Lecture 6: Neural Networks + Backpropagation

Announcements:

« HW #2 is due tonight, uploaded to Gradescope. Please budget time for submission.
Please be sure to print out Jupyter Notebooks and .py files for your submission.

« We will upload HW #3 tonight. Since we're going a bit slower than prior iterations of
the course, we decided to make it due on Friday, Feb 9, 2024 (instead of Monday,

Feb 5, 2024).

*K KK UPPATE X A K

Midkevwmh W\ be Wld wm dass ow Teb. 2(, 200%

(Seu\'N\ﬁ wil\ be '\'\‘3\\\’.)

Prof J.C. Kao, UCLA ECE

Neural networks

hiy, ——— ha

hi2 ha2 Q
N
his ha3 ‘e

hiy ——» h,24

J:\AHAT Comwe cled (Fc)

First layer: h; = f (Wix +b;) N L Voo ke
Second layer: hy = f (W3h; + by)
: czty(—-wm MLP
Third (output layer): z = W3hy + bs Mu (‘“{C” fer C)

Prof J.C. Kao, UCLA ECE

What nonlinearity (aka activation function or unit) to use?

“One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good
guide for the learning algorithm.” (Goodfellow et al., p. 173)

Prof J.C. Kao, UCLA ECE

Sigmoid unit

Sigmoid activation, o(x) = 1 L
exp(—z) -
= U-LW[X fb()

N
f = lambda x: 1.0 / (1.0 + np.exp(-Xx))
o(z)=(1+exp(—=))""

Its derivative is:

Prof J.C. Kao, UCLA ECE

Sigmoid unit

“One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good
guide for the learning algorithm.” (Goodfellow et al., p. 173)

L () w () s o (W +e)

woem W s e g

—

94 307 (w) 9L

aw 9w c(w)

Prof J.C. Kao, UCLA ECE

W
PR /5..). No‘)b

Sigmoid unit -
7 2
. . . . L 1
Sigmoid activation, o(z) = Foxp(—2) y——= 5
Pros: Nl
e Around x = 0, the unit behaves linearly.
o |t is differentiable everywhere. /0/;'
Cons: WO‘?IT

o At extremes, the unit saturates and thus has zero gradient. This results in
no learning with gradient descent.

e The sigmoid unit is, non-negative. SGD with the sigmoid unit zig-zags.

), w,b) T
X(w {\| L »\1

=0 (W x + \o)
Consider f(w) = o(w'hy+ b). Defmlng Z=WwW hl-l— b, the derlvatlve with
respect to w, the parameters, is: - T (2—3

= [agw f{wl_wa’ﬂ B?‘:)

R\ 1fx >0 (e.g., if the input units all had a sigmoidal output), then the](=7 (2)
¢ oL
o2 (-T2

ow BS—M) gradient has all positive entries. Let's say we had some gradient, 3=,
o2

:V\)—r'ﬁkl’\‘b

which can be positive or negative. Then g—‘f’ will have all positive or
negative entries.

\ This can result in zig-zagging during gradient descent.

I ' Prof J.C. Kao, UCLA ECE

Hyperbolic tangent W\
S

.'\\
Hyperbolic tangent, tanh(x) = 20(x) — 1 M

The hyperbolic tangent is a zero-centered sigmoid-looking activation.
f = lambda x: np.tanh(x)

tanh(z) =20(z) — 1

I 1 1

1.0}

0.5F

0.0

tanh(z)

-1.0

-10 -5 0 5 10

Its derivative is:
d tanh(x)

dx

= 1 — tanh?(z)

Prof J.C. Kao, UCLA ECE

Hyperbolic tangent

Hyperbolic tangent, tanh(z) = 20(z) — 1

Pros:
e Around z = 0, the unit behaves linearly.
e |t is differentiable everywhere.
o |t is zero-centered.

Cons:

e Like the sigmoid unit, when a unit saturates, i.e., its values grow larger or
smaller, the unit saturates and no additional learning occurs.

