotic cells

by applying a CNN to regularly-spaced square crops, which

are a special case of region proposals. While R-CNN is ag-

nostic to the particular region proposal method, we use se-

lective search to enable a controlled comparison with prior httpSZ / / arxiv.org/ pdf/ 1311.2524. pdf
detection work (e.g., [39, 41]).
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Solution 1: Region proposals

Use a (non-deep learning) to propose regions (R-CNN). 2 C’“‘“"f“‘ "’“" mﬂ“‘
3. Uass -S ,xc:'?\’c
R-CNN: Regions with CNN features 28

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
What if region proposal doesn’t contain an object? A SS((,V\ bﬂ ckss

What if region proposal only contains part of an object? Ke 'aSSflj\A BB
D
https://arxiv.org/pdf/1311.2524 pdf
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Solution 1: Region proposals

Limitations:

1. Training is a multi-stage pipeline. R-CNN first fine-
tunes a ConvNet on object proposals using log loss.
Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classi-
fier learnt by fine-tuning. In the third training stage,
bounding-box regressors are learned.

2. Training is expensive in space and time. For SVM
and bounding-box regressor training, features are ex-
tracted from each object proposal in each image and
written to disk. With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the 5k
images of the VOCOQ7 trainval set. These features re-
quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are
extracted from each object proposal in each test image.
Detection with VGG16 takes 47s / image (on a GPU)).

https://arxiv.org/pdf/1504.08083.pdf
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Solution 1: Region proposals

Limitations:

1. Training is a multi-stage pipeline. R-CNN first fine-
tunes a ConvNet on object proposals using log loss.
Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classi-
fier learnt-by-ATi€-tuning. In (e thire~tsaining stage,

~bBunding-box regressors are learned. T

2. Training is expensive in space and time. For SVM
and bounding-box regressor training, features are ex-
tracted from each object proposal in each image and
written to disk. With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the 5k
images of the VOCOQ7 trainval set. These features re-
quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are
extracted from each object proposal in each test image.

™. Detection with VGG16 takes 47s / image (on a GPU). "

_hitps:lamévorglodf/1504.08083. pdf
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Solution 2: Fast R-CNN

- Outputs: beX
: Deep \ softmax regressor
1| |ConvNet] | I\ S '
. Rol
E pooling
Rol j R, layer
‘projection
Conv | Rol feature
feature map vector For each Rol

https://arxiv.org/pdf/1504.08083.pdf

Idea: do the convolution over the image only once (instead of 2000 times).

Then find the the Rol projection (spatial extent) in the convolutional feature space.
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Solution 2: Fast R-CNN
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Solution 2: Fast R-CNN (W h,c )

- Outputs: beX
= softmax regressor
ConvNet| | > [ ] [ !
) pooling
projection\_ ::::
Conv | ol feature
feature map VECtOr For each Rol

https://arxiv.org/pdf/1504.08083.pdf

Problem: These features have different sizes, but are passed into a FC network.,

Solution: This network uses an Rol pooling layer that makes all the widths and heights
7 x 7 (through max pooling). These then go into the FC net.
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Solution 2: Fast R-CNN

Test time (seconds)

Tral ni ng tl me (HOUfS) B |ncluding Region propos... [l Excluding Region Propo...
R-CNN R-CNN
SPP-Net 4.3
SPP-Net p N1
o
Fast R-CNN 8.75 |

2.3
Fast R-CNN

0 25 50 75 100 r0-32

0 15 30 45 60
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Solution 2: Fast R-CNN

T Test time (seconds)
Tra| n I ng tl me (HOU rS) B |ncluding Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75

F Fast R-CNN
0 25 50 5 100 &

30 45 60

Most of the computation time is from region proposails!
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Solution 2: Fast R-CNN

T Test time (seconds)
Tral ni ng tl me (HOU rS) I Including Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75

F Fast R-CNN
0 25 50 75 100 h

30 45 60

Most of the computation time is from region proposails!

Why not use a neural network to do region proposals?
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Solution 3: Faster R-CNN

Why not use a neural network to do region proposals?
X
bR 88

. classifier

‘ proine
p )
/ 7
proposals
Region Proposal Network,
feature maps
o

2 3

e/ Va4 Net

conv layers /

P 7 4 e 4 A
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Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.

https://arxiv.org/pdf/1506.01497.pdf
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Solution 3: Faster R-CNN

How does the region proposal network work?
After running a CNN on the input image:
* There is an (n x n) feature map from the initial convolutional layers.
» They extract, using a sliding window, 3x3 windows of this feature map.
e 3x3 is small, right?

» Actually, because the effective RF is quite large, this is 171x171 pixels for
/FNet and 228x228 pixels for VGGNet.

