COLLEGE OF CHEMISTRY COURSE GUIDE (.../INDEX.HTML)

MAJORS (../MAJOR.HTML) LIST OF COURSES (COURSES.HTML)

RESOURCES (../RESOURCES/RESOURCE.HTML)

STUDENT LIFE (../STUDENTLIFE/ORGS.HTML)

MECHE 133 - MECHANICAL VIBRATIONS (3 UNITS)

(Taken from the UC Berkeley Course Guide (http://guide.berkeley.edu))

COURSE OVERVIEW

SUMMARY

An introduction to the theory of mechanical vibrations including topics of harmonic motion, resonance, transient and random excitation, applications of Fourier analysis and convolution methods. Multidegree of freedom discrete systems including principal mode, principal coordinates and Rayleigh's principle.

PREREQUISITES

104

TOPICS COVERED

Introduce basic aspects of vibrational analysis, considering both single and multi-degree-of-freedom systems. Discuss the use of exact and approximate methods in the analysis of complex systems. Familiarize students with the use of MATLAB as directed toward vibration problems.

- an ability to apply knowledge of mathematics, science, and engineering
- an ability to design and conduct experiments, as well as to analyze and interpret data

- an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- o an ability to identify, formulate, and solve engineering problems
- an understanding of professional and ethical responsibility
- an ability to communicate effectively
- a recognition of the need for, and an ability to engage in life-long learning
- a knowledge of contemporary issues
- an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Upon completion of the course students shall be able to: Derive the equations of motion for vibratory systems. Linearize nonlinear systems so as to allow a linear vibrational analysis. Compute the natural frequency (or frequencies) of vibratory systems and determine the system's modal response. Determine the overall response based upon the initial conditions and/or steady forcing input. Design a passive vibration absorber to ameliorate vibrations in a forced system.

WORKLOAD

TIME COMMITMENT

3 hours of lecture per week.

UC Berkeley Course Guide (http://guide.berkeley.edu)

f 💆 %

lang=en) students/peer-

advicina