Prof J.C. Kao, UCLA ECE

ReLU unit ‘f"“ = X

Rectified linear unit, ReLU(z) = max(0, x)

f = lambda x: x * (x > 0)

6 | relu(z) :Imax(O,:c) |

o
|

Its derivative is:

dReLU(z) [1 x>0
dx 1 0 x <0

This function is not differentiable at x = 0. However, we can define its
subgradient by setting the derivative to be between [0, 1] at x = 0.

Prof J.C. Kao, UCLA ECE

ReLU unit z = Nx+b f |

Rectified linear unit, ReLU(z) = max(0,2) (2 -| g
o
Pros: J

e In practice, learning with the ReLU unit converges faster than sigmoid and
tanh. AexNet, rew was 6 fuglev than ok

e When a unit is active, it behaves as a linear unit.

e The derivative at all points, except £ = 0, is 0 or 1. When = > 0, the
gradients are large, and not scaled by second order effects.

e There is no saturation if x > 0.
Cons:

o ReLU(xz), like sigmoid, is non-negative. SGD with Rel.U() therefore zig-zags.

e ReLU(xz) is not differentiable at z = 0. However, in practice, this is not a
%ﬂlf(w) is to return the left
derivative (0) or the right derivative (1); this is reaa;(r)\able given digital
computation is subject to numerical error.

large issue. A heuristic when evaluating

e Learning does not happen for examples that have zero activation. This
can be fixed by e.g., using a leaky ReLU or maxout unit.

Prof J.C. Kao, UCLA ECE

Softplus unit

Softplus unit, {(x) = log(1 + exp(x))

One may consider using the softplus function, {(x) = log(1 + €*), in place of
ReLU(x). Intuitively, this ought to work well as it resembles ReLU(z) and is
differentiable everywhere. However, empirically, it performs worse than
ReLU(x).

f = 1amb§a X: np.log(l+np.exp(x))

6 §(x) — log(l1 + exp(w))l

5k

SN
T

w
T

softplus(z)

Its derivative is:

Prof J.C. Kao, UCLA ECE

Softplus unit

“One might expect it to have an advantage over the [ReLU] due to being

differentiable everywhere or due to saturating less completely, but empirically
it does not.” (Goodfellow et al., p. 191)

relu

$o1

Neuron | MNIST | CIFAR10 | NISTP | NORB

With unsupervised pre-training

Rectifier | 1.20% 49.96% | 32.86% | 16.46%
Tanh 1.16% 50.79% 35.89% | 17.66%
Softplus | 1.17% 49.52% | 33.27% | 19.19%
Without unsupervised pre-training
Rectifier | 1.43% 50.86% | 32.64% | 16.40%
Tanh 1.57% 52.62% 36.46% | 19.29%
Softplus 1.77% 53.20% 35.48% | 17.68%

Glorot et al., 2011a

Prof J.C. Kao, UCLA ECE

Leaky ReLU / PReLU unit

Leaky rectified linear unit, f(r) = max(ax, x)
f = lambda x: x * (x>0) + 0.1*x * (x<0)

6 leaky relu(z)=max(azx,)

5k

m:DsO\

leaky relu(z)

The leaky RelLU avoids the stopping of learning when x < 0. a may be treated
as a selected hyperparameter, or it may be a parameter to be optimized in
learning, in which case it is typically called the “PRelLU"” for parametrized
rectified linear unit.

Prof J.C. Kao, UCLA ECE

ELU unit

Exponential linear unit, f(z) = max(a(exp(z) — 1), x)
f = lamb@a X: X * (x>0) + 0.2*(np.exp(x) - 1) * (x<0)

6 | eIu(Ix) = max(al(exp(a:) - I1), x) |

leaky relu(z)

The exponential linear unit avoids the stopping of learning when x < 0. A con
of this activation function is that it requires computation of the exponential,
which is more expensive.

Prof J.C. Kao, UCLA ECE

-

<
\(A‘AO‘ Swish activation f)rhction

pd

f = lambda x: x * >0) + 0.2*(np.exp(x) - 1) * (x<0)

N

leaky reluy(z)
w ~ w ()}

Thé exponential linear unit avoids the stopping of learning whehx < 0. A con
f this activation function is that it requires computation of the exponential,
which is more expensive.

