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EECS 127/227AT Optimization Models in Engineering
Spring 2020 Midterm

This exam has a total of 114 points. However, a score of 100 on 114 will be considered
a perfect score, so 14 points on the exam are bonus.

1. Convexity (12 points)

State whether the following functions/sets are convex and justify your answer. Answers without
justification will receive no credit.

(a) (4 points) Function f(~x) =
[
x1 x2

] [−1 0
0 0

] [
x1
x2

]
.

Solution:

Not a convex function because the Hessian matrix is not positive semi-definite.

(b) (4 points) Set S = {(~x, y) | ‖A~x−~b‖22 ≤ y}. Hint: Consider the epigraph of a function. Other
proofs may also work.

Solution: Convex set because the epigraph of a convex function is convex.

(c) (4 points) Function f(~x) = max~b

[
~b>A~b+ ~x>~b

]
, where A is a fixed arbitrary matrix. Hint:

Note that the maximization is over ~b.

Solution: Convex function because the point-wise maximum of convex functions (in this
case affine functions) in ~x is convex.

2. Gradient descent (10 points)

Consider the function f : Rn → R, where

f(~x) =
1

4
‖~x‖42 .

Let ~x∗
.
= arg min

~x
f(~x).

Recall that the gradient descent update equation for minimizing f is given by

~xt+1 = ~xt − η∇f(~xt),

where η > 0 is the step size.

(a) (2 points) Find ~x∗. You need not show any work for this subpart.

Solution: f(~x) = 1
4 ‖~x‖

4
2 ≥ 0.

Also, f(~0) = 0. Thus, ~x∗ = ~0.

(b) (8 points) Suppose ‖~x0‖2 = c 6= 0. Find the range of η (in terms of c) such that
gradient descent converges to ~x∗. Justify your answer.
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Hint: If you are having trouble solving this part for general dimension n, solve it for n = 1
for partial credit.

Solution: Using chain rule, we can compute the gradient of f to get,

∇f(~xt) =
1

4
.2 ‖~xt‖22∇(‖~xt‖22)

= ‖~xt‖22 ~xt.

Using this along with part (a) and the gradient step,

|~xt+1 − ~x∗| =
∣∣∣~xt − η ‖~xt‖22 ~xt − 0

∣∣∣
= |~xt − 0|

∣∣∣(1− η ‖~xt‖22)∣∣∣ .
To guarantee convergence to ~x∗ we require for all t,∣∣∣(1− η ‖~xt‖22)∣∣∣ < 1

=⇒ 0 < η <
2

‖~xt‖22
.

But observing that if
∣∣∣(1− η ‖~xt‖22)∣∣∣ < 1 then |~xt+1| < |~xt| so the lowest upper bound for η

will be for t = 0. Thus, we need,

0 < η <
2

‖x0‖22
.

or equivalently,

0 < η <
2

c2
.
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3. PCA (12 points)

In this problem, we will find the principal components of data points on a regularly spaced grid.1

Consider a set S of n = 15 data points that lie at each integer node of a 5× 3 grid:

S =

{
~x =

[
x1
x2

]
∈ R2

∣∣∣∣ x1 ∈ {−2,−1, 0, 1, 2}, x2 ∈ {−1, 0, 1}
}
.

A plot of these points is shown in Fig. ??.

x1

x2

0

Figure 1: Point data.

Note that the empirical covariance matrix of these data points is given by

C =

[
2 0
0 2

3

]
.

(a) (6 points) Recall that for data with empirical covariance matrix C, the variance σ2(~u) along
any unit vector ~u is given by

σ2(~u) = ~u>C~u.

The data’s first principal component ~u1 is the unit vector direction that maximizes variance,
i.e.,

~u1 = argmax
‖~u‖2=1

σ2(~u).

Compute both ~u1 and σ2(~u1). Show your work.

Solution: The first principal component ~u1 is the eigenvector corresponding to the largest

eigenvalue of C, so ~u1 = ~e1 =
[
1 0

]>
, and σ2(~u1) = ~u>1 C~u1 = 2. The plot of ~u1 is shown in

Fig. ??.

