
EECS 127/227AT Optimization Models in Engineering UC Berkeley Spring 2023
Final

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

If you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution:

2. SID (3 pts)

When the exam starts, write your SID at the top of every page. No extra time will be given for this task.

3. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)

(a) (1 pts) What’s a movie you are looking forward to watching this summer?
Solution: Any answer is fine.

(b) (1 pts) If you could have any animal as a pet, what animal would you choose?
Solution: Any answer is fine.
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4. Convex Functions (7 pts)

(a) (3 pts) Prove that the function f : R++ → R given by f(x) .= log(1/x) is a strictly convex function,
where R++ is the set of strictly positive real numbers.

Solution: The domain R++ is convex. To show that f is convex we see that f(x) = − log(x) and compute
its Hessian ∇2f(x) = 1

x2 , which is strictly positive over R++.

(b) (4 pts) Is the function g : R++ → R given by g(x) .= max{(ax − b)2, log(1/x)} a convex function?
Justify your answer.

You may use the fact that the function f(x) .= log(1/x) is convex for x ∈ R++.

Solution: The domain R++ is convex. We know from part (a) that log(1/x) is a (strictly) convex function.
Since the Hessian ∇2

x(ax − b)2 = 2a2 ≥ 0, we know that the function x 7→ (ax − b)2 is convex. We know
that the maximum of convex functions is convex, so g is convex.
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5. Hyperplanes (7 pts)

(a) (3 pts) Give a hyperplane of the form H .= {x⃗ ∈ Rn | c⃗⊤(x⃗ − x⃗0) = 0} which goes through the point
(2, 3) and is orthogonal to the vector (1, 1). No justification is necessary.

Solution: One candidate hyperplane is

c⃗ =
[

1
1

]
, x⃗0 =

[
2
3

]
. (1)

(b) (4 pts) Let c⃗1 ̸= 0⃗ and c⃗2 ̸= 0⃗ be two vectors inRn. Define the two hyperplanes H1 = {x⃗ ∈ Rn | c⃗⊤
1 x⃗ = 0}

and H2 = {x⃗ ∈ Rn | c⃗⊤
2 x⃗ = 0} where c⃗⊤

1 c⃗2 = 0. Give any point x⃗⋆ in terms of c⃗1 and c⃗2 such that
c⃗⊤

1 x⃗⋆ > 0 and c⃗⊤
2 x⃗⋆ > 0.

HINT: Draw a picture of the two hyperplanes in 2D.

Solution: The point x⃗⋆ = c⃗1 + c⃗2 satisfies these two conditions. We have

c⃗⊤
1 x⃗⋆ = c⃗⊤

1 (c⃗1 + c⃗2) (2)

= ∥c⃗1∥2
2 + 0 (3)

> 0, for c⃗1 ̸= 0. (4)

We also have

c⃗⊤
2 x⃗⋆ = c⃗⊤

2 (c⃗1 + c⃗2) (5)

= 0 + ∥c⃗2∥2
2 (6)

> 0, for c⃗2 ̸= 0. (7)
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6. Newton’s Method (6 pts)

(a) (3 pts) Let f : Rn → R be a twice-differentiable function that we are attempting to minimize using
Newton’s method. Suppose that at the kth iterate x⃗k ∈ Rn we have ∇2f(x⃗k) = αkIn, where αk > 0 is
some positive constant and In ∈ Rn×n is the identity matrix. Write the Newton’s method step for x⃗k+1

in terms of x⃗k, αk, and ∇f(x⃗k).
Solution: Since [αkIn]−1 = 1

αk
In, the Newton’s method step is

x⃗k+1 = x⃗k − 1
αk

∇f(x⃗k). (8)

(b) (3 pts) Now suppose we are trying to minimize the same function f via gradient descent. Write the
gradient descent step for x⃗k+1 in terms of x⃗k and ∇f(x⃗k), with some arbitrary step size ηk > 0 at
time k. For what value of ηk is the gradient descent update equation the same as the Newton’s update
equation from part (a)?
Solution: The gradient descent step is

x⃗k+1 = x⃗k − ηk∇f(x⃗k). (9)