Prof J.C. Kao, UCLA ECE

Which LU do | use?

4- 4
0.6-
03" n3- 7]
[72] [72] [72]
o o o
- - _lo_s,
R = = £
g, g, g
0.4
1 1
| | ‘ | 0.3- ‘ ‘
0 50 100 150 0 25 50 90 110 130 150
Updates (1e3) Updates (1e3) Updates (1e3)
(a) Training loss (b) Training loss (start) (c) Training loss (end)
100 100
—rel —rel Dt o . . —rel
—lea —lea a/ A et Ny o —lea
—srel —srel ! (o I —srel
—elu —elu i i —elu
32- w b o\t oy o vy
80 80 , ,\ YA"'\"i\'\"'\._u\v.\,/\.;‘. ‘_‘.\/._./."/""_._,\‘,-\‘ i
VAR At B e
3. E‘ @. l v 4\ LA o
o o o h
= = =31
[] o o VRN e e R A
e e e Wity A Y
Ll b4 N !
' 60- W 6o- wo
[[=30~ e oy
’ 10 o
40 -
40 29}
0 150 0 75 9 170

50 100 110 130
Updates (1e3) Updates (1e3)

(d) Test error (e) Test error (start) (f) Test error (end)

25 50
Updates (1e3)

Figure 4: Comparison of ReLUs, LReLLUs, and SReLLUs on CIFAR-100. Panels (a-c) show the
B T - S ’ Clevert et al., 2015
Prof J.C. Kao, UCLA ECE

Not tested. See textbook for

Maxout unit more details.

Maxout unit

A generalization of the ReLU and PRelLU units is the maxout unit, where:
maxout(x) = max(wi X + b1, wa X + b2)

This can be generalized to more than two components. If w; = 0 and b; = 0,
this is the rectified linear unit.

Prof J.C. Kao, UCLA ECE

More recently...

swish(z) = z sigmoid(Bz) = Hﬁ.' GELU(z) =zP(X <z) =z®(z) =z - % [1 + erf(m/\/i)]

= x-0(fx)

31 — GELU
—— RelU
— ELU

—4 -3 -2 -1 0 1 2 3

Figure 1: The GELU (u = 0,0 = 1), ReLU, and ELU
(a=1).

Prof J.C. Kao, UCLA ECE

What activation function do | use?

In practice...

In practice...
e The ReLU unit is very popular.
e The sigmoid unit is almost never used; tanh is preferred.
It may be worth trying out leaky ReLU / PReLU / ELU / maxout for your

SW(Q\\ \ QEU&

application.

e This is an active area of research.

Prof J.C. Kao, UCLA ECE

Back to NN architecture

hii ——— ho

hi2 ha2 Q
P
hi3 ha3 ‘Q

hia ——— hau

o Layer 1: h; = f(W1x+ b;)
e Layer 2: hy = f(W2h; + bs)

e Layer N: z=Wxhy_1+Dbxyn

What output activation do we use?

Prof J.C. Kao, UCLA ECE

The output activation interacts with th?H 3ost function “
[avge ° o% — clags 1L~ Y~ |
J) v

What outputs and cost functions? e wegabin 2 —> el 0 47“ =D

There are several options to process the output scores, z, to ultimately arrive at
a cost function. The choice of output units interacts with what cost function

to use. 5 () - Pvixm b&la’u.?t oo ocless :Lg

Example: Consider a neural network that produces a single score, z, for binary
classification. As the output unit, we choose the sigmoid nonlinearity, so that
j = o(2). On a given example, y(*) is either 0 or 1, and 3 = o(2(") can be
interpreted as the algorithm’s probability the output is in class 1. Is it better to
use mean-square error or cross-entropy (i.e., corresponding to
maximum-likelihood estimation) as the cost function? For n examples:

n AR
1 i N 2 ?
MSE = ; (y(' — (2!)))
CE = =3 [yPloga(z?) + (1 -y log(1 - o(=1"))]
=1

