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Lecture abstract

Topics covered in this presentation

I Controller design

I Controllability

I Observer design

I Observability
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12 Design via state space 12.1 Intro

Intro, [1, p. 664]

Concept
I Design via state space

I Can be applied to a wider class of systems than transform methods
I Systems with nonlinearities
I Multiple-input, multiple output (MIMO) systems
I Systems of higher order than 2

I We will focus on the application to linear systems
I Specify all CL poles

I Parameters for each CL pole
I Technique for finding these parameter values

I Cannot specify CL zero locations
I Sensitive to parameter changes
I Wide range of computational support

I Loss of graphic insight into a design problem
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12 Design via state space 12.2 Controller design

State-variable FB control, [1, p. 665]

Concept

I nth-order CL characteristic equation (CE)

det(sI �A) = sn + a
n�1s

n�1 + ...+ a1s+ a0 = 0

I There are n coe�cients whose values determine the n CL poles

I Introduce n adjustable parameters into the system and relate them to
the n coe�cients, so that we can place the n CL poles
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12 Design via state space 12.2 Controller design

State-variable FB control, [1, p. 666]

Concept
I Before, output-variable FB, now, state-variable FB

I Each state variable is fed back to the control, u, through a gain, k
i

I State-variable FB gain: �K

I CL system is plant with state-variable FB

ẋ = Ax+Bu

= Ax+B(�Kx+ r)

= (A�BK)x+Br

y = Cx
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12 Design via state space 12.2 Controller design

State-variable FB control, [1, p. 666]

Figure: Plant with state-variable FB
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12 Design via state space 12.2 Controller design

State-variable FB control, [1, p. 666]

Figure: State-space representation of a plant
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12 Design via state space 12.2 Controller design

Methodology, [1, p. 668]

Procedure

I Pole placement for plants in phase-variable (PV) form

1. Represent the plant in PV form

2. FB each PV to the input of the plant through a gain, k
i

3. Find the CE for the CL system

4. Decide upon all CL pole locations and determine equivalent CE

5. Equate like coe�cients of the CE and solve for k
i
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12 Design via state space 12.2 Controller design

State-variable FB control in PV form, [1, p. 668]

Concept

I Plant

A =

2

6664

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

�a0 �a1 �a2 . . . �a
n�1

3

7775
; B =

2

6664

0
0
...
1

3

7775
;

C =
⇥
c1 c2 . . . c

n

⇤

I Plant CE

det(sI �A) =

sn + a
n�1s

n�1 + . . .+ a1s+ a0 = 0
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12 Design via state space 12.2 Controller design

State-variable FB control in PV form, [1, p. 668]

Concept
I State-variable FB

u = �Kx; K =
⇥
k1 k2 . . . k

n

⇤

I CL system

A�BK =
2

6664

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

�(a0 + k1) �(a1 + k2) �(a2 + k3) . . . �(a
n�1 +K

n

)

3

7775

I CL system CE

det(sI � (A�BK)) =

sn + (a
n�1 + k

n

)sn�1 + . . .+ (a1 + k2)s+ (a0 + k1) = 0
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12 Design via state space 12.2 Controller design

State-variable FB control in PV form, [1, p. 669]

Concept

I Desired CL system CE

det(sI � (A�BK)) =

sn + d
n�1s

n�1 + . . .+ d1s+ d0 = 0

d
i

= a
i

+ k
i+1; i = 0, 1, 2, . . . , n� 1

I CL system TF
I Denominator polynomial: the CE
I Numerator polynomial: formed from the coe�cients of the output

coupling matrix, C, for systems written in PV form
I Same for plant and CL system
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12 Design via state space 12.2 Controller design

Example, [1, p. 669]

Example (Controller design for PV form)

I Problem: Design the PV FB gains to yield
I %OS = 9.5%
I T

s

= 0.74 seconds

I Solution: On the board
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12 Design via state space 12.3 Controllability

Definitions, [1, p. 672]

I Controllability: If an input to a system can be found that takes every
state variable from a desired initial state to a desired final state, the
system is said to be controllable; otherwise the system is
uncontrollable.