The two descent steps are equivalent when ηk = 1
αk

.
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7. Solving a Quadratic Program (10 pts)

Consider the quadratic program

p⋆ = min
x⃗∈R3

(
x⃗⊤Mx⃗ − 2⃗b⊤x⃗

)
, (10)

where the matrix M ∈ R3×3 is defined as follows

M = 4

1
0
0


1

0
0


⊤

+ 3

0
0
1


0

0
1


⊤

. (11)

(a) (5 pts) If b⃗ =

1
2
3

, then is p⋆ = −∞ or is it finite? You do not need to calculate p⋆. Justify your answer.

Solution: p⋆ = −∞ because the matrix M is not full rank and the vector b⃗ is not in the range of M .

Additional justification The nullspace of matrix M is span


0

1
0


 and b⃗ is not orthogonal to the

nullspace. We can take x⃗ = α

0
1
0

 for some fixed α so that x⃗⊤Mx⃗ = 0 and b⃗⊤x⃗ = 2α. Hence taking

α → ∞, we get that the objective value tends to −∞.

(b) (5 pts) If b⃗ =

1
0
1

, then is p⋆ = −∞ or is it finite? You do not need to calculate p⋆. Justify your answer.

Solution: p⋆ is finite since b⃗ is in the range of matrix M .

Additional justification The solution to the optimization problem can be obtained by setting the gradient
to zero:

∇
(

x⃗⊤Mx⃗ − 2⃗b⊤x⃗
)

= 2(Mx⃗ − b⃗) = 0 (12)

So x⃗⋆ is the set of solutions of Mx⃗ = b⃗, which take the form

x⃗⋆ =


1
4
0
1
3

+ α

0
1
0

 , for some α ∈ R. (13)

The corresponding value p⋆ is

p⋆ = x⃗⋆⊤Mx⃗⋆ − 2⃗b⊤x⃗⋆ (14)

= b⃗⊤x⃗⋆ − 2⃗b⊤x⃗⋆ (15)

= −b⃗⊤x⃗ (16)

= −(1/3 + 1/4) = −1/7 (17)
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8. Quadratically Constrained Linear Program (16 pts)

Let c⃗, x⃗0 ∈ Rn where c⃗ ̸= 0⃗. Let Q ∈ Sn
++ be a symmetric positive definite matrix. Let ϵ > 0 be a positive

scalar. Consider the following optimization problem

p⋆ = min
x⃗

c⃗⊤x⃗ (18)

s.t.
1
2(x⃗ − x⃗0)⊤Q(x⃗ − x⃗0) ≤ ϵ.

(a) (4 pts) Is this problem convex? Does strong duality hold here? Justify your answer.

Solution: Since Q ≻ 0, it follows that 1
2 (x⃗ − x⃗0)⊤Q(x⃗ − x⃗0) − ϵ is a convex function so the feasible set

is convex. Moreover, the objective function is linear (thus convex) so the optimization problem is convex.
The feasible set contains points in its relative interior (for example, x⃗ = x⃗0) so Slater’s condition implies
that strong duality holds for the given problem.

(b) (8 pts) Show that the dual function associated with the primal problem in (18) is

g(λ) =

−∞ if λ = 0

c⃗⊤x⃗0 − 1
2λ c⃗⊤Q−1c⃗ − λϵ if λ > 0,

(19)

for λ ≥ 0, where λ is the dual variable associated with the quadratic inequality constraint.

