Lecture 4: Softmax, gradient descent, and neural networks

Announcements:

« HW #1 is due tonight, uploaded to Gradescope by 11:59pm. To submit your Jupyter
Notebook, print the notebook to a pdf with your solutions and plots filled in. You must

also submit your .py files as pdfs. — HW # 2 ame omanrels

« HW #2 is due Monday, January 29, uploaded to Gradescope.
I+ will be U\oLomuA -I-ovu‘akt.
« Moving forward, the assignments have a good amount of Python coding. Get started
early. This assignment will cover k-nearest neighbors and the softmax classifier.
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k-nearest neighbors X0 e |R3°7'7—

k-nearest neighbors

Intuitively, k-nearest neighbors says to find the k closest points (or nearest
neighbors) in the training set, according to an appropriate metric. Each of its k
nearest neighbors then vote according to what class it is in, and x"“" is
assigned to be the class with the most votes.
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k-nearest neighbors

How do we train the classifier?

class KNearestNeighbor (object):

def init (self):
pass

def train(self, X, y):
self.X train = X
self.y train =y

Pros? S\Muu, f—wh

Cons? Mwwj Mewel ve . b/ we weed o sfove Al de Wﬂwm
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k-nearest neighbors

How do we test a new data point?
2~
x € R

class KNearestNeighbor (object):
N exm«f&s

def init (self):

pass “3
. &W"vﬂ
def train(self, X, y): XJ{W\A ’ (’2 . M)
self.X train

=X
self.y train =y L ')('—‘\‘eg'\’ ' (2) ) a,vvula

~
def test(self, x test, k=1):
r X ’ C'\) : l) (/2) 3 p
dists = np.linalg.norm(self.X train.T - x test, axis=1).T BROAD CAST N\M?
sortedIdxs = np.argsort{QISEts) —
closest_y = self.y train[sortedIdxs[:k]]
y_pred = np.argmax(np.bincount(closest_y)); CbSKW >

return y pred

Pros? Stwfu
Cons? S\O\AJ\ SCOJ,Q lN/ /H/L_e O\W ‘)]Q anﬁ ﬁ{ﬁﬂ(‘i«
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k-nearest neighbors

3.5
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k-nearest neighbors

Why might k-nearest neighbors not be a good idea for image classification?
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k-nearest neighbors

Why might k-nearest neighbors not be a good idea for image classification?

Original Boxed Shifted Tinted

S (all 3 images have same L2 distance to the one on the left)
Credit: CS231n, Stanford University
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k-nearest neighbors

Why might k-nearest neighbors not be a good idea for image classification?

Curse of dimensionality:

* |Images are very high-dimensional vectors, e.g., each CIFAR-10 image is a
3072 dimensional vector (and these are small images).

* Notions of “distance” become less intuitive in higher dimensions.
e Distances in some dimensions matter more than others.
* In higher-dimensional space, the volume increases exponentially.
* This leaves a lot of empty space — and so the nearest neighbors may not
be so near.
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Classifiers based on linear classification

Perhaps a better way would be to develop a “score” for an image coming from each
class, and then pick the class that achieves the highest score.

Linear classifiers are a major building block for neural networks. In particular, each
layer of a neural network is composed of a linear classifier, followed by a nonlinear

function.

The softmax classifier is the most common classifier at the end of a neural network.
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Classifiers based on linear classification

n
Example 2: Consider a matrix, W, defined as: x e K
- W,{_ 7] C = 10
: A .
, 0 - W4l
| — W — |

Then, W € RN | Let y = Wx + b, where b is a vector of bias terms. Then
y € R is a vector of scores, with its :th element corresponding to the score of
¢ ove °§$ X being in class 7. The chosen class corresponds to the index of the highest

e W \» SCOre iny.
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Classifiers based on linear classification

Each row of W can be thought of as a template.
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Classifiers based on linear classification

What is a linear classifier doing?

2 )
)(:~
x ¢ R X,

.
v, = WX

= lwi - AX) cos®

= |[%\\ cos B
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Classifiers based on linear classification
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Classifiers based on linear classification

Next, how do we take the scores we receive (which are analog in value) and turn
them into an appropriate loss function for us to optimize, so we can learn W and b
appropriately?
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Other types of optimization

We've talked about examples where we want to minimize a mean-square error

or distance metric.

maximize
Another metric that we may want to minriiiZe is the probability of having
observed the data. In this framework, the data is modeled to have some
distribution with parameters. We choose the parameters to maximize the

probability of having observed our training data.

