
Lecture 6: Neural Networks + Backpropagation

Prof J.C. Kao, UCLA ECE

Announcements:

• HW #2 is due tonight, uploaded to Gradescope. Please budget time for submission.
Please be sure to print out Jupyter Notebooks and .py files for your submission.

• We will upload HW #3 tonight. Since we’re going a bit slower than prior iterations of
the course, we decided to make it due on Friday, Feb 9, 2024 (instead of Monday,
Feb 5, 2024).

· * * * UPDATE A * A

Midterm will be held in class on Feb. 21
,
2024.

(seating will be tight . (

Prof J.C. Kao, UCLA ECE

“One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good
guide for the learning algorithm.” (Goodfellow et al., p. 173)

What nonlinearity (aka activation function or unit) to use?

Prof J.C. Kao, UCLA ECE

Sigmoid unit

Prof J.C. Kao, UCLA ECE

“One recurring theme throughout neural network design is that the gradient of
the cost function must be large and predictable enough to serve as a good
guide for the learning algorithm.” (Goodfellow et al., p. 173)

Sigmoid unit

Sigmoid unit

Prof J.C. Kao, UCLA ECE

non-negative. SGD with the sigmoid unit zig-zags.

Hyperbolic tangent

Prof J.C. Kao, UCLA ECE

Hyperbolic tangent

Prof J.C. Kao, UCLA ECE

ReLU unit

Prof J.C. Kao, UCLA ECE

ReLU unit

Prof J.C. Kao, UCLA ECE

non-negative. SGD with ReLU() therefore zig-zags.

Softplus unit

Prof J.C. Kao, UCLA ECE

Softplus unit

Prof J.C. Kao, UCLA ECE

“One might expect it to have an advantage over the [ReLU] due to being
differentiable everywhere or due to saturating less completely, but empirically
it does not.” (Goodfellow et al., p. 191)

Glorot et al., 2011a

Leaky ReLU / PReLU unit

Prof J.C. Kao, UCLA ECE

ELU unit

Prof J.C. Kao, UCLA ECE

Swish activation function

Prof J.C. Kao, UCLA ECE

Which LU do I use?

Prof J.C. Kao, UCLA ECE

Clevert et al., 2015

Maxout unit

Prof J.C. Kao, UCLA ECE

Not tested. See textbook for
more details.

More recently…

Prof J.C. Kao, UCLA ECE

What activation function do I use?

Prof J.C. Kao, UCLA ECE

Back to NN architecture

Prof J.C. Kao, UCLA ECE

What output activation do we use?

The output activation interacts with the cost function

Prof J.C. Kao, UCLA ECE

A picture for intuition

Prof J.C. Kao, UCLA ECE

The output activation interacts with the cost function

Prof J.C. Kao, UCLA ECE

The output activation interacts with the cost function

Prof J.C. Kao, UCLA ECE

Output activations

Prof J.C. Kao, UCLA ECE

Output activations

Prof J.C. Kao, UCLA ECE

Output activations

Prof J.C. Kao, UCLA ECE

A softmax output activation is fairly common.

What next?

Prof J.C. Kao, UCLA ECE

Now that we’ve defined all the elements of the neural network, the question
now becomes: how do we learn its parameters?

The short answer is that we use versions of gradient descent.

However, neural networks architectures have units that are several layers from
the output. In these scenarios, how do we arrive at the gradient?

Backpropagation

Prof J.C. Kao, UCLA ECE

In this lecture, we’ll introduce backpropagation as a technique to calculate the
gradient of the loss function with respect to parameters in a neural network.

Reading

Prof J.C. Kao, UCLA ECE

Reading:

Deep Learning, 6.5-6.6

What next?

Prof J.C. Kao, UCLA ECE

Now that we’ve defined all the elements of the neural network, the question
now becomes: how do we learn its parameters?

The short answer is that we use versions of gradient descent.

However, neural networks architectures have units that are several layers from
the output. In these scenarios, how do we arrive at the gradient?

Backpropagation

Prof J.C. Kao, UCLA ECE

Intuitively, backpropagation is the application of the chain rule for derivatives.

Backpropagation

Prof J.C. Kao, UCLA ECE

Backpropagation

Prof J.C. Kao, UCLA ECE

• Backpropagation is computationally efficient because we will find that most of the terms
used in backpropagation can be cached from the forward pass.

• Informally (at least for me) sometimes taking analytical multivariate gradients can be
challenging. Backpropagation breaks down these multivariate gradients into easier
steps.