Solution:
The Lagrangian associated with the problem is

L(x⃗, λ) = c⃗⊤x⃗ + λ

(
1
2(x⃗ − x⃗0)⊤Q(x⃗ − x⃗0) − ϵ

)
(20)

Thus, the dual function is given by

g(λ⃗) = min
x⃗

L(x⃗, λ). (21)

For λ = 0:

L(x⃗, 0) = c⃗⊤x⃗, (22)

and

g(0) = min
x⃗

L(x⃗, 0) (23)

= min
x⃗

c⃗⊤x⃗ (24)

= −∞. (25)

For λ > 0: note that L(x⃗, λ) is a strictly convex so the minimum is obtained when

∇x⃗L(x⃗⋆(λ), λ) = 0 (26)

c⃗ + λQ(x⃗⋆(λ) − x⃗0) = 0 (27)

=⇒ x⃗⋆(λ) = x⃗0 − 1
λ

Q−1c⃗. (28)

Thus,

g(λ⃗) = L(x⃗⋆(λ), λ) (29)
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= c⃗⊤x⃗⋆(λ) + λ

(
1
2(x⃗⋆(λ) − x⃗0)⊤Q(x⃗⋆(λ) − x⃗0) − ϵ

)
(30)

= c⃗⊤
(

x⃗0 − 1
λ

Q−1c⃗

)
+ λ

(
1
2(x⃗0 − 1

λ
Q−1c⃗ − x⃗0)⊤Q(x⃗0 − 1

λ
Q−1c⃗ − x⃗0) − ϵ

)
(31)

= c⃗⊤x⃗0 − 1
λ

c⃗⊤Q−1c⃗ + λ(1
2( 1

λ
Q−1c⃗)⊤Q( 1

λ
Q−1c⃗) − ϵ) (32)

= c⃗⊤x⃗0 − 1
λ

c⃗⊤Q−1c⃗ + 1
2λ

c⃗⊤Q−1c⃗ − λϵ (33)

= c⃗⊤x⃗0 − 1
2λ

c⃗⊤Q−1c⃗ − λϵ. (34)

(c) (4 pts) Consider the dual problem of the primal problem in (18):

d⋆ = max
λ≥0

g(λ), (35)

where

g(λ) =

−∞ if λ = 0

c⃗⊤x⃗0 − 1
2λ c⃗⊤Q−1c⃗ − λϵ if λ > 0.

(19)

Find the optimal dual variable λ⋆.
Solution: We know a priori that the dual problem

max
λ≥0

c⃗⊤x⃗0 −
(

1
2λ

c⃗⊤Q−1c⃗ + λϵ

)
= max

λ≥0
−
(

1
2λ

c⃗⊤Q−1c⃗ + λϵ

)
(36)

is convex. We can solve it by setting the derivative d
dλ g(λ⋆) = 0. That is,

d

dλ

(
1

2λ
c⃗⊤Q−1c⃗ + λϵ

) ∣∣∣
λ=λ⋆

= 0 (37)

=⇒ − 1
2(λ⋆)2 c⃗⊤Q−1c⃗ + ϵ = 0 (38)

=⇒ λ⋆ =
√

c⃗⊤Q−1c⃗

2ϵ
> 0 since c⃗ ̸= 0. (39)
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9. Support Vector Regression (11 pts)

Let ϵ > 0. Let X ∈ Rn×d be a data matrix and y⃗ ∈ Rn be a label vector, such that

X =


x⃗⊤

1
...

x⃗⊤
n

 , y⃗ =


y1
...

yn

 , (40)

where x⃗⊤
i are the rows of X and yi are the entries of y⃗. Consider the problem

min
w⃗∈Rd

1
2 ∥w⃗∥2

2 (41)

s.t. ∥Xw⃗ − y⃗∥∞ ≤ ϵ.

(a) (5 pts) Rewrite this problem as an equivalent quadratic program (i.e. with quadratic objective function
and finitely many linear constraints).
Solution: We have

∥Xw⃗ − y⃗∥∞ ≤ ϵ (42)

⇐⇒ − ϵ⃗1 ≤ Xw⃗ − y⃗ ≤ ϵ⃗1. (43)

Thus the problem becomes

p⋆ = min
w⃗∈Rd

1
2 ∥w⃗∥2

2 (44)

s.t. Xw⃗ − y⃗ ≤ ϵ⃗1

Xw⃗ − y⃗ ≥ −ϵ⃗1.

