2) Lecture 5: Gradient Descent, Neural Networks, Backpropagation

Announcements:
« HW #2 is due Monday Jan 29, uploaded to Gradescope. To submit your Jupyter

Notebook, print the notebook to a pdf with your solutions and plots filled in. You must
also submit your .py files as pdfs.

Prof J.C. Kao, UCLA ECE

Tonmoy Monsoor

Exterior Method for
UCLA

Nonnegative Matrie Factorizatior

Graduate student researcher at Big data and Complex Networks Group

Fourth year Ph.D. student advised by Professor Vwani Roychowdhury

Research interests

— Reinforcement learning
— Distributed optimization

— Pattern extraction in dynamic networks

Favorite classes at UCLA

— Convex optimization, ECE 236B
— Neural signal processing, ECE 243A

Prof J.C. Kao, UCLA ECE

Softmax loss function

. 1 - - a;(x)
Softmax: arggmln - Z log Z e ™) — @, (i) (x')
1=1 71=1
Parameters? G = Ew. bg

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

t = £

7
X — 0O —~ 2 (6)
Our goal in machine learning is to optimize an objective function, f(x).

(Without loss of generality, we'll consider minimizing f(x). This is
equivalent to maximizing —f(x).)

From basic calculus, we recall that the derivative of a function, % tells
us the slope of f(x) at point . x — {0
» For small enough ¢, f(z +¢) ~ f(x) + ef'(x). 4§ —> FO)+ g]C'(sc)
» This tells us how to reduce (or increase) f(-) for small enough steps.
* Recall that when f’(xz) = 0, we are at a stationary point or critical point.
This may be a local or global minimum, a local or global maximum, or a
saddle point of the function.
In this class we will consider cases where we would like to maximize f

w.r.t. vectors and matrices, e.g., f(x) and f(X).

Further, often f(-) contains a nonlinearity or non-differentiable function.
In these cases, we can’t simply set f’(-) — 0, because this does not admit
a closed-form solution.

However, we can iteratively approach an critical point via gradient descent.

2k \\
el

AN >

l 5 Prgt J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

To do so, we use the technique of gradient descent.

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent /

S| \/

Terminology

* A global minimum is the point, x4, that achieves the absolute lowest
value of f(x). i.e., f(x) > f(xy,) for all x.

* A local minimum is a point, x¢, that is a critical point of f(x) and is
lower than its neighboring points. However, f(x¢) > f(x4).

e Analogous definitions hold for the global maximum and local maximum.

» A saddle point are critical point of f(x) that are not local maxima or
minima. Concretely, neighboring points are both greater than and less

than f(x). il ()o{Wv

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

Gradient

Recall the gradient, V« f(x), is a vector whose ith element is the partial
derivative of f(x) w.r.t. z;, the ith element of x. Concretely, for x € R",

r 87(] ’] - Of(x) 7 Xi{(xb
¢ x 5 (k) £
97 (x) T
AX = - Vif(x) = az_”'Q X 4AaX =]Ltt\’r AX foﬁ")
g Gf'(x)
Y Xy J L 9(zp) -
e The gradient tells us how a small change in Ax affects f(x) through
jf(\(&u\ & f0<) 4+ W7 F0x)
f (x + Ax) & [(x) + Ax" Vo f(x)
x = O
o The directional derivative of f(x) in the direction of the unit vector u is
given by:
u’ Vi f(x) (=]

e The directional derivative tells us the slope of f in the direction u.

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

Arriving at gradient descent

e To minimize f(x), we want to find the direction in which f(x) decreases
the fastest. To do so, we find the direction u which minimizes the
directional derivative.

min u’ Vif(x) = min |jul|||Vsf(x)| cos

u,||uf|=1 u,||ul|=1
— muinl\Vx f(x)lcos () 5 s “"‘ﬂ&
b/t w 2 vx]%“)

where 6 is the angle between the vectors u and Vx f(x).

e This quantity is minimized for u pointing in the opposite direction of the {\/
gradient, so that cos(f) = —1. _ ‘fob‘)

e Hence, we arrive at gradient descent. To update x so as to minimize f(x),
we repeatedly calculate:

x =X — eV, f(x)

o ¢ is typically called the learning rate. It can change over iterations. Setting
the value of € appropriately is an important part of deep learning.