Dan: H T H H T T H T

Model Xm A H () ) Wp- 5
T (o) | - 1- 68
Lle\wood @ Model 4 ¢ = | Model 4. |0l 0D 1-0= D
Mode\ 2 ° 9= 0.95 Mode\ 2 (o\?'ré')Lt (o\zg)Lu ©o.o0l2Y
Modet 2+ O =08 Mode\ 3: CoSy* (0.5)F = ©.0039
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Maximum-likelihood introduction

£ = lielilpod = 61 C1-8)

D log L
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Chain rule for probability

Pr( A= w) = pale) = p (@
Pr(B=b) = pgled = p(b)

PY(A':aw%:\O) = PA\Q, (a\b) = f@\)b)

=
PV(A’“\BZ\O)= Pr (A= 0a) Pv (BR=Db given A=oa)
I)(aw\o3 = F(a) F(bl&)
= P(WFU\\\D)
P(cw‘o,c) = FCCB‘FCQ(CBYFUD[Q]C\
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Chain rule for probability

byc,d,e)
pldye) = Pl
\_/——/ P(a\\g,c)ok)a_>
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A first thought is to turn the scores into probabilities. Xy QFAR ~I0
4> (X
2

Softmax function | 5 4% -

Turn the scores into a probability

<
2
1

There are several instances when the scores should be normalized. This occurs,
for example, in instances where the scores should be interpreted as probabilities.
In this scenario, it is appropriate to apply the softmax function to the scores.
AT N
| Wl
The softmax function transforms the class score, softmax;(x), so that:
T :
£ (%) 000 = Y= W% b
2521 e (%)
) < |

for a;(x) = w! x + ; and c being the number of classes. O & softwa ()

softmax; (x) =
\
<)
N
2073
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Softmax classifier

e®i (%)
Z;:l e (x)
T

for a;(x) = w; x + b. and ¢ being the number of classes.

softmax; (x) =

If we let 0 = {wj,bj }i=1.....c, then softmax;(x) can be interpreted as the
probability that x belongs to class 7. That is, '

| _ | Exawple
Pr(y"Y) = i|x"%, ) = softmax;(x") a

\

Pob taak uaege X1 belovgr ho ks
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Softmax classifier 1’(1) = i \y 2, -+ |o}

Although we know the softmax function, how do we specify the objective to be
optimized with respect to 67

One intuitive heuristic is that we should choose the parameters, 6, so as to
maximize the likelihood of having seen the data. Assuming the samples,

(xW, MY, (%™ y™) are id, this corresponds to maximizing:
’ af Viwage et {w,
\“““1%&?, xt o x ™y y ™) Hp(x )
ek =1

= [[px"10)p(x" %", 0)
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Softmax classifier

P (x)
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Softmax classifier

Now we have our softmax loss function.
. a;(x) (2)
arg min log " —a ) (x'")

Note, we haven't figured out yet how to get the optimal parameters.

(That'll be later.) W, b
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Softmax classifier

Cat:

Car:

Bird:

Score check:

2.1 0.2 2.3
3.4 5.1 3.1
-2.0 1.7 -1.2
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Softmax classifier

Cat: 2.1 0.2 2.3
Car: 3.4 5.1 3.1
Bird: -2.0 1.7 -1.2

Cat: -2.1 + log(exp(2.1) + exp(3.4) + exp(-2.0)) = 1.54
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Softmax classifier

Cat:

Car:

Bird:

Loss:

2.1

3.4

-2.0

1.54

0.2 2.3
5.1 3.1
1.7 -1.2

Car: -5.1 + log(exp(0.2) + exp(5.1) + exp(1.7)) = 0.04
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Softmax classifier

Cat:

Car:

Bird:

Loss:

2.1

3.4

-2.0

1.54

0.2 2.3
5.1 3.1
1.7 -1.2
0.04

Bird: 1.2 + log(exp(2.3) + exp(3.1) + exp(-1.2)) = 4.68
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Softmax classifier

Cat: 2.1 0.2 2.3
Car: 3.4 5.1 3.1
Bird: 2.0 1.7 -1.2
Loss: 1.54 0.04 4.68

— (i) (x) + log Z exp(a;(x¥))
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Softmax classifier

loo

A few additional notes on the softmax classifier:

Softmax classifier: intuition

When optimizing likelihoods, we typically work with the “log likelihood.” When
applying the softmax, we interpret its output as the probability of a class.