(b) (6 pts) Now consider the problem:

min
w⃗∈Rd

{
1
2 ∥w⃗∥2

2 + λ

n∑
i=1

max{0,
∣∣x⃗⊤

i w⃗ − yi

∣∣− ϵ}

}
. (45)

Rewrite this problem as an equivalent quadratic program (i.e. with quadratic objective function and
finitely many linear constraints).
HINT: Introduce a new variable z⃗.
Solution: We have

max{0,
∣∣x⃗⊤

i w⃗ − yi

∣∣− ϵ} = max{0, max{x⃗⊤
i w⃗ − yi, −(x⃗⊤

i w⃗ − yi)} − ϵ} (46)

= max{0, max{x⃗⊤
i w⃗ − yi − ϵ, −(x⃗⊤

i w⃗ − yi) − ϵ}} (47)

= max{0, x⃗⊤
i w⃗ − yi − ϵ, −(x⃗⊤

i w⃗ − yi) − ϵ}. (48)

Use slack variable zi which is ≥ all three terms. Thus we have the following QP formulation

min
w⃗∈Rd

z⃗∈Rn

1
2 ∥w⃗∥2

2 + λ1⃗⊤z⃗ (49)

s.t. z⃗ ≥ Xw⃗ − y⃗ − ϵ⃗1

z⃗ ≥ −(Xw⃗ − y⃗) − ϵ⃗1

z⃗ ≥ 0⃗.
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10. Candidate Solution of Linear Programs (12 pts)

(a) (5 pts) Consider the linear program

min
x⃗∈R2

[
2
1

]⊤

x⃗ (50)

s.t. x⃗ ≥ 0 (51)[
1 1
1 0

]
x⃗ ≥

[
2
1

]
. (52)

i. Sketch and shade the feasible region of the above optimization problem in the graph provided
below.

ii. Use your sketch to identify the optimal solution x⃗⋆ and write it in the box below.

−3 −2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5 3

−3

−2.5

−2

−1.5

−1

−0.5

0.5

1

1.5

2

2.5

3

x1

x2

Solution:

The feasible region is the area shaded in black. The optimal solution is achieved at x⃗⋆ =
[

1
1

]
.

© UCB EECS 127/227AT, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 9



EECS 127/227AT Final
Print your student ID:

2023-05-15 13:56:55-07:00

(b) (7 pts) Let A ∈ Sn be a symmetric matrix and c⃗ ̸= 0⃗ be a vector in Rn. Consider the linear program

min
x⃗∈Rn

c⃗⊤x⃗ (53)

s.t. Ax⃗ ≥ c⃗ (54)

x⃗ ≥ 0. (55)

Consider a point x⃗⋆ > 0 such that Ax⃗⋆ = c⃗. Prove that x⃗⋆ is a minimizer of the above optimization
problem.
HINT: Let λ⃗ be the dual variables associated with the constraints Ax⃗ ≥ c⃗ and µ⃗ be the dual variables
associated with the constraints x⃗ ≥ 0. Use the KKT conditions.

Solution: Write the Lagrangian associated with the problem

L(x⃗, λ⃗, ν⃗) = c⃗⊤x⃗ + λ⃗⊤(c − Ax⃗) − ν⃗⊤x⃗ (56)

And compute its gradient:

∇x⃗L(x⃗, λ⃗, ν⃗) = c⃗ − Aλ⃗ − ν⃗ (57)

Now we write the KKT conditions

(Lagrangian stationarity) c⃗ − Aλ⃗ − ν⃗ = 0 (58)

(Complementary slackness) λ⃗⊤(c − Ax⃗) = 0 (59)

(Complementary slackness) ν⃗⊤x⃗ = 0 (60)

(Primal feasibility) Ax⃗ ≥ c⃗ and x⃗ ≥ 0 (61)

(Dual feasibility) λ⃗ ≥ 0 and ν⃗ ≥ 0 (62)

The solution x⃗⋆ satisfies the complementary slackness condition λ⃗⊤(c−Ax⃗⋆) = 0 for any λ⃗ and the primal
feasibility conditions. Further, since x⃗⋆ is not necessarily zero then we need ν⃗⋆ = 0⃗ for the complimentary
slackness condition ν⃗⊤x⃗ = 0 to hold. Finally we note that setting λ⃗⋆ = x⃗⋆ satisfies the Lagrangian
stationarity and the dual feasibility conditions.

