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Lecture abstract

Topics covered in this presentation

I Stable, marginally stable, & unstable linear systems

I Relationship between pole locations and stability

I Routh-Hurwitz criterion

I Relationship between stability and eigenvalues
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Chapter outline
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6.5 Stability in state space
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6 Stability 6.1 Intro

Stability for LTI systems, [1, p. 302]

Total response of a system

c(t) = cforced(t) + cnatural(t)

Stability for LTI systems
I Natural response as t ! 1

I Stable: ! 0
I Unstable: Grows without bound
I Marginally stable: Neither decays nor grows but remains constant

I Total response (BIBO)
I Stable: Every bounded input yields a bounded output
I Unstable: Any bounded input yields an unbounded output

I Marginally stable: Some bounded inputs yield unstable outputs

I Stability =) only the forced response remains
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6 Stability 6.1 Intro

Stability for LTI systems, [1, p. 302]

Stability for LTI systems in terms of pole locations
I Closed-loop TF poles

I Stable: Only in LHP
I Unstable: At least 1 in RHP and/or multiplicity greater than 1 on the

imaginary axis
I Marginally stable: Only imaginary axis poles of multiplicity 1 and poles

in the LHP
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6 Stability 6.2 Routh-Hurwitz criterion

History interlude

Edward John Routh
I 1831 – 1907

I English mathematician

I 1876 – Proposed what became
the Routh-Hurwitz stability
criterion
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6 Stability 6.2 Routh-Hurwitz criterion

History interlude

Adolf Hurwitz
I 1859 – 1919

I German mathematician

I 1895 – Determined the
Routh-Hurwitz stability
criterion
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6 Stability 6.2 Routh-Hurwitz criterion

Some definitions, [1, p. 305]

Routh-Hurwitz stability criterion

I Stability information without
the need to solve for the CL
system poles

I How many CL system poles are
in the LHP, RHP, and on the
imaginary axis

2 steps

1. Generate Routh table

2. Interpret the Routh table
Figure: 1905 FIFA World Cup –
Germany vs. England

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 10 / 30

6 Stability 6.2 Routh-Hurwitz criterion

Generating a basic Routh table, [1, p. 306]

Procedure

1. Label rows with powers of s
from the highest power of the
denominator of the CLTF down
to s

0

2. In the 1st row, horizontally list
every other coe�cient starting
with the coe�cient of the
highest power of s

3. In the 2nd row, horizontally list
every other coe�cient starting
with the coe�cient of the next
highest power of s

Figure: Equivalent CL TF

Table: Routh table

Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 11 / 30

6 Stability 6.2 Routh-Hurwitz criterion

Generating a basic Routh table, [1, p. 306]

Procedure

4. Remaining row entries are filled
with the negative determinant
of entries in the previous 2
rows divided by entry in the 1st

column directly above the
calculated row. The left-hand
column of the determinant is
always the 1st column of the
previous 2 rows, and the
right-hand column is the
elements of the column above
and to the right.

Figure: Equivalent CL TF

Table: Routh table
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6 Stability 6.2 Routh-Hurwitz criterion

Interpreting a basic Routh table, [1, p. 307]

I The number of roots of the polynomial that are in the RHP is equal
to the number of signs changes in the 1st column of a Routh table

I A system is stable if there are no sign changes in the first column of
the Routh table
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6 Stability 6.3 Routh-Hurwitz criterion: special cases

Special cases, [1, p. 308]

2 special cases

1. Zero only in the 1st column
I If the 1st element of a row is a zero, division by zero would be required

to form the next row

2. Entire row of zeros
I Result of there being a purely even polynomial that is a factor of the

original polynomial
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6 Stability 6.3 Routh-Hurwitz criterion: special cases

Zero only in the 1st column, [1, p. 308]

2 procedures

1. Epsilon procedure
I To avoid this phenomenon, an epsilon, ✏ is assigned to replace zero in

the 1st column
I The value ✏ is then allowed to approach zero from either the positive or

the negative side, after which the signs of the entries in the 1st column
can be determined