I Control variable, u, can be used to control the behavior of each state
variable in x

I Poles of the control system can be placed where we desire
I Determine, a priori, whether pole placement is a viable design

technique for a controller
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12 Design via state space 12.3 Controllability

Controllability by inspection, [1, p. 673]

Concept
I When the system matrix, A, is in diagonal or parallel form, it is

apparent whether or not the system is controllable
I A system with distinct (no repeat) eigenvalues and a diagonal system

matrix, A, is controllable if the input coupling matrix, B, does not
have any rows that are zero
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12 Design via state space 12.3 Controllability

The controllability matrix, [1, p. 674]

I In other forms, the existence of paths from the input to the state
variables is not a criterion for controllability since the equations are
not decoupled

I nth-order plant
ẋ = Ax+Bu

is completely controllable if the matrix

C
M

=
⇥
B AB . . . An�1B

⇤

is of rank n, where C
M

is called the controllability matrix
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12 Design via state space 12.3 Controllability

Example, [1, p. 675]

Example (Controllability via the controllability matrix)

I Problem: Determine if the system is controllable

A =

2

4
�1 1 0
0 �1 0
0 0 �2

3

5 ; B =

2

4
0
1
1

3

5

I Solution: On the board
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12 Design via state space 12.4 Alternative approaches to controller design

Alternative approaches to controller design, [1, p. 676]

Concept

I For systems not represented in PV form
I 2 approaches

I Matching coe�cients: Matching the coe�cients of

det(sI � (A�BK))

with coe�cients of the desired CE
I Same method used for systems in PV representation

I Transformation: Transforming the system to PV form, designing the
control FB gain, & transforming the designed system back to its
original state-variable representation
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – matching coe�cients, [1, p. 677]

Concept

I Matching the coe�cients of

det(sI � (A�BK))

with coe�cients of the desired CE
I Leads to di�cult calculations of the control gains, especially for

higher-order systems not represented with PVs
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12 Design via state space 12.4 Alternative approaches to controller design

Example, [1, p. 677]

Example (Controller design by matching coe�cients)

I Problem: Design state-variable control FB gain for the plant to yield
I %OS = 15%
I T

s

= 0.5 second

G(s) =
10

(s+ 1)(s+ 2)

I Solution: On the board
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – transformation, [1, p. 678]

Procedure

1. Transform the system to PV representation

2. Design the state-variable control FB gain

3. Transform the system in PV representation back to the original
representation
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – transformation, [1, p. 678]

Procedure

1. Transform the system to PV representation
I Plant not in PV representation

ż = Az +Bu

y = Cz

with controllability matrix

C
M

z

=
⇥
B AB A2B . . . An�1B

⇤
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – transformation, [1, p. 678]

Procedure

1. Transform the system to PV representation
I Assume the system can be transformed into the PV representation with

the transformation
z = Px

Transformed plant

ẋ = P�1APx+ P�1Bu

y = CPx

with controllability matrix

C
M

x

= P�1C
M

z

I Solving for P
P = C

M

z

C�1
M

x
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – transformation, [1, p. 678]

Procedure

2. Design the control FB
I Include both state-variable control FB and input

u = �K
x

x+ r

I Transformed plant with state-variable control FB

ẋ = (P�1AP � P�1BK
x

)x+ P�1Br

y = CPx

I Zeros of this CL system are determined from the polynomial formed
from the elements of CP
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12 Design via state space 12.4 Alternative approaches to controller design

Approach – transformation, [1, p. 679]

Procedure

3. Transform the system in PV representation back to the original
representation

I Plant not in PV representation with state-variable control FB

ż = (A�BK
x

P�1)z +Br

y = Cz

I State-variable control FB gain

K
z

= K
x

P�1

I Zeros of the CL TF are the same as the zeros of the uncompensated
plant
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12 Design via state space 12.4 Alternative approaches to controller design

Example, [1, p. 679]

Example (Controller design by transformation)

I Problem: Design state-variable control FB gain for the plant to yield
I %OS = 20.8%
I T

s

= 4 seconds

G(s) =
s+ 4

(s+ 1)(s+ 2)(s+ 5)

I Solution: On the board
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12 Design via state space 12.5 Observer design
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12 Design via state space 12.5 Observer design

Observer motivation, [1, p. 682]

Concept

I Controller design relies upon
access to the state variables for
FB through adjustable gains

I Estimate states can be fed to
the controller

I Observer: Estimator used to
calculate state variables that
are not accessible from the
plant

I Plant

ẋ = Ax+Bu

y = Cx

I Observer

˙̂x = Ax̂+Bu

ŷ = Cx̂

I Observer error

ė
x

= ẋ� ˙̂x = A(x� x̂)

y � ŷ = C(x� x̂) = Ce
x

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 32 / 58

12 Design via state space 12.5 Observer design

Observer motivation, [1, p. 683]