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

2

3

4

Forward propagation:

5

20

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

2

3

4

Backpropagation:

1

@L
@f

= 1

5

20

-5 II
M M

-2 = of t
f = w . z - = w

W

22
-- I 5
②z

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

2

3

4

Backpropagation:

1

@L
@z

=
@f

@z

@L
@f

w 5

20

5

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

2

3

4

Backpropagation:

1

w

@L
@w

=
@f

@w

@L
@f

4
5

20

5

A simple example

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

f(x, y, z) = (x+ y)z

2

3

4

Backpropagation:

1

w

4

@L
@x

=
@w

@x

@f

@w

@L
@f

4

4

5

20

5

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

+

⇥

x

y

z
f

2

3

4 1

w

4
4

4

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local

gradient to calculate the backpropagated derivative.

5

20

5

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

f

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local

gradient to calculate the backpropagated derivative.

Forward pass:

x

y
f(x, y)

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

f

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local

gradient to calculate the backpropagated derivative.

Forward pass:

x

y
f(x, y)

f

Backward pass:

@L
@f

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

f

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local

gradient to calculate the backpropagated derivative.

Forward pass:

x

y
f(x, y)

f

Backward pass:

@L
@f

@f

@x

@L
@f

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

f

In the forward pass, we apply a function to the node inputs to calculate an output.
In the backward pass, we take the upstream derivative and apply a local

gradient to calculate the backpropagated derivative.

Forward pass:

x

y
f(x, y)

f

Backward pass:

@f

@x

@L
@f

@f

@y

@L
@f

Local
gradients

Upstream
derivative

@L
@f

@L
@f

@L
@f

Idea: computational graphs apply to gradients

Prof J.C. Kao, UCLA ECE

The basic intuition of backpropagation is that we break up the calculation of the
gradient into small and simple steps. Each of these nodes in the graph is a
straightforward gradient calculation, where we multiply an input (the “upstream
derivative”) with a local gradient (an application of the chain rule).

Composing all of these gradients together returns the overall gradient.

f

@f

@x

@L
@f

@f

@y

@L
@f

Local
gradients

Upstream
derivative

@L
@f

@L
@f

@L
@f

A gate view of gradients

Prof J.C. Kao, UCLA ECE

@L
@f

+

x

y

Interpreting backpropagation as gradient “gates”:

A gate view of gradients

Prof J.C. Kao, UCLA ECE

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient

@L
@f

+

x

y

@L
@f
@L
@f

A gate view of gradients

Prof J.C. Kao, UCLA ECE

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient

x

y ⇥
@L
@f

A gate view of gradients

Prof J.C. Kao, UCLA ECE

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient
Mult gate: switches the gradient

@L
@f

x

y ⇥

y

@L
@f

x @L
@f

A gate view of gradients

Prof J.C. Kao, UCLA ECE

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient
Mult gate: switches the gradient

x

y
@L
@f

max

A gate view of gradients

Prof J.C. Kao, UCLA ECE

Interpreting backpropagation as gradient “gates”:

Add gate: distributes the gradient
Mult gate: switches the gradient
Max gate: routes the gradient

@L
@f

x

y@L
@f @L

@f

max

I(x > y)

I(y > x)

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

x0

x1

⇥

�1

exp +

1

inv
f

+

⇥

⇥

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1

@L
@z

=
@f

@z

@L
@f

@f

@z
= � 1

z2

�0.53
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53�0.20
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53�0.200.20
+

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53�0.200.20
+

0.20

0.20

0.20

0.20

⇥

⇥

x0

x1

A more involved scalar example

Prof J.C. Kao, UCLA ECE

f(w,x) =
1

1 + exp(�(w0x0 + w1x1 + w2))

+

w0

w1

w2

⇥

�1

exp +

1

inv f

1

�1

2

2

�1

4

3

�2

1 �1 0.37 1.37 0.73

1�0.53 �0.53�0.200.20
+

0.20

0.20

0.20

0.20
0.40

0.40

0.20

�0.20 ⇥

⇥

x0

x1

You can take any gradient this way

Prof J.C. Kao, UCLA ECE

With backpropagation, as long as you can break the computation into
components where you know the local gradients, you can take the gradient of
anything.

What happens when two gradient paths converge?

Prof J.C. Kao, UCLA ECE

f

g

h

91 = h(X) 22#i
I

q2 = h(X) ax
i= 1

Law Fearvative
total

ql

h(X) = X
-

X
291

22 zh xe9e-
- zq2
ax

92

2 = +e

