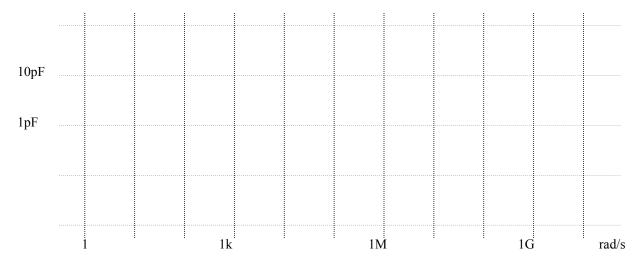
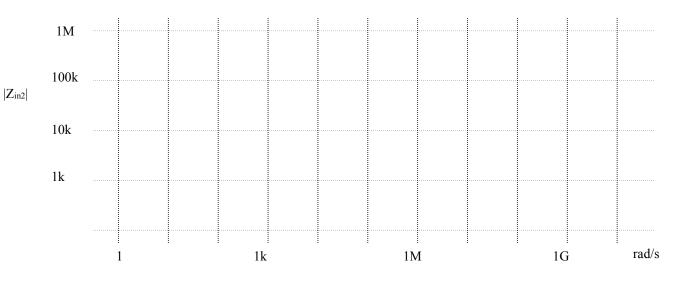

Homework Assignment #6

Due by online submission **Saturday** 3/14/2020 (late Sunday 9am)


- 1. Check out the datasheet for the <u>K2-W</u> tube op-amp. This op-amp, released in 1952, was the first production op-amp. It runs from a +/-300V supply, and has a bandwidth of 300kHz (or k-cycles/s, as they said back then the unit Hertz not having been established yet). There's a schematic on page 2. (You may want to draw the circuit with NMOS FETs instead of tubes to help you figure it out.) Pins 1, 2, and 6 on the bottom of the figure are V+, V-, and Vout. VR1 and VR2 are neon bulbs that provide a low impedance level shift of roughly 100V to center the output between the rails. Identify (circle and label)
 - a. input differential pair
 - b. diff-pair load resistor
 - c. tail current resistor.
 - d. Estimate the common mode gain and write it near the tail resistor.
 - e. Common-cathode gain stage (like CS or CE)
 - f. Cathode-follower output stage (like source-follower or emitter follower, CD, CC)
 - g. Miller-multiplied compensation capacitor from the output back to the input of the gain stage.
 - h. Bonus points if you can identify positive feedback in this amplifier, designed to increase the low-frequency gain (which ended up at about 20,000).
- 2. You have an opamp with a low-frequency gain of 1,000 and a single pole at 1 Mrad/s. Plot the location of the pole as a function of the feedback factor f from f=0 to 1. Now with f=0.1
 - a. Sketch the Bode plot of the closed-loop amplifier
 - b. What is the fractional gain error at low frequency?
 - c. What is the time constant of the step response? How does it compare to the open-loop time constant?
 - d. What is the unity gain frequency? How does it compare to the open-loop unity gain frequency?
- 3. You now have an opamp with a low-frequency gain of 1,000 and three poles at 1 Mrad/s.
 - a. Plot the location of the three poles as a function of the feedback factor f.
 - b. At the point where the poles cross the jw axis, annotate the plot with the value of f that gives this pole location.
 - c. Using this value for f, draw a Bode plot of the loop gain Af
- 4. A two-stage CMOS op-amp running at a particular bias point has the following parameters:
 - $G_{m1}=1mS$, $R_{o1}=1M\Omega$, $C_1=0.1pF$, $C_2=0pF$, $G_{m2}=1mS$, $R_{o1}=100k\Omega$, $C_2=10pF$.
 - a. Plot the magnitude and phase of the overall gain of this uncompensated amplifier.
 - b. Where are the poles of the uncompensated amplifier? Is it unity-gain stable?
- 5. For the same amplifier as above, we now add Cc=1pF. For this problem, you may ignore the RHP zero that this introduces. On the figures provided below,
 - a. Plot the magnitude of the second stage gain vs. frequency
 - b. Plot the magnitude of the input *capacitance* of the second stage (including C_c) vs. frequency
 - c. Plot the magnitude of the input *impedance* of the second stage vs. frequency. Add a line for the output impedance of the first stage.
 - d. Now plot the magnitude of the gain of the first stage on the top plot, and the magnitude of the overall gain of the amplifier
 - e. What are the compensated poles of the amplifier? If C_c were 0, where would the poles of the amplifier be?
- 6. For our standard 2 stage NMOS-input CMOS op-amp (e.g. lecture notes W6L1P4LL) once the device sizes are picked the resistor sets the overdrive voltage in all of the transistors. If $\mu_n C_{ox} = 200 \mu A/V^2, \ \mu_p C_{ox} = 100 \mu A/V^2, \ \lambda = 1/(10V), \ -V_{tp} = V_{tn} = 0.5V, \ V_{DD} = 2V, \ (W/L)_1 = 100, \ (W/L)_2 = 200, \ (W/L)_4 = 400, \ and \ (W/L)_{3.5.6} = 200$