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

Example:

Animations thanks to: http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

Example:

Animations thanks to: http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/

“—V ‘—' \ S\ X \'X V'vv X7 A T SN\ S I . ".‘."
SRR A R A A
\\\\\\,\ﬂ\&\‘"
1Y R

A

" Tin vy 'r.~. i
T s e e Ve gy _ ALY,
L A e % (oI NI
A 0 g Y P RERA - 38 AR
11 gy g gy, 7, NS 7/ 2 SRR \
T R 0 175 s S NN (1 SRR et
LT LA e W/ RSSO RN RV

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

def gd(func, x0, eps=le-4, tol=le-3):
last _diff = np.Inf

x = x0

path = [np.copy(x0)]
costs = [func(x0)[0]]
grads = []

i=1

hit max = False /, S Df“\“/\'\ﬁ){ . loss — avd - 3\/‘&0{

while last diff >/tol:
cost, g = func(x) # returns the cost and the gradient
X —-= eps*g # gradient step
last diff = np.linalg.norm(x - path[-1]) # stopping criterion

i+=1
if i > max iters:
hit max = True
break
path.append(np.copy(x))
costs.append(cost)
grads.append(qg)

return path, costs, grads, hit max

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

http://seas.ucla.edu/~kao/opt _anim/1gd.mp4
http://seas.ucla.edu/~kao/opt anim/2gd.mp4

Hows de lr\\c/k the Yl\%\"“‘k'

iﬁmﬁv S
62(;\,03 L(V’I) .

W, = W — ¢ QLMD 2 Mj
¢ ¢wadA

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

v L

(“‘ ‘UL)

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

Why not always use smaller learning rates?

10% . —

Training time (s)

1072 : :
1073 1072 101!

Learning rate ¢

Prof J.C. Kao, UCLA ECE

Interpreting the cost function

Interpreting the cost

The cost function can be very informative as to how to adjust your step sizes
for gradient descent.

Too high

>
iteration #

Prof J.C. Kao, UCLA ECE

Why not use a numerical gradient?

‘]\— s e &
X s (ke &

dx h—0 h

2) e\)M%]Q mw} be e\c(?wvt(.

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

How does this example differ from what we will really encounter?

* In this example, we know the function f() exactly, and thus at every point in
space, we can calculate the gradient at that point exactly.

* In optimization, we differentiate the cost function f() with respect to the
parameters.

 The gradient of f() w.r.t. parameters is a function of the training data!
Xt()) ((\r)
* Hence, we can think of each data point as providing a noisy estimate
of the gradient at that point.

. & lo (6 ch‘jm>
A [E(x“’"y‘%)[log F(Eﬂ } [Ve R

) ‘ Mm o Lo CQ %Ml‘jm)
w = Te R

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

However, it's expensive to have to calculate the gradient by using every example in
the training set.

To this end, we may want to get a noisier estimate of the gradient with fewer
examples.

Batch vs minibatch (cont)

Calculating the gradient exactly is expensive, because it requires evaluating the
model on all m examples in the dataset. This leads to an important distinction.

)000
* |Batch algorith@ uses all m examples in the training set to calculate the
grad|ent- = S’\‘D Ja H(BNW@Wf 0(.&!&2%4‘ CSC? D>
oY e |Minibatch algorithmj approximates the gradient by calculating it using k
= training examples, where m > k > 1.
° LSiochastic algorithmj approximates the gradient by calculating it over one

example. s W m = |

It is typical in deep learning to use minibatch gradient descent. Note that some
may also use minibatch and stochastic gradient descent interchangeably.

