
Lecture 4: Softmax, gradient descent, and neural networks

Prof J.C. Kao, UCLA ECE

Announcements:

• HW #1 is due tonight, uploaded to Gradescope by 11:59pm. To submit your Jupyter 
Notebook, print the notebook to a pdf with your solutions and plots filled in. You must 
also submit your .py files as pdfs. 

• HW #2 is due Monday, January 29, uploaded to Gradescope. 

• Moving forward, the assignments have a good amount of Python coding. Get started 
early. This assignment will cover k-nearest neighbors and the softmax classifier.

-> HW #2 and onwards .

It will be uploaded tonight.



KNN recap
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X(i) = 123072









k-nearest neighbors
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Why might k-nearest neighbors not be a good idea for image classification?
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Why might k-nearest neighbors not be a good idea for image classification?

Credit: CS231n, Stanford University



k-nearest neighbors
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Why might k-nearest neighbors not be a good idea for image classification?

Curse of dimensionality: 

• Images are very high-dimensional vectors, e.g., each CIFAR-10 image is a 
3072 dimensional vector (and these are small images). 

• Notions of “distance” become less intuitive in higher dimensions. 
• Distances in some dimensions matter more than others. 
• In higher-dimensional space, the volume increases exponentially. 
• This leaves a lot of empty space — and so the nearest neighbors may not 

be so near.



Classifiers based on linear classification
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Perhaps a better way would be to develop a “score” for an image coming from each 
class, and then pick the class that achieves the highest score. 

Linear classifiers are a major building block for neural networks. In particular, each 
layer of a neural network is composed of a linear classifier, followed by a nonlinear 
function. 

The softmax classifier is the most common classifier at the end of a neural network.



Classifiers based on linear classification
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Classifiers based on linear classification
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Each row of W can be thought of as a template.



Classifiers based on linear classification
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What is a linear classifier doing?



Classifiers based on linear classification
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Where might linear classifiers fail?



Classifiers based on linear classification
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Next, how do we take the scores we receive (which are analog in value) and turn 
them into an appropriate loss function for us to optimize, so we can learn W and b 
appropriately?



Other types of optimization
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maximize



Maximum-likelihood introduction
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Chain rule for probability
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Chain rule for probability
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Turn the scores into a probability
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A first thought is to turn the scores into probabilities.



Softmax classifier
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Softmax classifier
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Softmax classifier
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Softmax classifier
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Now we have our softmax loss function.

Note, we haven’t figured out yet how to get the optimal parameters. 

(That’ll be later.)



Softmax classifier
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

Score check: �ay(i)(x(i)) + log
cX

j=1

exp(aj(x
(i)))



Softmax classifier
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

Cat: -2.1 + log(exp(2.1) + exp(3.4) + exp(-2.0)) = 1.54



Softmax classifier
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

1.54Loss:

Car: -5.1 + log(exp(0.2) + exp(5.1) + exp(1.7)) = 0.04



Softmax classifier
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

0.04Loss: 1.54

Bird: 1.2 + log(exp(2.3) + exp(3.1) + exp(-1.2)) = 4.68



Softmax classifier
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

4.68Loss: 0.041.54

�ay(i)(x(i)) + log
cX

j=1

exp(aj(x
(i)))



Softmax classifier
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A few additional notes on the softmax classifier:



Softmax classifier

Prof J.C. Kao, UCLA ECE

A few additional notes on the softmax classifier:



Support Vector Machine
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In prior years, we also taught on the support vector machine (SVM) and the 
hinge loss. Since most modern neural networks today only use a softmax 
classifier, we have decided to remove this material, and you will not be 
tested on SVMs. We have kept these slides in as extra resources.
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Before getting to parameter fitting, we’ll want to introduce one more classifier that is 
commonly used: the support vector machine.

Support vector machine NOT TESTED
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Support vector machine NOT TESTED
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This is the picture we should have in mind:

x x

x
x

x

x

x

x

o

o

o

o

o

o

o

o
x

classify x
classify o

Support vector machine NOT TESTED
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This is the picture we should have in mind:
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Incurs 0 loss

Incurs small loss
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Support vector machine NOT TESTED
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Support vector machine NOT TESTED
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Support vector machine NOT TESTED
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Support vector machine NOT TESTED



Support vector machine
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NOT TESTED



Support vector machine
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Is there a closed-form solution?

NOT TESTED
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

Score check:

Support vector machine NOT TESTED
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

Cat: max(0, 1 - 2.1 + 3.4) + max(0, 1 - 2.1 - 2.0) = max(0, 2.3) + max(0, -3.1) = 2.3

Support vector machine NOT TESTED



Loss:

Prof J.C. Kao, UCLA ECE

Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

2.3

Support vector machine

Car: max(0, 1 - 5.1 + 0.2) + max(0, 1 - 5.1 +1.7) = max(0, -3.9) + max(0, -2.4) = 0

NOT TESTED
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

0.3 0Loss:

Support vector machine

Bird: max(0, 1 + 1.2 + 2.3) + max(0, 1 + 1.2 + 3.1) = max(0, 4.5) + max(0, 5.3) = 9.8

NOT TESTED
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Simple sanity check:

Cat:

Car:

Bird:

2.1

3.4

-2.0

0.2

5.1

1.7 -1.2

2.3

3.1

9.8

Support vector machine

0.3 0Loss:

NOT TESTED
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Softmax loss function

Softmax:

Parameters?
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Softmax loss function

Softmax:

Parameters: W 2 Rc⇥n,b 2 Rc

Big question: how do we find these parameters?
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Finding the optimal weights through gradient descent
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Finding the optimal weights through gradient descent

To do so, we use the technique of gradient descent.