Prof J.C. Kao, UCLA ECE

A picture for intuition R

as
n

~-S0 ﬁ\.‘o
e —
P
o) _ (2
o oo o M e o™ | o ga)
(r- O)L ~ |
() . %MQE((\‘)
IMCE 80 (2\")
= 7z
92,10 ?i—,‘n ‘ao-cz(\'\> qul\ _ FL" 40\3
\
N\/L_LV\ 2((___.,50
ﬂmo\ko

Prof J.C. Kao, UCLA ECE

The output activation interacts with the cost function

What outputs and cost functions? (cont.)

Example (cont): Consider just one example, where y(*) = 1. For this example,

o = =27 = oGO ()1 - o (=)

This derivative looks like the following:

. oot

0.00 -
i'g -0.05 - ‘&%j ’ ’
é -0.10 4 0 o

%@ @F 6°°
E—o.zo 0 = ’
R

|
o
N
w

—0.30 A

~100 -75 -50 -25 00 25 50 75 10.0
z
>
When z is very negative, indicating a large MSE, the gradient saturates to
zero, and no learning occurs.

Prof J.C. Kao, UCLA ECE

The output activation interacts with the cost function

What outputs and cost functions? (cont.)

Example (cont): Now let's consider the cross-entropy. For one example, where
y(l) =1,
OoCE
0z
This derivative looks like the following:

oY) -1

0.0~
—0.2 A
-0.4

Gy oo¥

—0.8 1

o(z)—-1

—1.0 A

Notice that when z is very negative, learning will occur, and it will only "stall”
when z gets close to the right answer.

Prof J.C. Kao, UCLA ECE

Output activations NOT TESTED

e Linear output units: y = z.

These output units typically specify the conditional mean of a Gaussian
distribution, i.e.,

p(ylz) = N(z,I)

and in this case, MLE estimation is equivalent to minimizing squared error.

Prof J.C. Kao, UCLA ECE

Output activations

e Sigmoid outputs: y = o(2).

These outputs are typically used in binary classification to approximate a
Bernoulli distribution.

Question: Why not use the following output?

Pr(y = 1|x) = max (0, min (1, z))

Prof J.C. Kao, UCLA ECE

Output activations

o Softmax output: y; = softmax;(z).

The softmax is the generalization of the sigmoid output to multiple classes.

A softmax output activation is fairly common.

Prof J.C. Kao, UCLA ECE

What next?

Now that we've defined all the elements of the neural network, the question
now becomes: how do we learn its parameters?

The short answer is that we use versions of gradient descent.

However, neural networks architectures have units that are several layers from
the output. In these scenarios, how do we arrive at the gradient?
LR - €GO

W, b {'() Wy ,ba {_“ 9L

Prof J.C. kao, UCLA ECE

Backpropagation

In this lecture, we'll introduce backpropagation as a technique to calculate the
gradient of the loss function with respect to parameters in a neural network.

hii ——— ha

hi2 haa a
>
hi3 ha3 ‘°

hiay ——— ha

Prof J.C. Kao, UCLA ECE

aeseeseensn,
o oo,

Reading

Reading:

Deep Learning, 6.5-6.6

Prof J.C. Kao, UCLA ECE

What next?

Now that we've defined all the elements of the neural network, the question
now becomes: how do we learn its parameters?

The short answer is that we use versions of gradient descent.

However, neural networks architectures have units that are several layers from
the output. In these scenarios, how do we arrive at the gradient?

Prof J.C. Kao, UCLA ECE

Backpropagation

Intuitively, backpropagation is the application of the chain rule for derivatives.

Motivation for backpropagation

To do gradient descent, we need to calculate the gradient of the objective with
respect to the parameters, #. However, in a neural network, some parameters
are not directly connected to the output. How do we calculate then the
gradient of the objective with respect to these parameters? Backpropagation
answers this question, and is a general application of the chain rule for
derivatives.