So the candidate solution x⃗⋆ satisfies KKT conditions. Since KKT conditions are sufficient for optimality
in linear programs then x⃗⋆ is an optimal solution of the optimization problem.
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11. Inscribed Box in a Polyhedron (8 pts)

Let P := {x⃗ ∈ Rn | Ax⃗ ≤ b⃗} be a bounded polyhedron with matrix A ∈ Rm×n and vector and b⃗ ∈ Rm such
that

A =


a⃗⊤

1
...

a⃗⊤
m

 , b⃗ =


b1
...

bm

 , (63)

where a⃗⊤
i are the rows of A and bi are the entries of b⃗. In this problem, we wish to find the maximal radius box

B(x⃗0, r) = {x⃗0 + ru⃗ | ∥u⃗∥∞ ≤ 1}, (64)

such that B(x⃗0, r) ⊆ P . In other words, we want to solve

max
x⃗0,r

r (65)

s.t. B(x⃗0, r) ⊆ P. (66)

Express this problem as a linear program with at most m constraints. Justify your answer.

HINT: Recall the ℓ1—ℓ∞ duality:
∥v⃗∥1 = max

u⃗ : ∥u⃗∥∞≤1
u⃗⊤v⃗. (67)

Solution: Given the definition of the box:

B(x⃗0, r) = {x⃗0 + ru⃗ | ∥u⃗∥∞ ≤ 1}, (68)

we can express the the constraint B(x⃗0, r) ⊆ P as

A(x⃗0 + ru⃗) ≤ b⃗ ∀u⃗ : ∥u⃗∥∞ ≤ 1. (69)

Conditioning on each element of the vector and using the maximum operator, we can equivalently express the above
constraints as

max
∥u⃗∥∞≤1

{a⃗⊤
i x⃗0 + ra⃗⊤

i u⃗} ≤ bi, ∀i. (70)

Invoking ℓ1–ℓ∞ duality, this condition can be expressed as

a⃗⊤
i x⃗0 + r∥a⃗i∥1 ≤ bi, ∀i. (71)

Putting this all together, we can now write our program with m constraints

max
x⃗0,r

r (72)

s.t. a⃗⊤
i x⃗0 + r∥a⃗i∥1 ≤ bi ∀i. (73)

This is a linear program since the objective is affine and each constraint is affine. (Since A is a constant, we can treat
∥a⃗i∥1 as a constant.)

© UCB EECS 127/227AT, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 11



EECS 127/227AT Final
Print your student ID:

2023-05-15 13:56:55-07:00

12. Gambler’s Destiny (16 pts)

Aekus and Aditya notice that their local casino is offering great odds for betting on a marathon with n athletes.
They have c > 0 dollars with which they can place bets. For each athlete i, they can bet bi dollars. If athlete i

wins they receive biri > 0 dollars and receive nothing for all other athletes. Athlete i wins with probability pi.
Exactly one athlete wins each race.

(a) (10 pts) Suppose Aekus and Aditya wish to maximize their expected profit after one bet in which they can
bet up to c dollars. Formally, they want to solve the optimization problem:

min
b1,...,bn

−

(
n∑

i=1
pibiri +

(
c −

n∑
i=1

bi

))
(74)

s.t.
n∑

i=1
bi ≤ c,

bi ≥ 0 ∀i.

Write the Lagrangian and KKT conditions for (74) where λ is the dual variable corresponding to
the constraint

∑n
i=1 bi ≤ c and µi is the dual variable corresponding to the constraint bi ≥ 0. Then,

show that for the primal and dual optimizers b⋆
i , µ⋆

i , and λ⋆, the following relations hold:

i. if for any athlete j we have that pjrj > 1, then
∑n

i=1 b⋆
i = c.

ii. if for any athlete j we have that pjrj < 1, then b⋆
j = 0.

iii. if piri > pjrj , then µ⋆
j > µ⋆

i .