(b) (6 points) Let ~xi for i = 1, · · · , 15 represent the elements of set S. Suppose we transform
every point ~x ∈ S by multiplying by an arbitrary orthonormal matrix W to generate new
data points ~zi = W~xi, where i = 1, . . . , 15 indexes over every element of S. Let ~v1 denote

1You may find this scenario contrived, but it’s actually based on a real research problem encountered by one of
your GSIs when analyzing point cloud data from a robot’s sensor. To figure out where the robot should place its
gripper along a beam to pick it up, they used PCA!
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x1

x2

~u1

0

Figure 2: First principal component ~u1.

the first principal component of the transformed data and let ~v2 denote its second principal
component. Find ~v1 and ~v2 in terms of ~u1, ~u2, and W .
Hint: It may be useful to find the new empirical covariance of this transformed data in terms
of C and W .

Solution: We first calculate the transformed data’s covariance matrix CW :

CW =
1

n

n∑
i=1

~zi~z
>
i

=
1

n

n∑
i=1

W~xi~x
>
i W

>

= W

[
1

n

n∑
i=1

~xi~x
>
i

]
W>

= WCW>.

We now wish to calculate first principal component v1:

~v1 = argmax
‖~v‖2=1

~v>CW~v

= argmax
‖~v‖2=1

~v>WCW>~v

= argmax
‖W>~v‖

2
=1

~v>WCW>~v

where the third line follows because multiplication by an orthonormal matrix does not change
the norm of a vector. Defining ~y

.
= W>~v (and thus ~y1

.
= W>~v1), we can write

~y1 = argmax
‖~y‖2=1

~y>C~y,

which is exactly equivalent to finding the first principal component of the untransformed data,
so ~y1 = ~u1. Thus, ~v1 = W~y1 = W~u1. The second transformed principal component must be
orthogonal to the first, so ~v2 = W~u2.
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4. All I need is Q (22 points)

Consider a partially known matrix A ∈ R3×2 given by

A =

? 1
? 1
? 1

 ,
where question marks denote unknown entries of A. We can write the compact QR decomposition
of A in terms of Q1 ∈ R3×2 and R1 ∈ R2×2 as

A = Q1R1 =

1 q12
0 q22
0 q23

[? r12
0 r22

]
. (1)

for some unknown entry ‘?’ and entries r12, r22, q12, q22 and q23, which you will calculate below.
Remember that the columns of Q1 are orthonormal. Note that the ‘?’ entries of A and R1 are
unknown and will remain unknown; you are NOT required to compute them.

(a) (5 points) Suppose r22 > 0. Compute r12, r22, q12, q22 and q23. Show all your work.

Solution:

Using the Gram Schmidt procedure we have,

r12 =
[
1 1 1

] 1
0
0


= 1.

Denoting ~q =

q12q22
q23

 and by using the fact that ~q must be unit-norm and that r22 > 0 we have,

r22~q =

1
1
1

− r12
1

0
0

 ,

which gives us r22 =
√

2 and ~q =

 0
1√
2
1√
2

.

(b) (12 points) Suppose we can write the full QR decomposition of A as

A = QR =
[
Q1 Q2

] [R1

0

]
, (2)

where Q1 and R1 are as defined in Equation (??). Consider the least squares problem

p∗ = min
~x

∥∥∥A~x−~b∥∥∥2
2

(3)

for A given in Equation (??) and some ~b ∈ R3. Consider the following two possible ways of
rewriting this least squares problem in terms of Q1, Q2, and R1:
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Strategy 1:∥∥∥~b−A~x∥∥∥2
2

(I)
=
∥∥∥Q>~b−Q>A~x∥∥∥2

2

=
∥∥∥Q>1~b−R1~x

∥∥∥2
2

+
∥∥∥Q>2 b∥∥∥2

2
.

Strategy 2:∥∥∥~b−A~x∥∥∥2
2

=
∥∥∥~b−Q1R1~x

∥∥∥2
2

(II)
=
∥∥∥Q>1~b−Q>1 Q1R1~x

∥∥∥2
2

(III)
=
∥∥∥Q>1~b−R1~x

∥∥∥2
2
.