Prof J.C. Kao, UCLA ECE

Backpropagation

Nomenclature

Forward propagation:

e Forward propagation is the act of calculating the values of the hidden and
output units of the neural network given an input.

* |t involves taking input x, propagating it to through each hidden unit
sequentially, until you arrive at the output y. From forward propagation,
we can also calculate the cost function J(8).

e In this manner, the forward propagated signals are the activations.

o With the input as the “start” and the output as the “end,” information
propagates in a forward manner.

Backpropagation (colloquially called backprop):

* As its name suggests, now information is passed backward through the
network, from the cost function and outputs to the inputs.

e The signal that is backpropagated are the gradients.

* |t enables the calculation of gradients at every stage going back to the
input layer.

Prof J.C. Kao, UCLA ECE

Backpropagation

Why do we need backpropagation?

» Backpropagation is computationally efficient because we will find that most of the terms
used in backpropagation can be cached from the forward pass.

e |nformally (at least for me) sometimes taking analytical multivariate gradients can be
challenging. Backpropagation breaks down these multivariate gradients into easier

steps. DF .ev&u\'\‘okﬂl\')fs %,..\A‘ad-t
A few further notes on backpropagation.

o Backpropagation is not the learning algorithm. It's the method of
computing gradients.

e Backpropagation is not specific to multilayer neural networks, but a
general way to compute derivatives of functions.

Prof J.C. Kao, UCLA ECE

A simple example

f(z,y,2) = (x +y)z
-(-a—-&“:X'\'j %:%:%

02

No

. /

Prof J.C. Kao, UCLA ECE

A simple example

f(z,y,2) = (z+y)z

Forward propagation:

Prof J.C. Kao, UCLA ECE

A simple example

2= =\
9F L of 2L
D
Backpropagation: a_ﬁ — 1 o oz 1 .
) of f-wz - =w
r — - 5)
3 I
y — N 20 ;
. A s
L g

Prof J.C. Kao, UCLA ECE

A simple example

f(z,y,2) = (z+y)z

oL 0f oL
0z 0z 0f

2 3t _ of L

—
p—

. ij) 5)(o 3WTBF
3 ! L —J
y — 2%y 20 -2 =

, A A

Backpropagation:

Prof J.C. Kao, UCLA ECE

A simple example

f(z,y,2) = (z+y)z

W= X*‘J
Backpropagation: 8_£ — af 0L w |
, ow Ow Of L
3 ;@ N)
Y D2 20
4 —= <> .
) 1 W / 1 f

9L Aw oL

—
- ———

DX 9x IW

Prof J.C. Kao, UCLA ECE

A simple example

flx,y,2) = (x +y)z

Backpropagation: 8_£ _ ow af oL
, Or Ox Ow Of
3 A~ 4
Y 20
1 < >
4 =1 /
<

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local
gradient to calculate the backpropagated derivative.

X

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local
gradient to calculate the backpropagated derivative.

Forward pass:

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local
gradient to calculate the backpropagated derivative.

Forward pass: ' W MVA
J

. /
XD fley) o ot] 22

Y DX IX _2?
Backward pass: g: &
"ocal +
) l AXK WNM
j7a

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local
gradient to calculate the backpropagated derivative.

Forward pass:

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local
gradient to calculate the backpropagated derivative.

Forward pass:

Backward pass:

f

" \0z)5 f
Local %_.
gradients
\ . Upstream

8 f “— derivative

ay 8f

Prof J.C. Kao, UCLA ECE

Idea: computational graphs apply to gradients

O F\OL
/
Local & af %—>
gradients Vol or
O f L Upstream
\ P f b derivative

0y JO f

The basic intuition of backpropagation is that we break up the calculation of the
gradient into small and simple steps. Each of these nodes in the graph is a
straightforward gradient calculation, where we multiply an input (the “upstream
derivative”) with a local gradient (an application of the chain rule).

Composing all of these gradients together returns the overall gradient.