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

To get a more robust estimate of the gradient, we would use as many data samples

as possible.
1 i i i B x® VE
70) = 3 108 praoaa (x5 :0) = B oy L PO ’
i=1
and its gradient is:
1 . .
) = =] Hode () (D). 9
VHJ() vemzogp dl(X Y)

1=1

1 — i i
= — Z Vo lngmodel (X()7y()7 9)
m

1=1

~ K |:V9 Ingmodel(x(i) ’ y(z>7 0):|

Prof J.C. Kao, UCLA ECE

Finding the optimal weights through gradient descent

You'll do this in the HW. More on this later in the optimization lecture...

» And a lot more to be said about optimization.

» First order vs second order methods

» Momentum

» Adaptive gradients.

» ... all of these will become quite important when we get to neural networks.
We'll cover these in an optimization lecture.

Prof J.C. Kao, UCLA ECE

Lecture 5: Neural networks

In this lecture, we'll introduce the neural network architecture, parameters, and
its inspiration from biological neurons.

Prof J.C. Kao, UCLA ECE

Announcements

Reading:

Deep Learning, 6 (intro), 6.1, 6.2, 6.3, 6.4

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

1]%2* + 2, +23)

‘\V\V\A\'S

T kg

Neurons are the main signaling units of the nervous system.

Neurons have four regions:

1) Cell body (soma) — metabolic center, with nucleus, etc.
2)|Dendrites }- tree like structure for receiving input
signals. 2.5 Axon Willeck twkegwaive pant
3) Axon - single, long, tubular structure for sending
output signals.
4) Presynaptic terminals — sites of communication to next
neurons.]ﬁ(?) _ § 2> el

¢ Hualwld , O
Axons (the output) convey signals to other neurons:

« Conveys electrical signals long distances (0.1mm

fver & if«k@ (=3 m).

Pyp

4@7 ot ls\%(-”)

der d

« Conveys action potentials (~100 mV, ~1 ms
pulses).

s ANV W\q 0 Action potentials initiate at the axon hillock.

- Propagate w/o distortion or failure at 1-100 m/s.

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Figure 2-4 Neurons can be classified as
unipolar, bipolar, or multipolar accord-
ing to the number of processes that
originate from the cell body.

A. Unipolar cells have a single process,
with different segments serving as recep-
tive surfaces or releasing terminals.
Unipolar cells are characteristic of the in-
vertebrate nervous system.

B. Bipolar cells have two processes that
are functionally specialized: the dendrite
carries information to the cell, and the

axon transmits information to other cells.

C. Certain neurons that carry sensory in-
formation, such as information about
touch or stretch, to the spinal cord belong
to a subclass of bipolar cells designated
as pseudo-unipolar. As such cells develop,
the two processes of the embryonic bipo-
lar cell become fused and emerge from
the cell body as a single process. This out-
growth then splits into two processes,
both of which function as axons, one go-
ing to peripheral skin or muscle, the other
going to the central spinal cord.

D. Multipolar cells have an axon and many
dendrites. They are the most common
type of neuron in the mammalian nervous
system. Three examples illustrate the
large diversity of these cells. Spinal motor
neurons (left) innervate skeletal muscle
fibers. Pyramidal cells (middle) have a
roughly triangular cell body; dendrites
emerge from both the apex (the apical
dendrite) and the base (the basal den-
drites). Pyramidal cells are found in the
hippocampus and throughout the cerebral
cortex. Purkinje cells of the cerebellum
(right) are characterized by the rich and ex-
tensive dendritic tree in one plane. Such a
structure permits enormous synaptic in-
put. (Adapted from Ramén y Cajal 1933.)