Solution: The Lagrangian can be written as

L(⃗b, λ, µ⃗) = −
n∑

i=1
bi(piri − 1) + c + λ(

n∑
i=1

bi − c) −
n∑

i=1
µibi.

The KKT conditions say that:

i. Stationarity: 1 − piri + λ⋆ − µ⋆
i = 0 ∀i.

ii. Primal Feasibility:
∑n

i=1 b⋆
i ≤ c and b⋆

i ≥ 0 ∀i.

iii. Dual Feasibility: λ⋆ ≥ 0 and µ⋆ ≥ 0 ∀i.

iv. Complementary Slackness: λ(
∑n

i=1 b⋆
i − c) = 0 and µ⋆

i b⋆
i = 0 ∀i.

Now, because the problem is a feasible linear program (and thus the problem is convex and Slater’s condition
holds), the KKT conditions are necessary and sufficient for optimality. (We only need necessary conditions
in this case, i.e., (⃗b⋆, µ⃗⋆, λ⃗⋆) are optimal =⇒ they satisfy KKT.) We now show the three conditions:

i. if pjrj > 1, then from stationarity:

0 = 1 − pjrj + λ⋆ − µ⋆
j (75)

< λ⋆ − µ⋆
j (76)

≤ λ⋆ (77)

Hence, λ⋆ > 0. Thus, by complementary slackness,
∑n

i=1 b⋆
i = c.

ii. if pjrj < 1, from from Stationarity:

0 = 1 − pjrj + λ⋆ − µ⋆
j (78)
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> λ⋆ − µ⋆
j (79)

≥ −µ⋆
j (80)

Hence, µ⋆
j > 0. Thus, by complementary slackness, b⋆

j = 0.

iii. The stationarity condition tells us that 1 − piri + λ⋆ − µ⋆
i = 1 − pjrj + λ⋆ − µ⋆

j . If piri > pjrj then
µ⋆

j > µ⋆
i .

(b) (6 pts) Use these relations to argue that if there exists athlete j such that pjrj > 1 and pjrj > piri for
all other athletes i ̸= j, then b⋆

j = c. In other words, Aekus and Aditya should allocate all their money to
the most profitable bet in expectation, if one exists.

Solution: From the previous part, we know that µ⋆
j < µ⋆

i for any i ̸= j and
∑n

i=1 b⋆
i = c. This in turn

implies that there exists some k such that b⋆
k > 0. By complementary slackness, we have that µ⋆

k = 0, but
since µ⋆

j ≥ 0, we must have that µ⋆
j = 0 and j = k. Now for all i ̸= j, µ⋆

i > 0 so b⋆
i = 0. This implies that∑n

i=1 b⋆
i = b⋆

j = c.
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13. Conjugate Gradient Method (39 pts)

In this problem we explore a new descent method, called the conjugate gradient method1, to solve the problem
Ax⃗ = b⃗ where A ∈ Sn

++ is a symmetric positive definite matrix, x⃗ ∈ Rn, and b⃗ ∈ Rn.

(a) (5 pts) Consider a set of vectors {u⃗1, . . . , u⃗k}, all of which are in Rn. Suppose that for some v⃗ ∈ Rn we
have that v⃗⊤Au⃗i = 0 for all 1 ≤ i ≤ k. Show that v⃗⊤Aw⃗ = 0 for any vector w⃗ ∈ span(u⃗1, . . . , u⃗k).
Solution: We can express any vector w⃗ ∈ span{u⃗1, . . . , u⃗k} as w⃗ = α1u⃗1 + α2u⃗2 + . . . + αku⃗k. Hence,

v⃗⊤Aw⃗ = α1v⃗⊤u⃗1 + α1v⃗⊤u⃗2 + . . . + v⃗⊤u⃗k (81)

= 0. (82)

So v⃗ is conjugate in A with any vector w⃗ ∈ span{u⃗1, . . . , u⃗k}.

