
EECS 127/227AT Optimization Models in Engineering UC Berkeley Fall 2023
Midterm

1. Honor Code (0 pts)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow the rules and do this
exam on my own.

IF YOU DO NOT COPY THE HONOR CODE AND SIGN YOUR NAME,
YOU WILL GET A 0 ON THE EXAM.

Solution:

2. SID (3 pts)

WHEN THE EXAM STARTS, WRITE YOUR SID AT THE TOP OF EVERY PAGE.
No extra time will be given for this task.

3. Favorites. Any answer, as long as you write it down, will be given full credit. (2 pts)

(a) (1 pts) What’s your favorite restaurant in Berkeley?
Solution: Any answer is fine.

(b) (1 pts) What’s some music that makes you happy?
Solution: Any answer is fine.
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4. Fun with Rank (12 pts)

Consider two matrices A ∈ Rm×n, B ∈ Rn×p. Let R(A) denote the range (i.e. column) space of the matrix A.

(a) (4 pts) Prove that R(AB) ⊆ R(A).
HINT: R(A) = {y⃗ : y⃗ = Ax⃗ for some x⃗ ∈ Rn}.

Solution: To solve this problem, it is sufficient to show that if y⃗ ∈ R(AB) then y⃗ ∈ R(A). Consider arbitrary y⃗ ∈ R(AB)
then there exists a z⃗ ∈ Rp such that y⃗ = ABz⃗. Define w⃗ ∈ Rn to be w⃗ = Bz⃗ ∈ Rn. Consequently, it holds that y⃗ = Aw⃗.
Therefore, we can conclude that y⃗ ∈ R(A).
Alternate Solution: An alternate solution is to note that we can represent the product matrix AB as

AB =
[
Ab⃗1 Ab⃗2 . . . Ab⃗p

]
,

where b⃗1, b⃗2, ..., b⃗p ∈ Rn are the columns of matrix B.

Recall that the range space of any matrix is the span of its columns. Therefore, R(AB) = span{Ab⃗1, A⃗b2, ..., Ab⃗p}. Since
Ab⃗i ∈ R(A) for every i ∈ {1, 2, .., p}, it holds that span{Ab⃗1, A⃗b2, ..., Ab⃗p} ⊆ R(A).
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(b) (4 pts) Prove that the following inequality holds:

0 ≤ rank(AB) ≤ min{rank(A), rank(B)}.

HINT: Recall that the rank of a matrix is the dimension of its range space.

HINT: You may use the result of part (a), and the fact that the rank of any matrix is the same as the rank of its transpose.

Solution: Recall that rank of any matrix is the dimension of the column space of that matrix. Therefore the rank has to be
always non-negative. This proves the lower bound in the problem.

To show the upper bound, it is enough to show that

rank(AB) ≤ rank(A); (P1)

rank(AB) ≤ rank(B). (P2)

First, we show (P1). This is a consequence of part (a) where we showed that R(AB) ⊆ R(A). Therefore

rank(AB) = dim(R(AB))

≤ dim(R(A)) = rank(A).

Next, we show (P2). Observe that

rank(AB) =
⋆

rank((AB)⊤)

= rank(B⊤A⊤)

≤
⋆⋆

rank(B⊤)

= rank(B),

where ⋆ is due to the fact that the rank of any matrix is same as the rank of its transpose and ⋆⋆ is due to (P1) by replacing A

with B⊤ and B with A⊤.
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(c) (4 pts) Give an example of matrices A, B such that rank(A) ̸= 0, rank(B) ̸= 0 but rank(AB) = 0, by finding suitable values
of x, y, z ∈ R in the following matrices:

A =
[

x y

0 0

]
, B =

[
1 0
1 z

]
.

Solution: In general, we can show that any solution with x + y = 0, x ̸= 0, z = 0 will work.

To do this, we multiply AB and get:

AB =
[

x y

0 0

] [
1 0
1 z

]
=

[
x + y yz

0 0

]
.