A Unipolar cell

TS

Dendrite

—— Axon

<
%—Cell body

Invertebrate neuron

Neurons are diverse (unlike in neural networks)

C Pseudo-unipolar cell

B Bipolar cell
Peripheral axon
to skin and

W%Dendmes \\}f/
muscle

@— Cell body

Single bifurcated
process

0 Cell body

Central

Axon
axon
=t TN Axon terminals

Bipolar cell of retina

Ganglion cell of dorsal root

D Three types of multipolar cells

7 Dendrites

Motor neuron of
spinal cord

— Apical
dendrite
Cell
- bOd\/
Basal y ;
dendrite
X

Axon

Purkinje cell of cerebellum

Pyramidal cell of
hippocampus

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Neurons fundamentally communicate through all-or-nothing spikes (not analog
values!):

;
3
g
(4
Awg)

o
I T 1 | |—L
NI =
S <
VOO0
)
S
=
<
axon
100 ms

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

... And the spikes are probabilistic.

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Stimulus

Neural response (spike train)

o~

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

This rate is what the neural networks are “encoding.”

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

How does the artificial neuron compare to the real neuron?
The artificial neuron (cont.)

o The incoming signals, a vector x € R, reflects the output of N neurons
that are connected to the current artificial neuron.

e The incoming signals, x, are pointwise multiplied by a vector, w € RN
That is, we calculate w;x; for : = 1,..., N. This computation reflects
dendritic processing.

e The “dendritic-processed” signals are then summed, i.e., we calculate
> . wix; + b. This computation reflects integration at the axon hillock
(the first “Node of Ranvier”) where action potentials are generated if the
integrated signal is large enough.

e The output of the artificial neuron is then a nonlinearly transformation of
the integrated signal, i.e., f(D_, w;z; + b). Rather than reflecting whether
an action potential was generated or not (which is a noisy process), this
nonlinear output is typically treated as the rate of the neuron. The higher
the rate, the more likely the neuron is to fire action potentials.

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

How does the artificial neuron compare to the real neuron?

Neuroscience Axonoal activity Synaptic weights Axon hillock Axonal output
of prior neurons (integration and
threshold)

Y

Neural network Outputs of prior Atrtificial weights Artificial neuron Artificial neuron
artificial neurons compute (sum output
and nonlinearity)

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Caution when comparing to biology

These computing analogies are not precise, with large approximations.
Limitations in the analogy include:

Synaptic transmission is probabilistic, nonlinear, and dynamic.
Dendritic integration is probabilistic and may be nonlinear.
Dendritic computation has associated spatiotemporal decay.

Integration is subject to biological constraints; for example, ion channels
(which change the voltage of the cell) undergo refractory periods when
they do not open until hyperpolarization.

Different neurons may have different action potential thresholds depending
on the density of sodium-gated ion channels.

Feedforward and convolutional neural networks have no recurrent
connections.

Many different cell types.

Neurons have specific dynamics that can be modulated by e.g., calcium
concentration.

And so many more...

Prof J.C. Kao, UCLA ECE

Inspiration from neuroscience

Caution when comparing to biology

On the prior list, several of these bullet points constitute entire research areas.
E.g., several labs work specifically on studying the details of synaptic
transmission.

Big picture: though neural networks are inspired by biology, they approximate
biological computation at a fairly crude level. These networks ought not be
thought of as models of the brain, although recent work (including my research
group’s work) has used them as a means to propose mechanistic insight into
neurophysiological computation.

Prof J.C. Kao, UCLA ECE

Neural networks

Nomenclature

Some naming conventions.

o We call the first layer of a neural network the “input layer.” We typically
represent this with the variable x.

e We call the last layer the “output layer.” We typically represent this with
the variable z. (Note: why not y to match our prior nomenclature for the
supervised outputs? Because the output of the network may be a
processed version of z, e.g., softmax(z).)

e We call the intermediate layers the “hidden layers.” We typically represent
this with the variable h.

e When we specify that a network has NN layers, this does not include the
input layer.