Determine whether the following labeled steps in the reformulations above are
correct or incorrect and justify your answer. When evaluating the correctness of an
equality, consider only that specific equality’s correctness — i.e., ignore all earlier steps.

i. Equality (I):
∥∥∥~b−A~x∥∥∥2

2

(I)
=
∥∥∥Q>~b−Q>A~x∥∥∥2

2

ii. Equality (II):
∥∥∥~b−Q1R1~x

∥∥∥2
2

(II)
=
∥∥∥Q>1~b−Q>1 Q1R1~x

∥∥∥2
2

iii. Equality (III):
∥∥∥Q>1~b−Q>1 Q1R1~x

∥∥∥2
2

(III)
=
∥∥∥Q>1~b−R1~x

∥∥∥2
2
.

Solution:

Equality (I) is CORRECT. Since Q is an orthogonal matrix we have QQ> = I. Thus,∥∥∥~b−A~x∥∥∥2
2

= (~b−A~x)>(~b−A~x)

= (~b−A~x)>QQ>(~b−A~x)

=
∥∥∥Q>(~b−A~x)

∥∥∥2
2

Equality (II) is INCORRECT. We can try to apply same approach as before but now a
crucial difference is that Q1 is NOT an orthogonal matrix. In fact Q1Q

>
1 cannot be full rank

since rank(Q1) = 2 < 3, thus it cannot be I.

Equality (III) is CORRECT. Even though Q1 is not an orthogonal matrix, its columns
are orthonormal thus Q>1 Q1 = I.

(c) (5 points) Now consider a different matrix A = QR, unrelated to the matrix A in
previous parts. Here, let

Q =

1 0 0
0 0 1
0 1 0

 ,
R =

[
R1

0

]
,

where R ∈ R3×2 and R1 ∈ R2×2 is a completely unknown invertible upper triangular matrix.
Let

~b =

1
2
3

 .
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Again consider the least squares optimization problem:

p∗ = min
~x

∥∥∥A~x−~b∥∥∥2
2
.

Find the optimal value p∗. Your answer should be a real number; it should NOT be an
expression involving A, Q, R, R1, or ~b. Solution: Using Equation (??) from the correct
solution in the previous part, we have

p∗ =
∥∥∥Q>2~b∥∥∥2

2

=

[0 1 0
] 1

2
3

2

= 4.

Further, ~x∗ = R−11 Q>1
~b. Thus,

~y∗ = Q1R1~x
∗ = Q1Q

>
1
~b =

1 0 0
0 0 0
0 0 1

1
2
3

 =

1
0
3


.
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5. Subspace projection (18 points)

Consider a set of points ~z1, . . . , ~zn ∈ Rd. The first principal component of the data, ~w∗, is the
direction of the line that minimizes the sum of the squared distances between the points and their
projections on ~w∗, i.e.,

~w∗ = argmin
‖~w‖2=1

n∑
i=1

‖~zi − 〈~w, ~zi〉~w‖2 .

In this problem, we generalize to finding the r-dimensional subspace (instead of a 1-dimensional
line) that minimizes the sum of the squared distances between the points ~zi and their projections
on the subspace. We assume that 1 ≤ r ≤ min(n, d). We can represent an r-dimensional subspace
by its orthonormal basis (~w1, . . . , ~wr), and we want to solve:

(~w∗1, . . . , ~w
∗
r) = argmin

‖~wi‖2=1
〈~wi, ~wj〉=0 ∀i 6=j

1≤i,j≤r

n∑
i=1

min
α1,...,αr

∥∥∥∥∥~zi −
r∑

k=1

αk ~wk

∥∥∥∥∥
2

. (4)

Note that the inner minimization projects the point ~zi onto the subspace defined by (~w1, . . . , ~wr).
The variables αk ∈ R. This means that for an arbitrary point ~z, this inner minimization

(α∗1, . . . , α
∗
r) = argmin

α1,...,αr

∥∥∥∥∥~z −
r∑

k=1

αk ~wk

∥∥∥∥∥
2

has minimizers α∗k = 〈~wk, ~z〉.