For this to have rank zero, we need x + y = 0 and yz = 0. Also, for A to have nonzero rank, we need at least one of x and y

to be nonzero.

For a specific example, consider the matrix

A =
[

1 −1
0 0

]
, B =

[
1 0
1 0

]
. (1)

Note that rank(A) = rank(B) = 1. But

AB =
[

0 0
0 0

]
.

Therefore, rank(AB) = 0. This corresponds to x = 1, y = −1, z = 0.
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5. Compact SVD (4 pts)

Consider two sets of orthonormal vectors {p⃗1, p⃗2} ⊂ Rm with p⃗1 ⊥ p⃗2, and {q⃗1, q⃗2} ⊂ Rn with q⃗1 ⊥ q⃗2. Let C ∈ Rm×n be
defined as

C = p⃗1q⃗⊤
1 + 1

2 p⃗2q⃗⊤
2 .

Write the compact SVD representation of matrix C in terms of p⃗1, p⃗2, q⃗1, q⃗2. That is, compute the SVD matrices Ur ∈ Rm×r, Σr ∈
Rr×r, Vr ∈ Rn×r, such that C = UrΣrV ⊤

r .

Solution: The compact SVD representation of matrix C in terms of p⃗1, p⃗2, q⃗1, q⃗2 with all three matrices is given by:

C =
[
p⃗1 p⃗2

] [
1 0
0 1

2

] [
q⃗⊤

1

q⃗⊤
2

]
.
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6. Exploring SVD, Least Squares, and Min-Norm (13 pts)

(a) (4 pts) Let A ∈ Rm×n be a matrix with rank r > 0. Consider the equation Ax⃗ = b⃗ for some b⃗ ∈ R(A). Show that
x⃗0 = VrΣ−1

r U⊤
r b⃗ is a solution to Ax⃗ = b⃗, where the compact SVD of A is A = UrΣrV ⊤

r . Show your work.

HINT: Remember that UrU⊤
r isn’t necessarily the identity, but UrU⊤

r d⃗ = d⃗ for any d⃗ ∈ R(Ur).
Solution: One way is to note that Ax⃗0 = UrΣrV ⊤

r VrΣ−1
r U⊤

r b⃗ = UrΣrΣ−1
r U⊤

r b⃗ = UrU⊤
r b⃗ = b⃗, where we used the fact

that Vr has orthonormal columns (so V ⊤
r Vr = I). The last step involves noting that the columns of Ur span R(A) and

b⃗ ∈ R(A), so b⃗ = Ur z⃗ for some z⃗. Then, UrU⊤
r b⃗ = UrU⊤

r Ur z⃗ = Ur z⃗ = b⃗.

Another way is to see that Ax = UrΣrV ⊤
r x = b. Left multiplying on both sides by U⊤

r and using the fact that U⊤
r Ur = I ,

we have ΣrV ⊤
r x = U⊤

r b. Once again left multiplying on both sides by Σ−1
r , we have V ⊤

r x = Σ−1
r U⊤

r b. Now, we substitute
x = x0 = VrΣ−1

r U⊤
r b to see that V ⊤

r VrΣ−1
r U⊤

r b = Σ−1
r U⊤

r b, and using V ⊤
r Vr = I shows the left hand side and right hand

side are equal.
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(b) (4 pts) Let A ∈ Rm×n be a matrix with m < n and rank r > 0, and let b⃗ ∈ R(A).
Also, let the compact and full SVD representations of A be, respectively,

A︸︷︷︸
m×n

= Ur︸︷︷︸
m×r

Σr︸︷︷︸
r×r

V ⊤
r︸︷︷︸

r×n

, A = [Ur Um−r]

[
Σr 0
0 0

]
︸ ︷︷ ︸

m×n

[
V ⊤

r

V ⊤
n−r

]
,

where Um−r ∈ Rr×(m−r), Vn−r ∈ Rr×(n−r). Show that VrΣ−1
r U⊤

r b⃗ + Vn−r z⃗ is a solution to Ax⃗ = b⃗, for any z⃗ ∈ Rn−r.