Prof J.C. Kao, UCLA ECE

Neural networks

Neural network architecture

An example 2-layer network is shown below. X
\} 0
.« AW v
Wl e \~\
*§

hy seoves Pt 4o Yo a

ha

o
%

6jo}

11

4

-

$

hs
x3
by
‘A\ (-‘ Wu W(Z w(? 3(\ b’
ha h L'Z
\42 _ f’ Wy, Wz Wog X, |+ .
3 - ; 3
b J by, e, W B
Here, the three dimensional inputs (x € R?) are processed info a four /
dimensional intermediate representation (h € R*), which are vThen transormed
into the two dimensional outputs (z € R?).

/K\ = "f (.\A) X + b) Prof J.C. Kao, UCLA ECE

Neural networks

h1 WZ\\O?—
E } \)/ &‘aﬁ-wm 2/
hs i / M
ha
o 2 Y
PN S W, . 4x3 =12
First layer: h:fw(jleerl) W, 2%t = g

Second (output layer): z = Wsh + b,

This network has 6 neurons (not counting the input). It has (3x4) + (4x2) = 20

weights, and 4+2 = 6 biases for a total of 26 learnable parameters.
Prof J.C. Kao, UCLA ECE

Neural networks

Neural network architecture 2

An example 3-layer network is shown below.

9
e K

T
him ——— ha gé|ﬂ

hio ha2 Q
P
hi3 ha3 ‘e

hia ——— ha

Here, h;; denotes the jth element of h;. There are many considerations in
architecture design, which we will later discuss.

Prof J.C. Kao, UCLA ECE

Neural networks

hii ——— hoa

hi2 ha2 Q
P
hi3 ha3 ‘6

his ———> hg

leb.(Come ched (Fc)

First layer: hy = f (Wix +by) Newsd Nehwo ks
Second layer: hy = f (Wsh; + by))
* MLP
Third (output layer): z = W3hs + bj Mult [w{w PGW C

Prof J.C. Kao, UCLA ECE

Neural networks

This network has 10 neurons (not counting the input). It has (3x4) + (4x4) +
(4x2) = 36 weights, and 4+4+2= 10 biases for a total of 46 learnable
parameters.

Prof J.C. Kao, UCLA ECE

Neural networks

hii ——— ho

hi2 ha2 °
3
hi3 ha3 ‘Q

hiy —— hau

def JCL?OI

Define the activation fuﬂct’i_on/ M—h,(vv’ X % C)(>0)
f = lambda x: x * (x > 0) &£

Forward pass of a 3-layer network

hl = f(np.dot(Wl, x) + bl) Wl @ X
h2 = f(np.dot(W2, hl) + b2)
z = np.dot(W3, h2) + b3 |0q|
1ol = bia
\ﬂ\g
¥|‘f

Prof J.C. Kao, UCLA ECE

What if f() is linear?

)%«) = X
Neural networks

The above figure suggests the following equation for a neural network.

o Layer 1: hy = Wix + by b, = Waly + b,

® Layer2: h, = Wsh; + bs = W, (W\X*\ﬂ\\ "’\9),
: Wo Wy X + Wab, + by

N/ \/?‘\/_)
e Layer N: z= Wxhy_1 + by n L
= WX +b

Any composition of linear functions can be reduced to a single linear function.
Here, z = Wx + b, where

)

W =Wy --WyW,;

and
b=by+Wpyby_1+--+Wnx---W3by + Wy ---Wsb

Prof J.C. Kao, UCLA ECE

What if f() is linear?

Neural networks

The above figure suggests the following equation for a neural network.
® Layer 1: h = Wix+ b,
® Layer 2: h2 = W2h1 + b2

e Layer N: z= Wxhy_1 + by

Any composition of linear functions can be reduced to a single linear function.
Here, z = Wx + b, where

W =Wy - WoW,

and
b=by+Wpyby_1+--+Wnx---W3by + Wy ---Wsb

Prof J.C. Kao, UCLA ECE

What if f() is linear?