(a) (6 points) With the following definition of matrices Z and W :

Z =

 ↑ . . . ↑
~z1 . . . ~zn
↓ . . . ↓

 , W =

 ↑ . . . ↑
~w1 . . . ~wr
↓ . . . ↓

 ,
show that we can rewrite the optimization problem in Equation (??) as:

(~w∗1, . . . , ~w
∗
r) = argmin

‖~wi‖2=1
〈~wi, ~wj〉=0 ∀i 6=j

1≤i,j≤r

∥∥∥Z −WW>Z
∥∥∥2
F
. (5)

Solution:

First, consider a single vector ~z ∈ Rd. For this vector, consider the optimization problem:

min
α1,...,αr

∥∥∥∥∥~z −
r∑
i=1

αi ~wi

∥∥∥∥∥
2

2

.

We first expand the term inside the minimization problem as follows:

∥∥∥∥∥~z −
r∑
i=1

αi ~wi

∥∥∥∥∥
2

2

= ‖~z‖22 +

∥∥∥∥∥
r∑
i=1

αi ~wi

∥∥∥∥∥
2

2

− 2〈
r∑
i=1

αi ~wi, ~z〉 = ‖~z‖22 +

r∑
i=1

r∑
j=1

αiαj〈~wi, ~wj〉 − 2
r∑
i=1

αi〈~wi, ~z〉

= ‖~z‖22 +

r∑
i=1

(α2
i − 2αi〈~wi, ~z〉)
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where for the final equality, we have used the fact that 〈~wi, ~wj〉 = 0 for i 6= j and ‖~wi‖ = 1 for
all i. By taking derivatives, we see that the optimal value for αi is 〈~wi, ~z〉. From this, we can
conclude that for a fixed vector, ~z, we get:

min
α1,...,αr

∥∥∥∥∥~z −
r∑
i=1

αi ~wi

∥∥∥∥∥
2

=

∥∥∥∥∥~z −
r∑
i=1

〈~wi, ~z〉~wi

∥∥∥∥∥
2

. (6)

In this question you the optimizers α∗j were given and it was sufficient to plug those in to
arrive at this step. Now, observe that for a single vector, ~z, we have:

WW>~z = W

〈~w1, ~z〉
...

〈~wr, ~z〉

 =
r∑
i=1

〈~wi, ~z〉~wi.

Therefore, we get using the fact that the squared Frobenius norm of a matrix is the sum of
the squared lengths of its columns:

∥∥∥Z −WW>Z
∥∥∥2
F

=

n∑
i=1

∥∥∥~zi −WW>~zi

∥∥∥2 =

n∑
i=1

∥∥∥∥∥∥~zi −
r∑
j=1

〈~zi, ~wj〉~wj

∥∥∥∥∥∥
2

.

From Equation ??, we conclude that the above expression is equivalent to ??.

Next, we will solve the optimization problem in Equation (??) using the SVD of Z.

(b) (6 points) Let σi refer to the ith largest singular value of Z, and l = min(n, d). First show
that,

min
‖~wi‖2=1

〈~wi, ~wj〉=0 ∀i 6=j
1≤i,j≤r

∥∥∥Z −WW>Z
∥∥∥2
F
≥

l∑
i=r+1

σ2i .

Solution:

Let Z = UΣV > =
∑l

i=1 σi~ui~v
>
i denote the SVD of Z and let Zr =

∑r
i=1 σi~ui~v

>
i . Note

that for any W ∈ Rd×r, WW>Z is a matrix of rank at most r. Therefore, we get from the
Eckart-Young theorem that:

min
‖~wi‖=1

〈~wi, ~wj〉=0 ∀i 6=j
1≤i,j≤r

∥∥∥Z −WW>Z
∥∥∥2
F
≥ ‖Z − Zr‖2F =

l∑
i=r+1

σ2i .

(c) (6 points) Again σi refers to the ith largest singular value of Z, and l = min(n, d). Show that,

min
‖~wi‖2=1

〈~wi, ~wj〉=0 ∀i 6=j
1≤i,j≤r

∥∥∥Z −WW>Z
∥∥∥2
F
≤

l∑
i=r+1

σ2i .

Hint: Find a W that achieves this upper bound.