- a. What is the reference current I_{ref} necessary for each of the following bias conditions? You may assume $\lambda=0$ to make these calculations easier
 - i. $v_{ov} = 100 \text{mV}$
 - ii. $v_{ov} = 500 \text{mV}$
 - iii. v_{ov} = -80mV (assuming that subthreshold and inversion currents are equal when vov=10mV, and n=1.5)
- b. What are the bias resistor values needed to produce the bias conditions above?
- c. looking back at HW3 problem 3, on a single plot sketch the gain and bandwidth of this amplifier vs. bias resistor value
- 7. You have three op-amp topologies: single stage active load (our standard 5 transistor opamp), the two stage version of that, and the current mirror op-amp. Each topology can either have NMOS or PMOS inputs, for six different op-amps. Sketch the output swing vs. common mode input range the PMOS versions.
- 8. Figure 6.15 in Razavi is a model of a two-stage amplifier. [For ee247A students: Fig 9.18 in GHLM, and equations 9.27 and 9.33 for parts b and c]
 - a. re-draw it using our terminology from class: G_{m1}, G_{m2}, R_{o1}, R_{o2}, C₁, C₂, C_c.
 - b. Equation 6.30 is the transfer function of the amplifier. Re-write that with our terminology.
 - c. Equation 6.39 is the simplified expression for the 2nd pole location, assuming the first pole is given by Miller-multiplied Cc.
 - i. Re-write that with our terminology
 - ii. Assuming that the 2^{nd} stage gain is much larger than 1, the Miller capacitance is all that matters in the compensated first stage pole $\omega_{p1,c}$, write the expression for the compensated second stage pole $\omega_{p2,c}$ in terms of only capacitors and the transconductance of the second stage.
 - iii. With those same assumptions, and ignoring any other poles and zeros, what is the constraint on transconductance and capacitance that insures a unity gain phase margin of at least 45?
- 9. [not graded] Estimate the output resistance of a CMOS differential amplifier with current mirror load without making the virtual ground assumption. You may assume that $g_m r_o \gg 1$ for all combinations of g_m and r_o . The following steps may help.
 - a. Estimate the impedance seen looking into the source of M1A
 - b. Estimate the impedance seen looking down from the source of M1B
 - c. Estimate the impedance seen looking into the drain of M1B
 - d. For the Ro calculation, estimate i_{d1B} as a function of vo.
 - e. The current in i_{d2B} is due to both the output resistance and the mirrored current. Estimate both parts.
 - f. Estimate the total output current io = $i_{d1B} + i_{d2B}$
 - g. Show that R_0 is equal to $(r_{o1B} \parallel r_{o2B})$. Magic!
- 10. [Not graded] A single-stage op-amp has a low frequency gain of 200 and a dominant pole at 10Mrad/sec.
 - a. Draw the s-plane with the real axis from -10^7 to 0, and the imaginary axis from 0 to 10^7 . Mark the pole location with an x, and draw a dot at 10^7 j.
 - b. Draw the vector from the pole to 10⁷j. Calculate the magnitude and phase of this vector.
 - c. Draw a dot at 10⁶j. Draw the vector from the pole to 10⁶j. Calculate the magnitude and phase of this vector.
 - d. Repeat parts a. and b., but with the imaginary axis from 0 to 10⁸ and the dot at 10⁸j.
 - e. Draw a Bode plot of the gain of your amplifier, with frequency running from 10⁵ to 10⁹rad/s. Use the straight-line approximations for the Bode plot, and then add dots showing the results of parts b, c, and d.
- 11. [not graded] For a standard 5 transistor CMOS differential amplifier show that the gain from a differential input to the (so called virtual ground!) tail voltage is 1/4. You can assume that $g_m r_o >> 1$ for all combinations of g_m and r_o . You can win bets with experienced IC designers with this knowledge!



magnitude of second stage input (Miller) capacitance

second stage input impedance, and $R_{\text{o}1}$

