
Lecture 6: Neural Networks + Backpropagation

Prof J.C. Kao, UCLA ECE

Announcements:

• HW #2 is due tonight, uploaded to Gradescope. Please budget time for submission. 
Please be sure to print out Jupyter Notebooks and .py files for your submission. 

• We will upload HW #3 tonight. Since we’re going a bit slower than prior iterations of 
the course, we decided to make it due on Friday, Feb 9, 2024 (instead of Monday, 
Feb 5, 2024). 

· * * * UPDATE A * A

Midterm will be held in class on Feb. 21
,
2024.

(seating will be tight . (
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“One recurring theme throughout neural network design is that the gradient of 
the cost function must be large and predictable enough to serve as a good 
guide for the learning algorithm.” (Goodfellow et al., p. 173)

What nonlinearity (aka activation function or unit) to use?
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Sigmoid unit
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“One recurring theme throughout neural network design is that the gradient of 
the cost function must be large and predictable enough to serve as a good 
guide for the learning algorithm.” (Goodfellow et al., p. 173)

Sigmoid unit



Sigmoid unit
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non-negative. SGD with the sigmoid unit zig-zags.



Hyperbolic tangent
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Hyperbolic tangent
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ReLU unit
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ReLU unit
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non-negative. SGD with ReLU() therefore zig-zags.



Softplus unit
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Softplus unit
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“One might expect it to have an advantage over the [ReLU] due to being 
differentiable everywhere or due to saturating less completely, but empirically 
it does not.” (Goodfellow et al., p. 191)

Glorot et al., 2011a



Leaky ReLU / PReLU unit
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ELU unit
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Swish activation function
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Which LU do I use?
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Clevert et al., 2015



Maxout unit
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Not tested. See textbook for 
more details.



More recently…
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What activation function do I use?
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Back to NN architecture
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What output activation do we use?



The output activation interacts with the cost function
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A picture for intuition
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The output activation interacts with the cost function
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The output activation interacts with the cost function
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Output activations

Prof J.C. Kao, UCLA ECE



Output activations
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Output activations
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A softmax output activation is fairly common.



What next?
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Now that we’ve defined all the elements of the neural network, the question 
now becomes: how do we learn its parameters? 

The short answer is that we use versions of gradient descent. 

However, neural networks architectures have units that are several layers from 
the output.  In these scenarios, how do we arrive at the gradient?



Backpropagation
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In this lecture, we’ll introduce backpropagation as a technique to calculate the 
gradient of the loss function with respect to parameters in a neural network.



Reading
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Reading: 

Deep Learning, 6.5-6.6



What next?
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Now that we’ve defined all the elements of the neural network, the question 
now becomes: how do we learn its parameters? 

The short answer is that we use versions of gradient descent. 

However, neural networks architectures have units that are several layers from 
the output.  In these scenarios, how do we arrive at the gradient?



Backpropagation
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Intuitively, backpropagation is the application of the chain rule for derivatives.



Backpropagation
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Backpropagation
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• Backpropagation is computationally efficient because we will find that most of the terms 
used in backpropagation can be cached from the forward pass.


• Informally (at least for me) sometimes taking analytical multivariate gradients can be 
challenging. Backpropagation breaks down these multivariate gradients into easier 
steps.



A simple example
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A simple example
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A simple example
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A simple example
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A simple example
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Idea: computational graphs apply to gradients
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Idea: computational graphs apply to gradients
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f

In the forward pass, we apply a function to the node inputs to calculate an output. 
In the backward pass, we take the upstream derivative and apply a local 

gradient to calculate the backpropagated derivative.
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Idea: computational graphs apply to gradients
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In the forward pass, we apply a function to the node inputs to calculate an output. 
In the backward pass, we take the upstream derivative and apply a local 

gradient to calculate the backpropagated derivative.
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Idea: computational graphs apply to gradients
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In the forward pass, we apply a function to the node inputs to calculate an output. 
In the backward pass, we take the upstream derivative and apply a local 
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Idea: computational graphs apply to gradients
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f

In the forward pass, we apply a function to the node inputs to calculate an output. 
In the backward pass, we take the upstream derivative and apply a local 

gradient to calculate the backpropagated derivative.
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Idea: computational graphs apply to gradients
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The basic intuition of backpropagation is that we break up the calculation of the 
gradient into small and simple steps.  Each of these nodes in the graph is a 
straightforward gradient calculation, where we multiply an input (the “upstream 
derivative”) with a local gradient (an application of the chain rule). 

Composing all of these gradients together returns the overall gradient.
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A gate view of gradients
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A gate view of gradients
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Interpreting backpropagation as gradient “gates”: 

Add gate: distributes the gradient
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A gate view of gradients
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Interpreting backpropagation as gradient “gates”: 

Add gate: distributes the gradient
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A gate view of gradients
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Interpreting backpropagation as gradient “gates”: 

Add gate: distributes the gradient 
Mult gate: switches the gradient
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A gate view of gradients
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Interpreting backpropagation as gradient “gates”: 

Add gate: distributes the gradient 
Mult gate: switches the gradient
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A gate view of gradients
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Interpreting backpropagation as gradient “gates”: 

Add gate: distributes the gradient 
Mult gate: switches the gradient 
Max gate: routes the gradient

@L
@f

x

y@L
@f @L

@f

max

I(x > y)

I(y > x)



A more involved scalar example
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f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

x0

x1

⇥

�1

exp +

1

inv
f

+

⇥

⇥



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73
+

⇥

⇥

x0

x1



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1
+

⇥

⇥

x0

x1



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1

@L
@z

=
@f

@z

@L
@f

@f

@z
= � 1

z2

�0.53
+

⇥

⇥

x0

x1



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53
+

⇥

⇥

x0

x1



A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53�0.20
+

⇥

⇥

x0

x1



A more involved scalar example
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A more involved scalar example
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You can take any gradient this way
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With backpropagation, as long as you can break the computation into 
components where you know the local gradients, you can take the gradient of 
anything.



What happens when two gradient paths converge?
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