Solution:



10

As before, let Z = UΣV > =
∑l

i=1 σi~ui~v
>
i denote the SVD of Z and Zr =

∑r
i=1 σi~ui~v

>
i . By

picking ~wi = ~ui for i ∈ [r] in (??), we get that:

min
‖~wi‖=1

〈~wi, ~wj〉=0 ∀i 6=j
1≤i,j≤r

∥∥∥Z −WW>Z
∥∥∥2
F
≤ ‖Z − Zr‖2F =

l∑
i=r+1

σ2i .

From the previous part and this result, we conclude that an optimal solution to ?? are the
top-r left singular vectors of Z which can be computed via the SVD of Z.
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6. Duality (36 points)

Consider the function

f(~x) = ~x>A~x− 2~b>~x.

First, we consider the unconstrained optimization problem

p∗ = min
~x∈Rn

f(~x) = min
~x∈Rn

~x>A~x− 2~b>~x (7)

for a real n× n symmetric matrix A ∈ Sn and ~b ∈ Rn. If the problem is unbounded below, then
we say p∗ = −∞. Let ~x∗ denote the minimizing argument of the optimization problem.

(a) (6 points) Suppose A � 0 (positive semidefinite) and ~b ∈ R(A). Let rank(A) = n. Find p∗.

Solution: If rank(A) = n, then A � 0, and therefore the objective is strictly convex. Setting
the gradient to 0 we obtain,

∇~xf(~x) = 2A~x− 2~b = 0

=⇒ A~x = ~b

=⇒ ~x∗ = A−1~b

Where in the last step, we used that fact that a full rank square matrix is invertible. Plugging
this back into our objective function we get,

f(~x∗) = (~b>(A−1)>)A(A−1~b)− 2~b>(A−1~b)

= ~b>(A>)−1���
AA−1~b− 2~b>A−1~b

= ~b>A−1~b− 2~b>A−1~b

p∗ = −~b>A−1~b

(b) (8 points) Suppose A � 0 (positive semidefinite) and ~b ∈ R(A) as before. Let A be rank-
deficient, i.e., rank(A) = r < n. Let A have the compact/thin and full SVD as follows, with
diagonal positive definite Λr ∈ Rr×r:

A = UrΛrU
>
r =

[
Ur U1

] [Λr 0
0 0

] [
U>r
U>1

]
.

Show that the minimizer ~x∗ of the optimization problem (??) is not unique by finding a
general form for the family of solutions for ~x∗ in terms of Ur, U1,Λr,~b.

Solution: Since A � 0, f(~x) is convex and we can attempt to find the minimizer by setting
the gradient to zero. Doing this we obtain,

A~x = b, (8)

as in the part (a) of this problem.
However, now this equation has infinite solutions since ~b lies in the range of A and A is rank-
deficient. Indeed we can add any vector from the (non-trivial) nullspace of A to any particular
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solution ~x0 of Equation (??) and get another solution.
By the Fundamental Theorem of Linear Algebra we have,

~x = Ur~α+ U1
~β

~b = Ur~γ,

where we used the fact that ~b ∈ R(A). Using this we obtain,

UrΛrU
>
r (Ur~α+ U1

~β) = Ur~γ

Since the columns of U1 and Ur are orthogonal to each other and because U>r Ur = I,Λr is
invertible we have,

UrΛrU
>
r Ur~α = Ur~γ

=⇒ ~α = Λ−1r ~γ

= Λ−1r U>r
~b.

Thus any solution to Equation (??) and hence a minimizer to the optimization problem (??)
can be written as,

~x∗ = UrΛ
−1
r U>r

~b+ U1
~β.

(c) (6 points) If A � 0 (A not positive semi-definite) show that p∗ = −∞ by finding ~v such that
f(α~v)→ −∞ as α→∞.

Solution: Since A � 0 there exists an eigenvalue, eigenvector pair (µ,~v) such that

~v>A~v = µ < 0.

Assuming without loss of generality that −2~b>~v ≤ 0 (If it is positive then multiply ~v by −1)
we can take ~x = α~v to obtain,

f(~x) = f(α~v) = α2~v>A~v + α(−2~b>~v),

which goes to −∞ as α goes to ∞ since ~v>A~v < 0 and −2~b>~v ≤ 0.