(b) (5 pts) Let v⃗ ∈ Rn and w⃗ ∈ Rn with v⃗ ̸= 0⃗ and w⃗ ̸= 0⃗. Show that if v⃗ and w⃗ are such that v⃗⊤Aw⃗ = 0,
they must be linearly independent.
Solution: Suppose v⃗ and w⃗ are linearly dependent. Then, v⃗ = αw⃗ for α ̸= 0, so v⃗⊤Aw⃗ = α(w⃗⊤Aw⃗) ̸= 0
since A ≻ 0, which contradicts the claim that v⃗ and w⃗ are conjugate in A. Thus, if v⃗ and w⃗ are conjugate
in A, they must be linearly independent.

(c) (5 pts) Recall that A ∈ Sn
++ is a symmetric positive definite matrix. Suppose {u⃗1, . . . , u⃗n} are a set of

vectors in Rn such that u⃗⊤
i Au⃗j = 0 for all i, j where i ̸= j. Consider the matrix,

U =
[
u⃗1 u⃗2 . . . u⃗n

]
. (83)

Show that rank
(
U⊤AU

)
= n.

This implies that U has full rank (you do not need to show this), and hence {u⃗1, . . . , u⃗n} forms a basis for
Rn. We call this a conjugate basis in A for Rn.

Solution:

U⊤AU =


u⃗⊤

1 Au⃗1 u⃗⊤
1 Au⃗2 . . . u⃗⊤

1 Au⃗n

u⃗⊤
2 Au⃗1 u⃗⊤

2 Au⃗2 . . . u⃗⊤
2 Au⃗n

...
. . .

...
u⃗⊤

n Au⃗1 u⃗⊤
n Au⃗2 . . . u⃗⊤

n Au⃗n

 =


u⃗⊤

1 Au⃗1 0 . . . 0
0 u⃗⊤

2 Au⃗2 . . . 0
...

. . .
...

0 0 . . . u⃗⊤
n Au⃗n

 (84)

Since A is PD we have u⃗⊤
i Au⃗i > 0, so all the diagonal entries of the diagonal matrix U⊤AU are non-zero.

Thus rank
(
U⊤AU

)
= n.

(d) (7 pts) Recall that A ∈ Sn
++ is a symmetric positive definite matrix, x⃗ ∈ Rn, and b⃗ ∈ Rn. Consider

x⃗⋆ =
n∑

i=1

u⃗⊤
i b⃗

u⃗⊤
i Au⃗i

u⃗i, (85)

where {u⃗1, . . . , u⃗n} form a conjugate basis in A for Rn (i.e. u⃗⊤
i Au⃗j = 0 for all i, j where i ̸= j) as defined

in part (c). Show that x⃗⋆ is a solution to Ax⃗ = b⃗. Show your work.
HINT: For any vectors c⃗ ∈ Rn and d⃗ ∈ Rn and any basis {z⃗1, . . . , z⃗n} of Rn,

c⃗ = d⃗ ⇐⇒ for all 1 ≤ i ≤ n, we have z⃗⊤
i c⃗ = z⃗⊤

i d⃗. (86)

1Two vectors v⃗ and w⃗ are "conjugate in A" if v⃗⊤Aw⃗ = 0, and such pairs of vectors are useful in the algorithm, giving it the name.
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Solution: Iff x⃗⋆ is a solution, then Ax⃗⋆ = b⃗.

Ax⃗⋆ =
n∑

i=1

u⃗⊤
i b⃗

u⃗⊤
i Au⃗i

Au⃗i (87)

We check that Ax⃗⋆ = b⃗ using the hint on our conjugate basis {u⃗1, . . . , u⃗n}:

u⃗⊤
i Ax⃗⋆ = u⃗⊤

i b⃗

u⃗⊤
i Au⃗i

u⃗⊤
i Au⃗i (88)

= u⃗⊤
i b⃗ (89)