Solution: We plug in the given solution into Ax⃗, yielding A(VrΣ−1
r U⊤

r b⃗ + Vn−r z⃗) = AVrΣ−1
r U⊤

r b⃗ + AVn−r z⃗ =
UrΣrV ⊤

r VrΣ−1
r U⊤

r b⃗ + UrΣr(V ⊤
r Vn−r)z⃗. Then, we get UrΣrΣ−1

r U⊤
r b⃗ = UrU⊤

r b⃗ = b⃗, where we used the fact that Vr has
orthonormal columns (so V ⊤

r Vr = I , V ⊤
r Vn−r = 0).
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(c) (5 pts) Again, let A ∈ Rm×n be a matrix with m < n and rank r, and let b⃗ ∈ R(A).
Also, let the compact and full SVD representations of A be, respectively,

A︸︷︷︸
m×n

= Ur︸︷︷︸
m×r

Σr︸︷︷︸
r×r

V ⊤
r︸︷︷︸

r×n

, A = [Ur Um−r]

[
Σr 0
0 0

]
︸ ︷︷ ︸

m×n

[
V ⊤

r

V ⊤
n−r

]
,

where Um−r ∈ Rr×(m−r), Vn−r ∈ Rr×(n−r).

Let x⃗⋆ be the solution to the following problem:

x⃗⋆ = argmin
x⃗∈Rn

∥x⃗∥2
2 s.t. Ax⃗ = b⃗.

Find x⃗⋆ and justify your answer.

HINT: You may use the fact that {VrΣ−1
r U⊤

r b⃗ + Vn−r z⃗ : z⃗ ∈ Rn−r} is the set of all solutions to Ax⃗ = b⃗, without proof.

Solution: Using the fact in the hint, we reduce our problem to

min
z⃗∈Rn−r

∥VrΣ−1
r U⊤

r b⃗ + Vn−r z⃗∥2
2.

We can expand the inner product to get:

min
z⃗∈Rn−r

(
∥VrΣ−1

r U⊤
r b⃗∥2

2 + ∥Vn−r z⃗∥2
2 + 2(VrΣ−1

r U⊤
r b⃗)⊤(Vn−r z⃗)

)
.

Now, note that V is an orthogonal matrix (or that R(Vr) = R(A⊤), R(Vn−r) = N(A)), so R(Vr) ⊥ R(Vn−r). Thus, the last
term (an inner product between vectors in both of those subspaces) is zero, and we are left with minz⃗∈Rn−r (∥VrΣ−1

r U⊤
r b⃗∥2

2 +
∥Vn−r z⃗∥2

2).
The first term here is independent of z⃗, so this becomes ∥VrΣ−1

r U⊤
r b⃗∥2

2 + minz⃗∈Rn−r ∥Vn−r z⃗∥2
2. The second term is lower

bounded by 0, which is achieved when z⃗ = 0 (and this is the sole minimizer since Vn−r is full column rank). So, the answer
is p⋆ = ∥VrΣ−1

r U⊤
r b⃗∥2

2 and z⃗⋆ = 0, which corresponds to x⃗⋆ = VrΣ−1
r U⊤

r b⃗.
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7. Convexity (10 pts)

(a) (6 pts) Let f : Rn → R be defined as f(x⃗) = ∥Ax⃗∥2
2, where A ∈ Rm×n is a matrix. Is f a convex function? Prove or

disprove.

Solution:
One solution is to derive the Hessian 2AT A and note that it is symmetric positive semidefinite.
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(b) (4 pts) Let g, h : Rn → R be fixed twice-differentiable convex functions, and fix real numbers a, b > 0. Define f : Rn → R
by f(x⃗) = a · g(x⃗) + b · h(x⃗) for each x⃗ ∈ Rn. Prove f is a convex function.