—fcm = ax +b

e This may be useful in some contexts. For example, when

dim(h) < dim(x), this corresponds to finding a low-rank representation
of the inputs.

e However, a system with greater complexity may require a higher capacity
model.

Avio e codov
e’ heR” 2eR
o 4= \z-%|

Prof J.C. Kao, UCLA ECE

Introducing nonlinearity

Introducing nonlinearity

To increase the network capacity, we can make it nonlinear. We do this by
introducing a nonlinearity, f(-), at the output of each artificial neuron.

o Layer 1: h1 = f(W1X-|-b1)
e Layer 2: hy = f(W2h; + bs)

® Layer N:z=Wxhxy_1+ by

A few notes:

e These equations describe a feedforward neural network, also called a
multilayer perceptron.

o f(-) is typically called an activation function and is applied elementwise on
its input. VU

e The activation function does not typically act on the output layer, z, as
these are meant to be interpreted as scores. Instead, separate “output
activations” are used to process z. While these output activations may be
the same as the activation function, they are typically different. For

example, it may comprise a softmax or SVM classifier. 1o 4.C. Kao, UGLA EGE

The hidden layers as learned features

A perspective on feature learning

One area of machine learning is very interested in finding features of the data

that are then good for use as the input data to a classifier (like a SVM). Why
might this be important?

\ y A 9
o X © o
X o)
Change of variables X o
> > X © >
i lo) r
© x [o
o X o)
O
X o)

The intermediate layers of the neural network (i.e., hi, ho, etc.) are features
that the later layers then use for decoding. If the performance of the neural
network is well, these features are good features.

Importantly, these features don't have to be handcrafted. Prof J.C. Kao, UCLA ECE

Example: XOR Review on your own
2 A o

Example: XOR X |

Consider a system that produces training data that follows the xor(-) function.
The xor function accepts a 2-dimensional vector x with components z; and x2
and returns 1 if x1 # x2. Concretely,

xr1 | x2 || xor(x)
01| 0 0 0O
0 1 1 X
1 | O 1 X
1 1 0O O

70) = 5 3 (9(x) — y())’

X

(Note, we wouldn't know xor(x), but we would have samples of corresponding
inputs and outputs from training data. Hence, it may be better to simply
replace xor(x) with y(x) representing training examples.)

Prof J.C. Kao, UCLA ECE

Example: XOR Review on your own

Example: XOR

Consider first a linear approximation of xor, via g(x) = w’x + b. Then,

W = EX:(WTXer—y(X))X
WD~ S W x4+ y(x)

X

Equating these to 0, we arrive at:

o O
— 1

1 1
(w1 +b—1) [0] -l—(wz-i-b—l)[?] +(w1‘|‘w2+b)[1] = [
These two equations can be simplified as:
(w1 +b—1)+ (w1 +w2+b) = 0
(w2 +b—1)+ (w1 +w2+b) = 0

These equations are symmetric, implying w; = w2 = w. This means:

1 — 3w

Prof J.C. Kao, UCLA ECE

Review on your own

Example: XOR

Now let's consider using a two-layer neural network, with the following
equation:
g(x) =w' max(0, W' x+c)+b

We haven't yet discussed how to optimize these parameters, but the point here
is to show that by introducing a simple nonlinearity like f(z) = max(0, z), we
can now solve the xor(:) problem. Consider the solution:

W[4
c = [0,—1]"
w = [1,-2]"

Prof J.C. Kao, UCLA ECE

What nonlinearity to use?

There are a variety of activation functions. We'll discuss some more commonly
encountered ones.

Prof J.C. Kao, UCLA ECE

Sigmoid unit

“One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good
guide for the learning algorithm.” (Goodfellow et al., p. 173)

Prof J.C. Kao, UCLA ECE