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

f=xey
E_F&:\
DX

DL

v

e & Gs

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient

F=x
25 -y
. = X
8L \<: °3
ja{g oL
9L

‘Bf 8_f

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient
Mult gate: switches the gradient

oL
yﬁ_f L
x8£ Y o
of oL

of

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient ,SL - MAX (x Y)
Mult gate: switches the gradient
o
3 - l 1 \—(l 7
= MAYXK , =
relu (x) (%, 0) —{{? E o e
= T{x7Y)]
L £
T(xy) —
I §
_Z
29 f oL
T (>X

° of

Prof J.C. Kao, UCLA ECE

A gate view of gradients

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient
Mult gate: switches the gradient
Max gate: routes the gradient

I[(:c>y)a—£ T

of
Iy >)8£ Y /.
T oL

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1
1+ exp(—(woxo + wix1 + wo))

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1
14+ exp(—(woxg + wir1 + w3))

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1
14+ exp(—(woxg + wir1 + w3))

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1 aS
— \»
1+ eXP(_(woiﬁo + wi1T1 + w2)) / 7\ UW

0% oL _ 3f 3%

—1 __0.37 137 0.73

O
“’zj@/zl/ \1 o)== f ¢

~-053%
/ —T1 g L
W9 —2 T

9L 92

- =

”af LY

of Da o %
w -~ \ = _%i- =~ [
0 —1 Fen 7 Tox T ar
5 | L
X 9 -~ —\. - - 3
O j@ 3 vl (l‘%ﬁJ] 0.5

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1
1 4 exp(—(woxg + w1z + w2))

f(W7X) —

ro—L 7 %3

2 \4 0.37_1.37_ 0.73
S SRV SRR ORI,
;[jl_z/'

2% 053 1
—1 1
W9 —2

0L 0f 0L of 1
0z 0z 0f 0z 22

Prof J.C. Kao, UCLA ECE

b4
. (X)) = &
A more involved scalar example r

Ei; = CX
O
1
f(W7X) — 1_|_exp(—(’w0£€0—|—'w1$1—|_w2)) C
b = eX\DCc) = €
_gfb__ - exp(e)
L o
:Uo—/_l % 3 -1, b 1
o J N 0.371 1.37_ 0.73
ﬁ@ 3 ° 2° 50 5T !
1 2 / ‘\/
" _9 eXY(1) L_og’;)

Prof J.C. Kao, UCLA ECE

A more involved scalar example

)C.ba\c\LwMQQ)
B 1
fw,x) = 1 4 exp(—(woxg + w1z + w2))
o st e%g(ﬂi
o]CTVW”V*‘L“
wo 1 l et {70ch~6?<‘>(\>
o= b ek
wy 2 o1 L1 0370137 073
o4/ (O~} — f
p 2 A o / —0.20=-0.53=0.53" 1
6.4
W9 —2

0.2 Lo v Linv ()

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1

f(W7X> — 1 -+ exp(—(’woiﬁo —+ w11 + ’LUQ))

;130__1/ %3 1 1
2 \ 1 4 —1__0.3741.37_0.73
“’17@ 1/ ()=o) —(— f

- . / 0.20 —=0.20 —-0.53=0.53 1

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1
14+ exp(—(woxg + wir1 + w3))

330__1/ m@ 1
0.20 0.37¢ 1.37 0.73
“~o i/ DA 7

, 020 /020 ~0.20-0.53=0.53 1

Prof J.C. Kao, UCLA ECE

A more involved scalar example

1

f(W7X> — 1 -+ exp(—(’wolﬁo —+ w11 + U)Q))
1
w
9@@ —1
ro - m@ :

0.20 0.374 1.37__0.73

m® @ (4 —s{iv)y— f
2590 /020 —0.20-0.53-0.53" 1

Prof J.C. Kao, UCLA ECE

You can take any gradient this way

With backpropagation, as long as you can break the computation into
components where you know the local gradients, you can take the gradient of
anything.

Prof J.C. Kao, UCLA ECE

What happens when two gradient paths converge?

—)
3L - 9 2
D% N ; X ql\
VI S
el
hix)= X
/OL\ Noﬁ
X \942/’

Prof J.C. Kao, UCLA ECE