L
* They predict k regﬁon proposals for each window. g‘ynwa '
q

« 2k softmax scores (for each of kr'egions, classify object vs background).
* 4k regression outputs (x, y, w, h for each region). o
* They used k=9 for 3 scales and 3 aspect ratios.

https://arxiv.org/pdf/1506.01497.pdf

Prof J.C. Kao, UCLA ECE



Solution 3: Faster R-CNN

2k scores 4k coordinates « k anchor boxes

cls layer \ t reg layer .

256-d
t intermediate layer

sliding window

conv feature map

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.
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https://arxiv.org/pdf/1506.01497 .pdf
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Solution 3: Faster R-CNN

After proposals, they do Rol pooling

4 classifier and classification + bounding boxes,
” as they also did in Fast R-CNN.
Rol pooling

The key difference is the CNN does the

|
Propoy =5 / region proposals now instead of a
: |

separate algorithm.

Region Proposal Network &
feature maps

conv layers /

——rrv 77—

e ——

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.

https://arxiv.org/pdf/1506.01497.pdf
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Solution 3: Faster R-CNN

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN

Faster R-CNN| 0.2

0 15 30 45
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Solution 3: Faster R-CNN

Question: What are some
Chssdiet suboptimalities (if any) with this

H architecture”? Can we improve on it?
Rol pooling
pmp(’y / i
, / |
/ |
i

Region Proposal Network &
feature maps

conv layers /

——rrv 77—

e ——

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.

https://arxiv.org/pdf/1506.01497.pdf
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Solution 3: Faster R-CNN

Question: What are some

4 classifier suboptimalities (if any) with this
' architecture? Can we improve on it?
Rol pooling

prom% y

Region Proposal Network4 \

Area for improvement:

e Can we turn two stage training into one
Ze stage training”

conv layers I

——r7 77—

T U g

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention” of this unified network.

https://arxiv.org/pdf/1506.01497.pdf
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YOLO

YOLO — YOU ONLY LIVE ONCE.
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YOLO

YOLO — YOU ONLY LIE ONCE.
LOOK
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YOLO

YOLO — YOU ONLY LIE ONCE.
LOOK

... but you kinda look 49 times.
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YOLO

Basic idea: have a single CNN output bounding boxes and their classes. To get
around region proposals, we just divide an image into a 7x7 grid, and for each of the 49
grid cells, use a CNN to predict B bounding boxes + their confidences (#x, 'y, dw, ﬁh,
confidence) and C class probabilities for that box.
N

. T o
[ O] [

LI ) - 20
[ b o G
r= A - A .

s ARUSE DA
S x S grid on input Final detections

s=7
IxXF x(lo+2o)

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an .S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S xS x (Bx*5+ C) tensor.

https://arxiv.org/pdf/1506.02640.pdf

Class probability map
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YOLO

Our system divides the input image into an S x S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

S=7

SxS grid on input

https://arxiv.org/pdf/1506.02640.pdf
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YOLO

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and

: also how accurate it thinks the box is that it predicts. For-
i mally we define confidence as Pr(Object) = IOUg}’etg. If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

B=2

Binary classification:

Pr(Object) vs Pr(Background)

https://arxiv.org/pdf/1506.02640.pdf
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Brief aside: Intersection over Union

o =
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(=20

Each grid cell also predicts C' conditional class proba-
bilities, Pr(Class;|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

Class probability map

https://arxiv.org/pdf/1506.02640.pdf
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YOLO

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Class; |Object) * Pr(Object) x* IOU;:)['IEIC':(E1 = Pr(Class; ) * IOUgl.lzgi1 (1)

) eeeEe—
which gives us class-spegific confidence scores for each

box. Thgse scores encodg both the probability of that class
appearir g in the box and how well the predicted box fits the
object.

20D Cowf:

Final detections

https://arxiv.org/pdf/1506.02640.pdf
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YOLO

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

truth truth

Pr(Class; |Object) * Pr(Object) * IOU_ .4 = Pr(Class;) * IOUpred (1)

p

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PAScAL VOC has 20 labelled classes so C = 20.

Fi nal deteCtionS Our final predictionisa 7 X 7 x 30 tensor.

https://arxiv.org/pdf/1506.02640.pdf
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YOLO

448

12

|
3 56 3[ﬁ
448 3 —J 28 3ﬁ [\
3 145 4\ 7 7
12 56 . 3 3 4, >< H ><
i 14 7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer  Conn. Layer
7x7x64-s-2 3x3x192 1x1x128 1x1x256 x 1x1x512 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-5-2 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer  Maxpool Layer
2x2-s-2 2x2-s-2

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

1x1 convolutions inspired by GooglLeNet.

https://arxiv.org/pdf/1506.02640.pdf
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YOLO

Loss function:

\o“
Acoord ZZ 13 [(ﬂ% — 2:)° + (yi — ﬁi)2] #;ﬂ‘:
i=0 j= N
2 R “ﬁ
+,\coo,dzozn°b’ (v - Vi) +(\/h7-\/h7)] x ™
s?2 B
313 (o
5 ’] . < B
s z g
i=0 j=

+le‘;"" > @i(e) = $i(e))’

c Eclasses \

https://arxiv.org/pdf/1506.02640.pdf
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Non-maximal suppression

After training, at inference time, the class probabilities and bounding boxes for every
grid cell are computed. Which ones are selected? This is via non-maximal
suppression.