Solution: Fix x⃗, y⃗ ∈ Rn, α ∈ [0, 1] arbitrarily. Then, appealing to the definition of convexity:

f(αx⃗ + (1 − α)y⃗)

= a · g(αx⃗ + (1 − α)y⃗) + b · h(αx⃗ + (1 − α)y⃗)

= aα · g(x⃗) + a(1 − α) · g(y⃗) + bα · h(x⃗) + b(1 − α) · h(y⃗)

≤ α ·
[
a · g(x⃗) + b · h(x⃗)

]
+ (1 − α) ·

[
a · g(y⃗) + b · h(y⃗)

]
= α · f(x⃗) + (1 − α) · f(y⃗).

Thus, f is a convex function.
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8. Vector Calculus (12 pts)

(a) (6 pts) Compute the gradient and Hessian with respect to x⃗ of the function f : Rn → R

f(x⃗) = 1 − (⃗a⊤x⃗)2, (2)

where a⃗ ∈ Rn.

Solution: By the chain rule,

∇f(x⃗) = −2(⃗a⊤x⃗)⃗a.

Furthermore, the Hessian is seen to be

∇2f(x⃗) = −2a⃗a⃗⊤.
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(b) (6 pts) Consider f(x⃗) =
∑m

i=1 log
(
bi − a⃗⊤

i x⃗
)
, where a⃗i ∈ Rn for i = 1, . . . , m, and b1, b2, . . . , bm > 0.

The domain of f is the set {x⃗ ∈ Rn | bi − a⃗⊤
i x⃗ > 0 for all i = 1, . . . , m}, which is assumed to be nonempty.

Compute the gradient of f(x⃗) with respect to x⃗.

HINT: Consider what happens in the special case of f(x) = log(b − x) for a scalar variable x ∈ R. Then, use the chain
rule.

HINT: Recall that
d

dx
log(x) = 1

x
.

Solution: The derivative of log(b − x) with respect to a scalar variable x is easily seen to be − 1
b−x . Now, using the chain

rule, the gradient of log
(
b − a⃗⊤x⃗

)
with respect to x⃗ is

− ∇(⃗a⊤x⃗)
b − a⃗⊤x⃗

= − a⃗

b − a⃗⊤x⃗
.

Hence, summing the gradients for each term, we get:

∇f(x⃗) = −
m∑

i=1

a⃗i

bi − a⃗⊤
i x⃗

.
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9. Best Approximations (24 pts)

We start by recalling the Eckart-Young Theorem: Consider any square matrix C ∈ Rn×n and assume that we can write
its full singular value decomposition as C = UΣV ⊤ where Σ is the n × n diagonal matrix with distinct diagonal entries
σ1 > σ2 > · · · > σn > 0. Then, for 0 ≤ k ≤ n, the Eckart-Young Theorem for Frobenius norm states that

Ck = UkΣkV ⊤
k = argmin

B∈Rn×n

rank(B)≤k

∥C − B∥F

where Uk ∈ Rn×k is the matrix consisting of the first k columns of U , Vk ∈ Rn×k is the matrix consisting of the first k columns
of V , and Σk is the k × k diagonal matrix with the top-k singular values σ1 > · · · > σk as its diagonal entries.

(a) (8 pts) Now, consider any square matrix C ∈ Rn×n and let Ck ∈ Rn×n denote its best rank-k approximation in the Frobenius
norm. Then, for any orthonormal matrix W ∈ Rn×n, show that

WCkW ⊤ = argmin
B∈Rn×n

rank(B)≤k

∥WCW ⊤ − B∥F .

Solution:
Using the fact that the Frobenius norm is invariant under orthogonal transformations, we have ∥B−WCW ⊤∥F = ∥W ⊤BW −
C∥F . Therefore, we can write

min
B∈Rn×n

rank(B)≤k

∥B − WCW ⊤∥F = min
B∈Rn×n

rank(B)≤k

∥W ⊤BW − C∥F .

