UC Berkeley

Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Discussion 7

Date: Wednesday, March 9, 2016

Problem 1. Splitting and Merging a Poisson Process

- a. Packets arrive at a node of a data network according to a Poisson process of rate λ . Each packet is a local packet with probability p or a transit packet with probability 1-p. Show that the process of local packet arrivals is a Poisson process with rate λp .
- b. People with letters to mail arrive at the post office according to a Poisson process with rate λ_1 , while people with packages to mail arrive according to an independent Poisson process with rate λ_2 . Show that the merged process, which includes arrivals of both types is Poisson with rate $\lambda_1 + \lambda_2$.

Problem 2. More Splitting and Merging

Consider two independent Poisson processes with rates λ_1 and λ_2 . Those processes measure the number of customers arriving in store 1 and 2.

- (a) What is the probability that a customer arrives in store 1 before any arrives in store 2?
- (b) What is the probability that in the first hour exactly 6 customers arrive at the two stores? (The total for both is 6)
- (c) Given exactly 6 have arrived at the two stores, what is the probability all 6 went to store 1?

Problem 3. Markov Chains Meet Linear Algebra

Consider the transition matrix:

$$P = \begin{bmatrix} 1/2 & 1/2 & 0\\ 0 & 1/2 & 1/2\\ 0 & 0 & 1 \end{bmatrix}$$

(a) Find P^n .

Hint: This can be done without any math.

(b) Find the distinct eigenvalues of P along with their multiplicities.

(c) Can you write $P=U\Lambda U^{-1}$ for some diagonal matrix Λ and invertible matrix U?

Problem 4. The Forgotten Process

Let $Y = X_1 + X_2 + X_3 + \cdots + X_N$ where the random variables X_i are geometric with parameter p, and N is geometric with parameter q. Assume that the random variables $N, X_1, \ldots X_N$ are independent. Show that Y is geometric with parameter pq.