Concept

Figure: State-FB design using an OL
observer

Figure: State-FB design using a CL
observer
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12 Design via state space 12.5 Observer design

Observer motivation, [1, p. 683]

Concept

I Dynamics of the di↵erence between the actual & estimated states is
unforced, & if the plant is stable, this di↵erence, due to the
di↵erences in initial state vectors, ! 0

I Speed of convergence between the actual state & the estimated state
is the same as the TR of the plant since the CE of the observer error
is the same as the plant

I Convergence is too slow, ! speed up the observer and make its
response time much faster than that of the controlled CL system, !
the controller will receive the estimated states instantaneously

I Error between the outputs of the plant and the observer is fed back to
the derivatives of the observer’s states

I The system corrects to drive this error ! 0
I Design a desired TR into the observer that is much quicker than that

of the plant or controlled CL system
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12 Design via state space 12.5 Observer design

Observer motivation, [1, p. 683]

Concept

Figure: State-FB design using a CL observer exploded view showing FB
arrangement to reduce state-variable estimation error
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12 Design via state space 12.5 Observer design

Observer motivation, [1, p. 683]

Concept

I Observer canonical form yields an easy solution for the observer FB
gain

I Observer FB gain, L: Ensures the TR of the observer is faster than
the response of the controlled loop in order to yield a rapidly updated
estimate of the state vector
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12 Design via state space 12.5 Observer design

Design methodology, [1, p. 684]

Procedure

1. Find error system, i.e., state equations for error between actual state
vector & estimated state vector, x� x̂

˙̂x = Ax̂+Bu+ L(y � ŷ)

ŷ = Cx̂

2. Find CE for error system

3. Evaluate required observer FB gain, L, to meet rapid TR for observer

4. Select eigenvalues of observer to yield stability & desired TR that is
faster than controlled CL response
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12 Design via state space 12.6 Observability

Definitions, [1, p. 690]

I Observability: If the initial-state vector, x(t0), can be found from
inputs, u(t), and measurements, y(t), over a finite interval of time
from t0, the system is said to be observable; otherwise the system is
said to be unobservable.

I Knowledge of measured output variables, y, and control inputs, u(t),
can be used to observe the behavior of each state variable in x

I Poles of the observer system can be placed where we desire
I Determine, a priori, whether pole placement is a viable design

technique for an observer
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12 Design via state space 12.6 Observability

Observability by inspection, [1, p. 690]

Concept
I When the system matrix, A, is in diagonal or parallel form, it is

apparent whether or not the system is observable
I A system with distinct (no repeat) eigenvalues and a diagonal system

matrix, A, is observable if the output coupling matrix, C, does not
have any columns that are zero
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12 Design via state space 12.6 Observability

The observability matrix, [1, p. 691]

I In other forms, the existence of paths from the output to the state
variables is not a criterion for observability since the equations are not
decoupled

I nth-order plant

ẋ = Ax+Bu

y = Cx

is completely observable if the matrix

O
M

=

2

6664

C
CA
...

CAn�1

3

7775

is of rank n, where O
M

is called the observability matrix

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 41 / 58

12 Design via state space 12.6 Observability

Example, [1, p. 691]

Example (Observability via the observability matrix)

I Problem: Determine if the system is observable

A =

2

4
0 1 0
0 0 1
�4 �3 �2

3

5 ; B =

2

4
0
0
1

3

5 ; C =
⇥
0 5 1

⇤

I Solution: On the board
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12 Design via state space 12.6 Observability

Example, [1, p. 692]

Example (Unobservability via the observability matrix)

I Problem: Determine if the system is observable

A =


0 1
�5 �21

4

�
; B =


0
1

�
; C =

⇥
5 4

⇤

I Solution: On the board
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12 Design via state space 12.7 Alternative approaches to observer design

1 12 Design via state space
12.1 Introduction
12.2 Controller design
12.3 Controllability
12.4 Alternative approaches to controller design
12.5 Observer design
12.6 Observability
12.7 Alternative approaches to observer design
12.8 Steady-state error design via integral control

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 44 / 58

12 Design via state space 12.7 Alternative approaches to observer design

Alternative approaches to controller design, [1, p. 676]

