UC Berkeley Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Problem Set 7 Spring 2016

Issued: Thursday, March 10, 2016 Due: 11:59PM, Thursday, March 17, 2016

Problem 1. Michael misses shots with probability $\frac{1}{4}$, independent of other shots.

- (a) What is the expected number of shots that Michael will make before he misses three times?
- (b) What is the probability that the second and third time Michael makes a shot will occur when he takes his eight and ninth shots, respectively?
- (c) What is the probability that Michael misses two shots in a row before he makes two shots in a row?

Problem 2. Starting at time 0, the F line makes stops at Cory Hall according to a Poisson process of rate λ . Students arrive at the stop according to an independent Poisson process of rate μ . Every time the bus arrives, all students waiting get on.

- (a) Given that the interarrival time between bus i 1 and bus i is x, find the distribution for the number of students entering the *i*th bus.
- (b) Given that a bus arrived at 9:30AM, find the distribution for the number of students that will get on the next bus.
- (c) Find the distribution of the number of students getting on the next bus to arrive after 11:00AM. (You can assume that time 0 was infinitely far in the past)

Problem 3. Consider a Poisson process $\{N_t, t \ge 0\}$ with rate $\lambda = 1$. Let random variable S_i denote the time of the *i*-th arrival.

- (a) Given $S_3 = s$, find the joint distribution of S_1 and S_2 .
- (b) Find $\mathbb{E}[S_2|S_3 = s]$.
- (c) Find $\mathbb{E}[S_3|N_1 = 2]$.

Problem 4. Each morning, as you pull out of your driveway, you would like to make a U-turn rather than drive around the block. Unfortunately, U-turns are illegal and police cars drive by according to a Poisson process with rate λ . You decide to make a U-turn one you see that the road has been clear of police cars for τ units of time. Let N be the number of police cars you see before you make a U-turn.

- (a) Find $\mathbb{E}[N]$.
- (b) Find the conditional expectation of the time elapsed between police cars n-1 and n, given that $N \ge n$.
- (c) Find the expected time that you wait until you make a U-turn.

Problem 5. Team A and Team B are playing an untimed basketball game in which the two teams score points according to independent Poisson processes. Team A scores points according to a Poisson process with rate λ_A and Team B scores points according to a Poisson process with rate λ_B . The game is over when one of the teams has scored k more points than the other team. Find the probability that team A wins.