D R
log Pr(y :3(|x) = log softmax;(x) 3 closies

lo O

= (y‘ix) — log Z exp(a;(x)) e

-\

When maximizing this, the term q4fx) is made larger, and the term

log > _; exp(a;(x)) is made smaller. The latter term can be approximated by
max; a;(x). (Why?)

We consider two scenarios:

o |f aﬁ‘(‘x) produces the largest score, then the log likelihood is approximately
0.

o If a;(x) produces the largest score for j # 7, then ag'(’x) — a;j(x) is

negative, and thus the log likelihood is negative.
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Softmax classifier

A few additional notes on the softmax classifier:

Overflow of softmax

A potential problem when implementing a softmax classifier is overflow.

o If a;(x) > 0, then %) may be very large, and numerically overflow and
/ or result to numerical impression.

e Thus, it is standard practice to normalize the softmax function as follows:

ei(X)
softmax;(x) = — _
9 lagses D1 €% (x)
boo N o (oo _ keaz‘(x)
5D 0 =) 0 k 25:1 evJ ()
4qo -5 edi(x)+logk
J \ — z;_l eaj (x)—{—logk
» A sensible choice of k is so that log k = — max; a;(x), making the

maximal argument of the exponent O.
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Support Vector Machine

In prior years, we also taught on the support vector machine (SVM) and the
hinge loss. Since most modern neural networks today only use a softmax
classifier, we have decided to remove this material, and you will not be
tested on SVMs. We have kept these slides in as extra resources.
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Support vector machine NOT TESTED

Before getting to parameter fitting, we'll want to introduce one more classifier that is
commonly used: the support vector machine.

Support vector machine: introduction

The SVM is a commonly used and has much theory behind it. A typical
machine learning class will formulate the SVM as a convex optimization
problem. However, this is beyond the scope of this class.

Instead, we'll talk about the SVM at a very high-level using a soft-margin
“hinge loss” and provide appropriate intuitions. We'll focus on linear SVMs and
will not touch on kernels. Please look into a machine learning class for more
information about the SVM.
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Support vector machine NOT TESTED

Support vector machine: introduction

Another common decision boundary classifier is the support vector machine

(SVM).

Informally, the SVM finds a boundary that maximizes the margin, or intuitively
the “gap” between the boundary and the data points. The fundamental idea
here is that if a point is further away from the decision boundary, there ought
to be greater confidence in classifying that point.

Prof J.C. Kao, UCLA ECE



Support vector machine NOT TESTED

This is the picture we should have in mind:

classify o
classify x
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Support vector machine NOT TESTED

This is the picture we should have in mind:

Incurs large loss

Incurs O loss
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Support vector machine NOT TESTED

The hinge loss function

The hinge loss is standardly defined for a binary output y¥ € {—1,1}. If

y(i) — 1, then we would like w7 x¥ + b to be large and positive. If y(i) = —1,
then we would like w”x” + b to be large and negative. The larger a;(x")) is
in the right direction, the larger the margin.

In this scenario, the hinge loss is for z(*) being in class y(*) is:

hinge, i) (x'”) = max(0,1 — y (wx") + b))
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Support vector machine NOT TESTED

hinge, i) (x'”) = max(0,1 — y) (W x") + b))

This is a loss, and hence something we wish to minimize. There are a few
things to notice about the form of this function.

o If wI'x 4+ b and y' have the same sign, indicating a correct
classification, then 0 < hinge ;) (xV) < 1.

o The error will be zero if wT'x(%) 4 b is large, corresponding to a large
margin. _

o The error will be nonzero if w'x(?) + b is small, corresponding to a small
margin.

o If wi'x™ + b and y(i) have opposite signs, then the hinge loss is
non-negative, i.e., hinge, ) (x) =14 |wix® 4+ p).
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Support vector machine NOT TESTED

Hinge loss intuition

The intuition of the prior slide is that the hinge loss is greatest for
misclassifications, and the greater the error in misclassification, the worse the

loss. For correct classifications, the loss will be zero only if there is a large
enough margin.