Hence, Ax⃗⋆ = b⃗

(e) (9 pts) Recall that A ∈ Sn
++ is a symmetric positive definite matrix, x⃗ ∈ Rn, and b⃗ ∈ Rn. Consider a

conjugate basis in A given by {u⃗1, · · · , u⃗n}. This implies that u⃗⊤
i Au⃗j = 0 for all i, j where i ̸= j. Then

the (k + 1)-th iterate of conjugate gradient descent, x⃗k+1, is calculated as:

x⃗k+1 =
k∑

i=1

u⃗⊤
i r⃗i

u⃗⊤
i Au⃗i

u⃗i, (90)

where r⃗i = b⃗ − Ax⃗i. Recall from part (d) that

x⃗⋆ =
n∑

i=1

u⃗⊤
i b⃗

u⃗⊤
i Au⃗i

u⃗i. (91)

Show that x⃗n+1 = x⃗⋆. This means that the conjugate gradient method converges to the solution of Ax⃗ = b⃗

in n iterations.
HINT: Prove and use the fact that u⃗⊤

k r⃗k = u⃗⊤
k b⃗ for every 1 ≤ k ≤ n.

HINT: Use part (a).

Solution: First we prove that u⃗⊤
k r⃗k = u⃗⊤

k b⃗ for every 1 ≤ k ≤ n:

u⃗⊤
k r⃗k = u⃗⊤

k b⃗ − u⃗⊤
k Ax⃗k (92)

Since x⃗k ∈ span(u⃗1, . . . , u⃗k−1), by part (a), u⃗⊤
k Ax⃗k = 0. Hence, we have that u⃗⊤

k r⃗k = u⃗⊤
k b⃗. Now, for

the main claim, we express x⃗n+1 in summation form:

x⃗n+1 =
n∑

i=1

u⃗⊤
i r⃗i

u⃗⊤
i Au⃗i

u⃗i (93)

=
n∑

i=1

u⃗⊤
i b

u⃗⊤
i Au⃗i

u⃗i (94)

= x⃗⋆. (95)

(f) (8 pts) Recall that A ∈ Sn
++ is a symmetric positive definite matrix, x⃗ ∈ Rn, and b⃗ ∈ Rn. Consider

f(x⃗) = 1
2 x⃗⊤Ax⃗ − b⃗⊤x⃗. Note that the conjugate gradient iterates in (90) can be recursively expressed as

x⃗k+1 = x⃗k + u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

u⃗k, (96)
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where r⃗k = b⃗ − Ax⃗k.

Show that for all 1 ≤ k ≤ n we have that f(x⃗k+1) ≤ f(x⃗k). Thus, if we use the conjugate gradient
method to minimize the the function f(x⃗), the objective function will be non-increasing in every iteration.

HINT: Use the first order condition of convexity and part (a).

HINT: Use the fact that u⃗⊤
k r⃗k = u⃗⊤

k b⃗ for every 1 ≤ k ≤ n.

Solution: f(x) is a convex function, so we can use the first order condition of convexity. Writing the taylor
expansion around xk+1:

f(x⃗k) ≥ f(x⃗k+1) + ∇xf(x⃗k+1)⊤(x⃗k − x⃗k+1) (97)

= f(x⃗k+1) −
(

Ax⃗k+1 − b⃗
)⊤
(

u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

u⃗k

)
(98)

= f(x⃗k+1) −
(

A

(
x⃗k + u⃗⊤

k r⃗k

u⃗⊤
k Au⃗k

u⃗k

)
− b⃗

)⊤(
u⃗⊤

k r⃗k

u⃗⊤
k Au⃗k

u⃗k

)
(99)

= f(x⃗k+1) −
(

u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

)(
x⃗⊤

k Au⃗k + u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

u⃗⊤
k Au⃗k − b⃗⊤u⃗k

)
(100)

= f(x⃗k+1) −
(

u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

)(
x⃗⊤

k Au⃗k + u⃗⊤
k b⃗ − u⃗⊤

k b⃗
)

(101)

= f(x⃗k+1) −
(

u⃗⊤
k r⃗k

u⃗⊤
k Au⃗k

)
(x⃗⊤

k Au⃗k) (102)

= f(x⃗k+1). (103)

The last equality comes from part (a), since x⃗k ∈ span(u⃗1, . . . , u⃗k−1) so x⃗⊤
k Au⃗k = 0.
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