Concept

I For systems not represented in observer canonical form
I 2 approaches

I Matching coe�cients: Matching the coe�cients of

det(sI � (A� LC))

with coe�cients of the desired CE
I Same method used for systems in PV representation

I Transformation: Transforming the system to observer canonical form,
designing the observer FB gain, & transforming the designed system
back to its original state-variable representation
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12 Design via state space 12.7 Alternative approaches to observer design

Approach - matching coe�cients, [1, p. 693]

Concept

I Matching the coe�cients of

det(sI � (A� LC))

with coe�cients of the desired CE
I Leads to di�cult calculations of the observer FB gain, especially for

higher-order systems not in PV representation
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12 Design via state space 12.7 Alternative approaches to observer design

Example, [1, p. 698]

Example (Observer design by matching coe�cients)

I Problem: Design an observer FB gain for the system in PV
representation with a TR described by

I ⇣ = 0.7
I !

n

= 100

G(s) =
407(s+ 0.916)

(s+ 1.27)(s+ 2.69)

I Solution: On the board
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12 Design via state space 12.7 Alternative approaches to observer design

Approach – transformation, [1, p. 695]

Procedure

1. Transform the system to PV representation

2. Design the observer FB gain

3. Transform the system in PV representation back to the original
representation
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12 Design via state space 12.7 Alternative approaches to observer design

Approach – transformation, [1, p. 695]

Procedure

1. Transform the system to PV representation
I Plant not in PV representation

ż = Az +Bu

y = Cz

with observability matrix

O
M

z

=

2

6664

C
CA
...

CAn�1

3

7775
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12 Design via state space 12.7 Alternative approaches to observer design

Approach – transformation, [1, p. 695]

Procedure

1. Transform the system to PV representation
I Assume the system can be transformed into the PV, x, representation

with the transformation
z = Px

Transformed plant

ẋ = P�1APx+ P�1Bu

y = CPx

with observability matrix

O
M

x

= O
M

z

P

I Solving for P
P = O�1

M

z

O
M

x
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12 Design via state space 12.7 Alternative approaches to observer design

Approach – transformation, [1, p. 695]

Procedure

2. Design the observer FB
I Transformed plant with FB gains

ė
x

= (P�1AP � L
x

CP )e
x

y � ŷ = CPe
x
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12 Design via state space 12.7 Alternative approaches to observer design

Approach – transformation, [1, p. 695]

Procedure

3. Transform the system in PV representation back to the original
representation

I Plant not in PV representation with observer FB gain

ė
z

= (A� PL
x

C)e
z

y � ŷ = Ce
z

I Observer FB gain
L
z

= PL
x
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12 Design via state space 12.7 Alternative approaches to observer design

Example, [1, p. 695]

Example (Observer design by transformation)

I Problem: Design an observer in cascade form

G(s) =
1

(s+ 1)(s+ 2)(s+ 5)

I Solution: On the board
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12 Design via state space 12.8 Steady-state error design via integral control
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12 Design via state space 12.8 Steady-state error design via integral control

Concepts, [1, p. 700]

Concept

I Design systems in state-space representation for steady-state error
I Error is fed forward to the controlled plant via an integrator

I Additional state variable

ẋ
N

= r � Cx

I Plant

ẋ = Ax+Bu

ẋ
N

= �Cx+ r

y = Cx

I Control FB

u = �Kx+K
e

x
N

= �
⇥
K �K

e

⇤  x
x
N

�
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12 Design via state space 12.8 Steady-state error design via integral control

Concepts, [1, p. 701]

Concept
I Error is fed forward to the controlled plant via an integrator

I Augmented representation


ẋ
ẋ
N

�
=


A�BK BK

e

�C 0

� 
x
x
N

�
+


B
0

�
u+


0
1

�
r

y =
⇥
C 0

⇤  x
x
N

�

I K and K
e

can be selected to yield the desired TR

I We have an additional pole to place

I Keep an eye on the CL zeros and their e↵ect on TR
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12 Design via state space 12.8 Steady-state error design via integral control

Example, [1, p. 701]

Example (Design of integral control)

I Problem:
a. Design a controller without integral control to yield

I %OS = 10%
I Ts = 0.5 second

Evaluate the steady-state error for a unit step
b. Repeat the design using integral control. Evaluate the steady-state

error for a unit step input.

I Solution: On the board
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12 Design via state space 12.8 Steady-state error design via integral control
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