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Lecture abstract

Topics covered in this presentation

I System variables: states, inputs, outputs, & measurements

I Linear independence

I State space representation

I Conversion between systems in time-, frequency-domain, TF, & state
space representations
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Chapter outline
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SS representation, [1, p. 119]

Procedure

1. System variables: Select a subset of all possible system variables as
states and determine inputs & outputs.

2. State di↵erential equations: Write n simultaneous, first-order DEs of
the states in terms of the states and inputs for an nth-order system.

3. Initial conditions: If we know the initial conditions of all the states at
t0 as well as the inputs for t � t0, we can solve the simultaneous DEs
for the states for t � t0.

4. Output-state relation equations: Write linear relations of the outputs
in terms of the states and inputs for t � t0.

5. State space (SS) representation: The state and output equations
represent a viable representation of the system.
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3 Modeling in the time domain 3.2 Some observations

Size of system states, inputs & outputs, [1, p. 122]

I States: Typically the minimum number of states required to describe
a system equals the order of the system DE. We can define more
states than the minimum set; however, within this minimal set the
states must be linearly independent (defined later).

I Inputs & outputs: Single-input, single-output (SISO) systems are a
unique case of general multiple-input, multiple-output (MIMO)
systems. The output and input of a SISO system are represented by
scalar quantities. The outputs and inputs of a MIMO system are
represented by vector quantities.
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3 Modeling in the time domain 3.2 Some observations

Motivational example, [1, p. 120]

Example (RLC system in SS representation)

A quick example to introduce the terminology
and concept before we generalize the definition
of SS representation.

1. System variables
I States

I
Current through the RLC loop, i(t)

I
Capacitor charge, q(t)

I Input
I

Voltage, v(t)
I Output

I
Inductor voltage, vL(t)
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Motivational example, [1, p. 120]

Example (RLC system in SS representation)

2. State di↵erential equations
I Kirchho↵’s voltage law

L

di(t)

dt

+Ri(t) +
1

C

Z
i(t)dt = v(t)

I Charge definition

i(t) =
dq(t)

dt

I Two simultaneous, first-order DEs

dq(t)

dt

= i(t)

di(t)

dt

= � 1

LC

q(t)� R

L

i(t) +
1

L

v(t)
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3 Modeling in the time domain 3.2 Some observations

Motivational example, [1, p. 120]

Example (RLC system in SS representation)

3. Initial conditions
I Assume we know the initial conditions of

the states at t0 and the input for t � t0
Figure: RLC system
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Motivational example, [1, p. 120]

Example (RLC system in SS representation)

4. Output-state relation equations

vL(t) = � 1

C

q(t)�Ri(t) + v(t)
Figure: RLC system
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Motivational example, [1, p. 120]

Example (RLC system in SS representation)

5. SS representation

x =


q(t)
i(t)

�
; u = v(t)

ẋ = Ax+Bu

A =


0 1

� 1
LC �R

L

�
; B =


0
1
L

�

y = Cx+Du

C =
⇥
� 1

C �R

⇤
; D = 1

Figure: RLC system
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Definitions, [1, p. 123]

I Linear combination: A linear combination of n variables, xi, for i = 1
to n, is given by the following sum, S

S = Knxn +Kn�1xn�1 + ...+K1x1

where each Ki is a constant.

I Linear independence: None of the variables can be written as a linear
combination of the others. Variables xi, for i = 1 to n, are said to be
linearly independent if their linear combination, S, equals zero only if
every Ki = 0 and no xi = 0 for all t > 0.
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3 Modeling in the time domain 3.3 The general state space representation

Definitions, [1, p. 123]

I System variable: Any variable that responds to an input or initial
condition in a system.

I State: The state variables are a non-unique set of linearly
independent system variables such that the values of the members of
the set at time t0 along with known inputs completely determine the
value of all system variables for all t > t0.

I State vector: A vector whose elements are the states.