(d) (6 points) Suppose A � 0 (positive semidefinite) and ~b /∈ R(A). Find p∗. Justify your answer
mathematically.

Solution: First, note that since A is symmetric, we haveR(A) = R(A>). We have~b = ~v1+~v2
with ~v1 ∈ R(A) = R(A>) and ~v2 ∈ N (A) as Rn = R(A) ⊕ N (A) from the Fundamental
Theorem of Linear Algebra. We cannot have ~v2 = 0 as otherwise we’d get ~b = ~v1 ∈ R(A)
which is a contradiction. Now, let ~v = ~v2. We get from this:

f(α~v) = α2~v>A~v − 2α(~v1 + ~v2)
>~v2 = 0− 2α ‖~v2‖2

where we used the fact that ~v2 ∈ N (A) and ~v1 ∈ R(A). As α→∞, we get that f(α~v)→ −∞
from which we conclude that p∗ = −∞.

For parts ?? and ??, consider real n× n symmetric matrix A ∈ Sn and ~b ∈ Rn. Let rank(A) = r,
where 0 ≤ r ≤ n. Now we consider the constrained optimization problem

p∗ = min
~x∈Rn

~x>A~x− 2~b>~x (9)

s.t. ~x>~x ≥ 1.
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(e) (4 points) Write the Lagrangian L(~x, λ), where λ is the dual variable corresponding to the
inequality constraint.

Solution:

L(~x, λ) = ~x>A~x− 2~b>~x+ λ(1− ~x>~x)

= ~x>A~x− ~x>λ~x− 2~b>~x+ λ

= ~x>(A− λI)~x− 2~b>~x+ λ

(f) (6 points) For any matrix C ∈ Rn×n with rank(C) = r ≤ n and compact SVD

C = UrΛrV
>
r ,

we define the pseudoinverse as

C† = VrΛ
−1
r U>r .

We use the “dagger” operator to represent this. If ~d lies in the range of C, then a solution to
the equation C~x = ~d, can be written as ~x = C†~d, even when C is not full rank. Show that
the dual problem to the primal problem (??) can be written as,

d∗ = max
λ≥0

A−λI�0
~b∈R(A−λI)

−~b > (A− λI)†~b+ λ.

Hint: To show this, first argue that when the constraints are not satisfied min~x L(~x, λ) = −∞.
Then show that when the constraints are satisfied, min~x L(~x, λ) = −~b > (A− λI)†~b+ λ.

Solution:
g(λ) = min

~x
L(~x, λ) = min

~x
~x>(A− λI)~x− 2~b>~x+ λ

Drawing from parts (c) and (d), we can see that if A−λI � 0 or if A−λI � 0,~b /∈ R (A− λI),
then we can choose ~x to drive the Lagrangian to −∞.

If the constraints are satisfied, however, then we can proceed like in part (b) by taking the
gradient:

∇~xL = 2(A− λI)~x− 2~b = 0

(A− λI)~x = ~b

~x∗ = (A− λI)†~b

where in the last step, we used the fact that the PSD contraint on A−λI is satisfied and ~b lies
in the range of A− λI, so we can use the pseudoinverse and the gradient-zero point is indeed
the minimum.

Plugging this back into the Lagrangian, we get:

L(~x∗, λ) = ~b>((A− λI)†)>(A− λI)(A− λI)†~b− 2~b>(A− λI)†~b+ λ

= ~b>(A− λI)†(A− λI)(A− λI)†~b− 2~b>(A− λI)†~b+ λ

= ~b>(A− λI)†~b− 2~b>(A− λI)†~b+ λ

= −~b>(A− λI)†~b+ λ
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where we used the fact that (A− λI)† is symmetric and by properties of pseudo inverse,

(A− λI)†(A− λI)(A− λI)† = (A− λI)†.

Now, we have a full expression for our dual function:

g(λ) =

{
−b>(A− λI)†b+ λ if A− λI � 0, b ∈ R (A− λI)

−∞ else

The dual problem follows, as it is just a maximization of the dual function:

d∗ = max
λ≥0

g(λ)