Next, we show that {W ⊤BW : B ∈ Rn×n, rank(B) ≤ k} = {Z ∈ Rn×n : rank(Z) ≤ k}. For any B ∈ Rn×n such that
rank(B) ≤ k, Z = W ⊤BW satisfies rank(Z) ≤ k. On the other hand, for any Z ∈ Rn×n such that rank(Z) ≤ k, there
exists B = WZW ⊤ that satisfies rank(B) ≤ k and W ⊤BW = W ⊤WZW ⊤W = Z because W is an orthonormal matrix.
Therefore,

min
B∈Rn×n

rank(B)≤k

∥W ⊤BW − C∥F = min
Z∈Rn×n

rank(Z)≤k

∥Z − C∥F

= ∥Ck − C∥F .

Lastly, noting that ∥WCkW ⊤ − WCW ⊤∥F = ∥W (Ck − C)W ⊤∥F = ∥Ck − C∥F , we can write

∥WCkW ⊤ − WCW ⊤∥F = min
B∈Rn×n

rank(B)≤k

∥B − WCW ⊤∥F .

Since rank(WCkW ⊤) ≤ k, we conclude that WCkW ⊤ is a minimizer of the given optimization problem.
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For the remainder of this problem, we consider a square matrix A ∈ Rn×n and assume A has full rank. Using Gram-Schmidt
Orthonormalization (GSO), we can write the matrix A as

A = QR (3)

where Q ∈ Rn×n is an orthonormal matrix and R ∈ Rn×n is an upper triangular matrix.

(b) (4 pts) Find the best rank-n approximation to AA⊤ in the Frobenius norm. Justify your answer.

Solution: AA⊤ is the best rank-n approximation since it already has rank n.
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(c) (6 pts) Recall that A ∈ Rn×n is a square matrix with full rank, and we can write the matrix A as

A = QR (4)

where Q ∈ Rn×n is an orthonormal matrix and R ∈ Rn×n is an upper triangular matrix.

Assume that R = diag(r1, r2, . . . , rn) ∈ Rn×n is a diagonal matrix with

|r1| > |r2| > · · · > |rn|,

and all r1, r2, . . . , rn are real numbers. Let k < n. Then, show that the best rank-k approximation to AA⊤ in the Frobenius
norm is QSQ⊤, where S is a diagonal matrix defined as

S = diag(r2
1, . . . , r2

k, 0, . . . , 0) ∈ Rn×n.

Solution: We can write AA⊤ = QRR⊤Q⊤. Note that Q is an orthonormal matrix and RR⊤ = diag(r2
1, r2

2, . . . , r2
n) is

a diagonal matrix. Therefore, AA⊤ = QRR⊤Q⊤ forms an SVD for AA⊤. Then, the result follows by the Eckart-Young
Theorem.
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(d) (6 pts) Recall that A ∈ Rn×n is a square matrix with full rank, and we can write the matrix A as

A = QR (5)

where Q ∈ Rn×n is an orthonormal matrix and R ∈ Rn×n is an upper triangular matrix.

Now, we no longer assume that R is diagonal. Let k < n and assume that the best rank-k approximation to RR⊤ ∈ Rn×n

in the Frobenius norm is given by G ∈ Rn×n. Then, using the result of part (a), show that the best rank-k approximation to
AA⊤ in the Frobenius norm is given by QGQ⊤.

Solution: We can write AA⊤ = QRR⊤Q⊤. We use part (a) with W = Q and C = RR⊤. As a result,

QGQ⊤ = argmin
B∈Rn×n

rank(B)≤k

∥B − QRR⊤Q⊤∥F .

Therefore, the best rank-k approximation to AA⊤ in the Frobenius norm is given by QGQ⊤.
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