I State space: The n-dimensional space whose axes are the states. A
trajectory can be thought of as being mapped out by the state vector,
x(t), for a range of t.
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3 Modeling in the time domain 3.3 The general state space representation

Equations, [1, p. 123]

I State equation: A set of n simultaneous, first-order DEs that
expresses the time derivatives of the n states of a system as linear
combinations of the states and inputs.

ẋ = Ax+Bu

x =

2

64
x1
...
xn

3

75 ;u =

2

64
u1
...

um

3

75 ;A =

2

64
a1,1 ... a1,n
...

. . .
...
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3

75 ;B =

2
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. . .
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3

75
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3 Modeling in the time domain 3.3 The general state space representation

Equations, [1, p. 123]

I Output equation: An equation that expresses the measured output
variables of a system as linear combinations of the states and inputs.

y = Cx+Du

y =

2

64
y1
...
yp

3

75 ;C =

2

64
c1,1 ... c1,n
...

. . .
...
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3

75 ;D =

2

64
d1,1 ... d1,m
...

. . .
...

dp,1 ... dp,m

3

75
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3 Modeling in the time domain 3.3 The general state space representation

Variables & their dimensions, [1, p. 123]

ẋ 2 Rn time derivative of state vector

x 2 Rn state vector

u 2 Rm control input vector

y 2 Rp measured output vector

A 2 Rn⇥n system matrix

B 2 Rm input matrix

C 2 Rp⇥n output matrix

D 2 Rp⇥m feedforward matrix
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Selecting the states, [1, p. 124]

State requirements

I The states must be linearly independent.

I A minimum number of states must be selected and must be su�cient
to describe completely the state of the system. Typically the number
required equals the sum of the orders of a set of DEs describing the
system.

If

I too few states are selected or

I a minimum number of states are selected and are linearly dependent,

it may be impossible to completely express state and output equations as
linear combinations of the states and inputs.
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Selecting the states, [1, p. 124]

Notes concerning adding states to the minimal set of linear independent
states

I Linear independent states: These additional linear independent states
are also decoupled, i.e., they are not required in order to solve for any
of the other linearly independent states or any other dependent
system variable.

I Linear dependent states: The dimension of the system matrix is
increased unnecessarily, adding di�culty to the solution of the state
vector [1, Ch. 4] and hindering the designer’s ability to use state
space methods for design [1, Ch. 12].
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Representing an electrical system, [1, p. 126]

Example (RLC system)

I Problem: Find a state-space
representation in vector-matrix
form if the states are the
capacitor voltage, vC , and the
inductor current, iL, and the
input is the applied voltage, v,
and the output is the resistor
current, iR

I Solution: On board

Figure: Electrical system
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3 Modeling in the time domain 3.4 Applying the state space representation

Representing a translational mechanical system, [1, p. 130]

Example (translational
inertia-spring-damper system)

I Problem: Find the state
equations in vector-matrix form
if the states are the positions,
x1 and x2, and the input is the
applied force, f

I Solution: On board

Figure: Translational mechanical
system
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3 Modeling in the time domain 3.5 Converting a TF to state space

Phase-variable representation, [1, p. 132]

Select a set of state variables, called phase variables, where each
subsequent state variable is defined to be the derivative of the previous
state variable.

d

n
y

dt
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+ an�1
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+ . . .+ a1

dy
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Phase-variable representation, [1, p. 132]
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Phase-variable representation, [1, p. 134]

Example (arbitrary system)

I Problem: Find the state-space
representation in vector-matrix
form for the transfer function
from R(s) to C(s)

I Solution: On board Figure: a. TF; b. equivalent block
diagram showing phase variables. Note:
y(t) = c(t).
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3 Modeling in the time domain 3.6 Converting from state space to a TF

Converting from SS to a TF, [1, p. 139]

State and output equations

ẋ = Ax+Bu

y = Cx+Du

Laplace transform assuming zero initial conditions

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

Transfer function matrix

T (s) =
Y (s)

U(s)
= C(sI �A)�1

B +D
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