BB - rc = F(O‘Bj') : F(chsslobj')
Threold : dicord all BBs wih p <0if
RWMS B8s - nr\um B8 w/

the ‘VW" J< | then | thww
Aoy B8s w/ Tow 3 0.5 wi,
Hu 88 g LMJL,,,.L Pe.
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Sample YOLO outputs

inal détections

0. b\.\\
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Instance segmentation?

Final detections
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Instance segmentation?

y l \
A

RolAlign

Y

Figure 1. The Mask R-CNN framework for instance segmentation.

https://arxiv.org/pdf/1703.06870.pdf
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Instance segmentation?

https://arxiv.org/pdf/1703.06870.pdf
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Instance segmentation?

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

https://arxiv.org/pdf/1703.06870.pdf
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Al is pretty good at this today

sotted plant 85%

Try it yourself

v

https://yolov8.com/
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A video from my lab
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Adversarial examples

In this last topic of lecture, we'll discuss adversarial examples and neural
network susceptibility to them.

- We've heard a lot of success stories of neural networks.

- But one notable area where results are more discouraging (hence, an
active area of research) is that of handling adversarial examples.

- In short, it's not difficult to attack or fool a neural network into
misclassifying results.

- And there are some characteristics of these attacks that are especially
worrying.

Prof J.C. Kao, UCLA ECE



Adversarial examples

Adversarial examples

Many machine learning models (not just neural networks) are vulnerable to
adversarial examples. In this lecture, we'll focus on adversarial examples in
neural networks.

o Adversarial examples are examples that are specifically tailored so that the
neural network misclassifies them.

* These specifically tailored images are only slightly different from correctly
classified examples.

e In many cases, adversarial and non-adversarial examples are
indistinguishable to the human eye.

Adversarial examples expose a blind spot in neural networks.
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Bout s cmi}—s Less

Adversarial examples

o'l
V,oj"/
Szegedy et al., 2013, was one of the early papers to describe adversarial ‘
examples in neural networks. . hld [,,
o
In these figures below, the experiment was to slowly turn an object into an
airplane and see how the network would change the image. i
Y& X - ._a_L—-
ox

{ Goodfellow, http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture16.pdf
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Adversarial examples

Adversarial noise can be designed in such a way that it can add
imperceptible noise at the input, but completely alter the network output. Note
also that the network is extremely confident that the panda is a gibbon.

+.007 %

T : iy
esign(VyJ (60, z,y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence
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Adversarial examples

An aside: does the brain have adversarial examples?
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Adversarial examples

Prof J.C. Kao, UCLA ECE



Adversarial examples

Pinna illusion
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Adversarial examples

This seems like really bad news.

As if that wasn't enough, it gets worse. But before we get there, let’s build
some intuition for why these examples occur.
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Fooling a linear binary classifier

Adversarial example intuition

Let's take the examle of a simple binary classifier using logistic regression.
Here, the network computes z = o(w’ x + b) and outputs 1 if z > 0.5 and 0
otherwise. Consider b = 0 and x, w € R'°, with the following values:

w = [ -5 3 -2 2 -2 -5 —4 3 4 —4]
x = [-1 -1 1 -1 1 1 -1 1-1 -1 ]

With these two settings of w and x, we have that z = 0.12, i.e., it's fairly
confident that it is class O.

Example: say we wanted to add a small perturbation to “fool” the classifier

that this is not class 0, but class 1. To do this change, we will allow you to
either add 0.1 or —0.1 to every entry of x. How will you modify x?
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Fooling a linear binary classifier

Adversarial example intuition (cont.)

w = | -5 3 -2 2 -2 -5 -4 3 4 —4]
x = |-1 -1 1 -1 11 -1 1-1 —1]

In this example, we want to make w’ x less negative, so if w; < 0, then we
want to subtract 0.1 from x;, and vice versa. With this intuition, we transform

x to be:

x=|-11 -09 09 —-09 09 09 -11 1.1-09 -11 ]

Under this transformation, a(wa) = (.8, i.e., the classifier is confident that
this is in class 1 instead of class 0.
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