2. Reciprocal roots procedure
I A polynomial that has the reciprocal roots of the original polynomial

has its roots distributed the same–RHP, LHP, or imaginary
axis–because taking the reciprocal of the root value does not move it
to another region

I The polynomial that has the reciprocal roots of the original may not
have a zero in the 1st column

I Replacing s with 1
d results in the original polynomial with its

coe�cients written in reverse order
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6 Stability 6.3 Routh-Hurwitz criterion: special cases

Entire row of zeros, [1, p. 311]

I Purely even polynomials: Only
have roots that are
symmetrical and real

I Root positions to generate
even polynomials
(symmetrical about the
origin)

1. Symmetrical and real

2. Symmetrical and

imaginary

3. Quadrantal

I Even polynomial appears in the
row directly above the row of
zeros

Figure: Root position to generate even
polynomials: A, B, C, or any
combination
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6 Stability 6.3 Routh-Hurwitz criterion: special cases

Entire row of zeros, [1, p. 313]

I Every entry in the table from the even polynomial’s row to the end of
the chart applies only to the even polynomial

I Number of sign changes from the even polynomial to the end of the
table equals the number of RHP roots of the even polynomial

I Even polynomial must have the same number of LHP roots as it does
RHP roots

I Remaining poles must be on the imaginary axis

I The number of sign changes, from the beginning of the table down to
the even polynomial, equals the number of RHP roots

I Remaining roots are LHP roots

I The other polynomial can contain no roots on the imaginary axis
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Standard)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Interpret Routh table

Figure: FB control system
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Standard)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Interpret Routh table

Table: Routh table

T (s) =
200

s

4 + 6s3 + 11s2 + 6s+ 200

CE(s) = s

4 + 6s3 + 11s2 + 6s+ 200
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Zero in 1st column)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Epsilon method
I Interpret Routh table

Figure: FB control system
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Zero in 1st column)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Epsilon method
I Interpret Routh table

Table: Routh table

T (s) =
1

2s5 + 3s4 + 2s3 + 3s2 + 2s+ 1

CE(s) = 2s5 + 3s4 + 2s3 + 3s2 + 2s+ 1
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Zero in 1st column)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Reciprocal root method
I Epsilon method
I Interpret Routh table
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Zero in 1st column)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Reciprocal root method
I Epsilon method
I Interpret Routh table

Table: Routh table

T (s) =
1

2s5 + 3s4 + 2s3 + 3s2 + 2s+ 1

RCCE(s) = s

5 + 2s4 + 3s3 + 2s2 + 3s+ 2
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Row of zeros)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Interpret Routh table

Figure: FB control system
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6 Stability 6.4 Routh-Hurwitz criterion: additional examples

Some examples, [1, p. 314]

Example (Row of zeros)

I Problem: Find the number of
poles in the LHP, RHP, and on
the imaginary axis

I Solution: On board
I CLTF
I Characteristic equation
I Generate Routh table
I Interpret Routh table

Table: Routh table

T (s) =
12

s

8 + 3s7 + 10s6 + 24s5 + 48s4 + 96s3 + 128s2 + 192s+ 128

CE(s) = s

8 + 3s7 + 10s6 + 24s5 + 48s4 + 96s3 + 128s2 + 192s+ 128
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6 Stability 6.5 Stability in state space

Some definitions, [1, p. 320]

Definition (eigenvalues, eigenvectors, & characteristic equation)

Eigenvalues, �, of system matrix, A

I System poles

I Values that permit a nontrivial
solution (other than 0) for
eigenvectors, x, in the equation

Ax = �x

x = (�I �A)�10

=
adj(�I �A)

det(�I �A)
0

I All solutions will be the null
vector except for the
occurrence of zero in the
denominator

I This is the only condition
where elements of x will be
0/0 or indeterminate, it is the
only case where a nonzero
solution is possible

I Solutions of the characteristic
equation det(sI �A) = 0, a
polynomial
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6 Stability 6.5 Stability in state space
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