Incurs large loss

Incurs O loss
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Support vector machine NOT TESTED

Hinge loss extension

An extension of the hinge loss to multiple potential outputs is the following loss:

hinge, ) (x'V) = 3 max(0,1+a;(x"") - a, (x'))
iy
for a;(x'") = wlx"). Some intuitions, for the scenario that there are c
classes:

e When the correct class achieves the highest score, a, ) (xD) > a;(x)
for all j # y9), then a;(x(V) — Qy sy (xV) < 0 and

0 < hinge, () x'P) <e—1

e When an incorrect class, class z, achieves the highest score, then
a;(x) — (i) (x'7) > 0 and has the potential to be large.

e |In both scenarios, it is still desirable to make the correct margins larger
and the incorrect margins smaller.
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Support vector machine NOT TESTED

The SVM cost function

If we let @ = {w,};=1,....c, where there are c classes, we can now formulate the
SVM optimization function. In particular, we want to minimize the hinge loss
across all training examples. Then, to optimize 6 for a linear kernel and hinge
loss, we solve the following minimization problem:

1 m ‘
argemln E inge, (i) (x"")

i=1
which, for the sake of completeness, can be writen as:

e i i
arg min m_ g E max (0,1 + a; (X( )) — Qy(4) (X( )))
0 , .
i=1 Gty ()
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Support vector machine NOT TESTED

|s there a closed-form solution?
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Support vector machine NOT TESTED

Cat:

Car:

Bird:

Score check:

2.1 0.2 2.3
3.4 5.1 3.1
-2.0 1.7 -1.2

3" max(0,1+ a;(x7) —a ) (x))
i#£y(J)
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Support vector machine NOT TESTED

Cat: 2.1 0.2 2.3
Car: 3.4 5.1 3.1
Bird: -2.0 1.7 -1.2

Cat: max(0, 1-2.1 + 3.4) + max(0, 1-2.1-2.0) = max(0, 2.3) + max(0, -3.1) = 2.3
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Support vector machine

NOT TESTED

Cat:

Car:

Bird:

Loss:

2.1

3.4

-2.0

2.3

0.2

5.1

1.7

2.3

3.1

-1.2

Car: max(0, 1-5.1 +0.2) + max(0, 1-5.1 +1.7) = max(0, -3.9) + max(0, -2.4) =0
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Support vector machine NOT TESTED

Cat: 2.1 0.2 2.3
Car: 3.4 5.1 3.1
Bird: -2.0 1.7 -1.2
Loss: 0.3 0

Bird: max(0, 1 + 1.2 + 2.3) + max(0, 1 + 1.2 + 3.1) = max(0, 4.5) + max(0, 5.3) = 9.8
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Support vector machine NOT TESTED

Cat: 2.1 0.2 2.3
Car: 3.4 5.1 3.1
Bird: -2.0 1.7 -1.2
Loss: 0.3 0 9.8

3" max(0,1+ ai(x7) —a, ¢ (x))
i#£y(J)
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Softmax loss function

1« i (x z_
Softmax: argemln E Z (logze i (%) _ ay(i) (X( )))
Parameters? 5 = EW( bg
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Softmax loss function

1« i (x 7;
Softmax: arg 1min E Z <logze i(x) _ ay(i) (X( )))

0 i=1 j=1

Parameters: W e R*" b € R¢

Big question: how do we find these parameters?
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Finding the optimal weights through gradient descent

e Our goal in machine learning is to optimize an objective function, f(x).
(Without loss of generality, we'll consider minimizing f(x). This is
equivalent to maximizing — f(z).)

e From basic calculus, we recall that the derivative of a function, % tells
us the slope of f(x) at point .

For small enough ¢, f(x +¢€) = f(x) + ef'(x).

This tells us how to reduce (or increase) f(-) for small enough steps.
Recall that when f/(x) = 0, we are at a stationary point or critical point.
This may be a local or global minimum, a local or global maximum, or a
saddle point of the function.

e In this class we will consider cases where we would like to maximize f
w.r.t. vectors and matrices, e.g., f(x) and f(X).

o Further, often f(-) contains a nonlinearity or non-differentiable function.
In these cases, we can't simply set f'(-) = 0, because this does not admit
a closed-form solution.

* However, we can iteratively approach an critical point via gradient descent.

2(0 ]\
AN 92,/
N~ ‘ o5 =0
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Finding the optimal weights through gradient descent

To do so, we use the technique of gradient descent.
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