UC Berkeley Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Problem Set 10

Spring 2016

Issued: Thursday, April 7, 2016 Due: 11:59pm Thursday, April 14, 2016

Problem 1. Consider the following communication channel. There is an i.i.d. source that generates symbols $\{1, 2, 3, 4\}$ according to a prior distribution $\pi = [p_1, p_2, p_3, p_4]$. The symbols are modulated by QPSK scheme, i.e. they are mapped to constellation points $(\pm 1, \pm 1)$. The communication is on a baseband Gaussian channel, i.e. if the sent signal is $(x_1, x_2), x_i \in \{-1, 1\}$, the received signal is

$$y_1 = x_1 + z_1,$$

 $y_2 = x_2 + z_2,$

where z_1 and z_2 are independent $N(0, \sigma^2)$ random variables. We let the symbols $\{1, 2, 3, 4\}$ correspond to (1, 1), (-1, 1), (-1, -1), and (-1, 1), respectively. Find the MAP detector of this communication channel.

Problem 2. Customers arrive to a store according to a Poisson process of rate 1. The store manager learns of a rumor that one of the employees is sending $\frac{1}{2}$ of the customers to the rival store. Refer to hypothesis X = 1 as the rumor being true, that one of the employees is sending every other customer arrival to the rival store and hypothesis X = 0 as the rumor being false, where each hypothesis is equally likely. Assume that at time 0, there is a successful sale. After that, the manager observes S_1, S_2, \ldots, S_n where S_i is the time of the *i*th subsequent sale. Derive the MAP rule to determine whether the rumor was true or not.

Problem 3. You are testing a digital link that corresponds to a BSC with some error probability $\epsilon \in [0, 0.5)$.

- (a) Assume you observe the input and the output of the link. How do you find the MLE of ϵ ?
- (b) You are told that the inputs are i.i.d. bits that are equal to 1 with probability 0.6 and to 0 with probability 0.4. You observe n outputs. How do you calculate the MLE of ϵ .
- (c) The situation is as in the previous case, but you are told that ϵ has pdf 4-8x on [0,0.5). How do you calculate the MAP of ϵ given *n* outputs.

Problem 4. You are trying to detect whether voltage V_1 or voltage V_2 was sent over a channel with independent Gaussian noise $Z \sim N(V_3, \sigma^2)$. Assume that both voltages are equally likely to be sent.

- (a) Derive the MAP detector for this channel.
- (b) Using the Gaussian *Q*-function, determine the average error probability for the MAP detector.
- (c) Suppose that the average transmit energy is $\frac{V_1^2+V_2^2}{2}$ and that the average transmit energy is constrained such that it cannot be more than E. What voltage levels V_1, V_2 should you choose to meet this energy constraint but still minimize the average error probability?

Problem 5. Consider a hypothesis testing problem that if X = 0, you observe a sample of $N(\mu_0, \sigma^2)$, and if X = 1, you observe a sample of $N(\mu_1, \sigma^2)$. Find the Neyman-Pearson test for false alarm α , i.e. $\Pr(\hat{X} = 1 | X = 0) \leq \alpha$.